Skip to main content

Advertisement

Log in

Which Anesthesia Regimen Should Be Used for Lung Surgery?

  • Thoracic Anesthesia (T Schilling, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review is to assess the particularities of general anesthesia for patients undergoing lung surgery and one-lung ventilation (OLV), and to suggest the ideal anesthesia regimen based on the current literature.

Recent Findings

Pulmonary surgery is often performed using OLV. This is accompanied by specific physiological challenges and risks, principally hypoxemia and acute lung injury (ALI). Anesthetic strategies to prevent ALI include close adjustment of mechanical ventilation settings using low tidal volumes (< 6 ml/kg for OLV), positive end-expiratory pressure between 5 and 10 cmH2O, and the minimum FiO2 required, as well as the use of volatile anesthetics, which have anti-inflammatory properties. For thoracotomies, combined general and neuraxial anesthesia are recommended. So far, there is still no evidence if certain anesthetics have a beneficial effect on tumor outcome in lung cancer surgery.

Summary

Protective ventilation and the use of volatile anesthetics are recommended to diminish the occurrence of ALI in lung surgery patients, for thoracotomies in combination with neuraxial anesthesia. Both general and local anesthetics can have an effect on growth and recurrence of some cancer types, and their specific effect on lung cancer must be further clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.

    Article  PubMed  Google Scholar 

  2. Cai YX, Fu XN, Xu QZ, Sun W, Zhang N. Thoracoscopic lobectomy versus open lobectomy in stage I non-small cell lung cancer: a meta-analysis. PLoS One. 2013;8(12):e82366. https://doi.org/10.1371/journal.pone.0082366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paul S, Isaacs AJ, Treasure T, Altorki NK, Sedrakyan A. Long term survival with thoracoscopic versus open lobectomy: propensity matched comparative analysis using SEER-Medicare database. Bmj. 2014;349:g5575. https://doi.org/10.1136/bmj.g5575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang W, Wei Y, Jiang H, Xu J, Yu D. Video-assisted thoracoscopic surgery versus thoracotomy lymph node dissection in clinical stage i lung cancer: a meta-analysis and system review. The Annals of thoracic surgery. 2016;101(6):2417–24. https://doi.org/10.1016/j.athoracsur.2015.11.055.

    Article  PubMed  Google Scholar 

  5. Nakajima J, Takamoto S, Kohno T, Ohtsuka T. Costs of videothoracoscopic surgery versus open resection for patients with of lung carcinoma. Cancer. 2000;89(11 Suppl):2497–501. https://doi.org/10.1002/1097-0142(20001201)89:11+<2497::aid-cncr31>3.3.co;2-x.

    Article  CAS  PubMed  Google Scholar 

  6. Nasir BS, Bryant AS, Minnich DJ, Wei B, Cerfolio RJ. Performing robotic lobectomy and segmentectomy: cost, profitability, and outcomes. The Annals of thoracic surgery. 2014;98(1):203–8; discussion 8-9. https://doi.org/10.1016/j.athoracsur.2014.02.051.

    Article  PubMed  Google Scholar 

  7. Redden MD, Chin TY, van Driel ML. Surgical versus non-surgical management for pleural empyema. Cochrane Database Syst Rev. 2017;3:Cd010651. https://doi.org/10.1002/14651858.CD010651.pub2.

    Article  PubMed  Google Scholar 

  8. Lu T, Yang X, Huang Y, Zhao M, Li M, Ma K, et al. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer management and research. 2019;11:943–53. https://doi.org/10.2147/cmar.S187317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dai J, Yang P, Cox A, Jiang G. Lung cancer and chronic obstructive pulmonary disease: from a clinical perspective. Oncotarget. 2017;8(11):18513–24. https://doi.org/10.18632/oncotarget.14505.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e166S–e90S. https://doi.org/10.1378/chest.12-2395.

    Article  CAS  PubMed  Google Scholar 

  11. Kotzé A, Harris A, Baker C, Iqbal T, Lavies N, Richards T, et al. British Committee for standards in haematology guidelines on the identification and management of pre-operative anaemia. Br J Haematol. 2015;171(3):322–31. https://doi.org/10.1111/bjh.13623.

    Article  PubMed  Google Scholar 

  12. Muñoz M, Acheson AG, Auerbach M, Besser M, Habler O, Kehlet H, et al. International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia. 2017;72(2):233–47. https://doi.org/10.1111/anae.13773.

    Article  CAS  PubMed  Google Scholar 

  13. Luan H, Ye F, Wu L, Zhou Y, Jiang J. Perioperative blood transfusion adversely affects prognosis after resection of lung cancer: a systematic review and a meta-analysis. BMC surgery. 2014;14:34. https://doi.org/10.1186/1471-2482-14-34.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ramos R, Nadal E, Peiro I, Masuet-Aumatell C, Macia I, Rivas F, et al. Preoperative nutritional status assessment predicts postoperative outcomes in patients with surgically resected non-small cell lung cancer. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. 2018;44(9):1419–24. https://doi.org/10.1016/j.ejso.2018.03.026.

    Article  Google Scholar 

  15. Thomas PA, Berbis J, Falcoz PE, Le Pimpec-Barthes F, Bernard A, Jougon J, et al. National perioperative outcomes of pulmonary lobectomy for cancer: the influence of nutritional status. European journal of cardio-thoracic surgery. 2014;45(4):652–9; discussion 9. https://doi.org/10.1093/ejcts/ezt452.

    Article  PubMed  Google Scholar 

  16. Weimann A, Braga M, Carli F, Higashiguchi T, Hubner M, Klek S, et al. ESPEN guideline: clinical nutrition in surgery. Clinical nutrition (Edinburgh, Scotland). 2017;36(3):623–50. https://doi.org/10.1016/j.clnu.2017.02.013.

    Article  Google Scholar 

  17. Ashok V, Francis J. A practical approach to adult one-lung ventilation. BJA Education. 2018;18(3):69–74. https://doi.org/10.1016/j.bjae.2017.11.007.

    Article  Google Scholar 

  18. Lohser J. Evidence-based management of one-lung ventilation. Anesthesiol Clin. 2008;26(2):241–72, v. https://doi.org/10.1016/j.anclin.2008.01.011.

    Article  PubMed  Google Scholar 

  19. Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110(6):1402–11. https://doi.org/10.1097/ALN.0b013e31819fb15d.

    Article  PubMed  Google Scholar 

  20. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92(1):367–520. https://doi.org/10.1152/physrev.00041.2010.

    Article  CAS  PubMed  Google Scholar 

  21. Ng A, Swanevelder J. Hypoxaemia during one-lung anaesthesia. Continuing Education in Anaesthesia Critical Care & Pain. 2010;10(4):117–22. https://doi.org/10.1093/bjaceaccp/mkq019.

    Article  Google Scholar 

  22. Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology. 2015;122(4):932–46. https://doi.org/10.1097/aln.0000000000000569.

    Article  CAS  PubMed  Google Scholar 

  23. Licker M, de Perrot M, Spiliopoulos A, Robert J, Diaper J, Chevalley C, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesthesia & Analgesia. 2003;97(6):1558–65. https://doi.org/10.1213/01.Ane.0000087799.85495.8a.

    Article  Google Scholar 

  24. Dulu A, Pastores SM, Park B, Riedel E, Rusch V, Halpern NA. Prevalence and mortality of acute lung injury and ARDS after lung resection. Chest. 2006;130(1):73–8. https://doi.org/10.1378/chest.130.1.73.

    Article  PubMed  Google Scholar 

  25. Kim HJ, Cha SI, Kim CH, Lee J, Cho JY, Lee Y, et al. Risk factors of postoperative acute lung injury following lobectomy for nonsmall cell lung cancer. Medicine. 2019;98(13):e15078. https://doi.org/10.1097/md.0000000000015078.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yao S, Mao T, Fang W, Xu M, Chen W. Incidence and risk factors for acute lung injury after open thoracotomy for thoracic diseases. Journal of thoracic disease. 2013;5(4):455–60. https://doi.org/10.3978/j.issn.2072-1439.2013.08.20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Della Rocca G, Coccia C. Acute lung injury in thoracic surgery. Current opinion in anaesthesiology. 2013;26(1):40–6. https://doi.org/10.1097/ACO.0b013e32835c4ea2.

    Article  PubMed  Google Scholar 

  28. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. https://doi.org/10.1001/jama.2016.0291.

    Article  CAS  PubMed  Google Scholar 

  29. Agostini P, Cieslik H, Rathinam S, Bishay E, Kalkat MS, Rajesh PB, et al. Postoperative pulmonary complications following thoracic surgery: are there any modifiable risk factors? Thorax. 2010;65(9):815–8. https://doi.org/10.1136/thx.2009.123083.

    Article  CAS  PubMed  Google Scholar 

  30. Lohser J, Slinger P. Lung Injury After One-Lung Ventilation: A review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesthesia and analgesia. 2015;121(2):302–18. https://doi.org/10.1213/ANE.0000000000000808.

    Article  PubMed  Google Scholar 

  31. Schilling T, Kozian A, Huth C. B??hling F, Kretzschmar M, Welte T et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesthesia & Analgesia. 2005;101(4):957–65. https://doi.org/10.1213/01.ane.0000172112.02902.77.

    Article  Google Scholar 

  32. Kozian A, Schilling T, Freden F, Maripuu E, Rocken C, Strang C, et al. One-lung ventilation induces hyperperfusion and alveolar damage in the ventilated lung: an experimental study. British journal of anaesthesia. 2008;100(4):549–59. https://doi.org/10.1093/bja/aen021.

    Article  CAS  PubMed  Google Scholar 

  33. Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116(1 Suppl):9s-15s. https://doi.org/10.1378/chest.116.suppl_1.9s-a.

    Article  PubMed  Google Scholar 

  34. Olivant Fisher A, Husain K, Wolfson MR, Hubert TL, Rodriguez E, Shaffer TH, et al. Hyperoxia during one lung ventilation: inflammatory and oxidative responses. Pediatr Pulmonol. 2012;47(10):979–86. https://doi.org/10.1002/ppul.22517.

    Article  PubMed  Google Scholar 

  35. Leite CF, Calixto MC, Toro IF, Antunes E, Mussi RK. Characterization of pulmonary and systemic inflammatory responses produced by lung re-expansion after one-lung ventilation. Journal of cardiothoracic and vascular anesthesia. 2012;26(3):427–32. https://doi.org/10.1053/j.jvca.2011.09.028.

    Article  PubMed  Google Scholar 

  36. Sivrikoz MC, Tunçözgür B. çekmen M, Bakir K, Meram İ, Koçer E et al. The role of tissue reperfusion in the reexpansion injury of the lungs. Eur J Cardio-Thor Surg. 2002;22(5):721–7. https://doi.org/10.1016/S1010-7940(02)00447-5.

    Article  Google Scholar 

  37. Sánchez-Pedrosa G, Vara Ameigeiras E, Casanova Barea J, Rancan L, Simón Adiego CM, Garutti MI. Role of surgical manipulation in lung inflammatory response in a model of lung resection surgery. Interactive CardioVascular and Thoracic Surgery. 2018;27(6):870–7. https://doi.org/10.1093/icvts/ivy198.

    Article  PubMed  Google Scholar 

  38. O’Gara B, Talmor D. Perioperative lung protective ventilation. Bmj. 2018. https://doi.org/10.1136/bmj.k3030.

  39. Yang M, Ahn HJ, Kim K, Kim JA, Yi CA, Kim MJ, et al. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest. 2011;139(3):530–7. https://doi.org/10.1378/chest.09-2293.

    Article  PubMed  Google Scholar 

  40. Spadaro S, Grasso S, Karbing DS, Fogagnolo A, Contoli M, Bollini G, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology. 2018;128(3):531–8. https://doi.org/10.1097/aln.0000000000002011.

    Article  PubMed  Google Scholar 

  41. El Tahan MR, Pasin L, Marczin N, Landoni G. Impact of low tidal volumes during one-lung ventilation. A meta-analysis of randomized controlled trials. Journal of cardiothoracic and vascular anesthesia. 2017;31(5):1767–73. https://doi.org/10.1053/j.jvca.2017.06.015.

    Article  PubMed  Google Scholar 

  42. Licker M, Diaper J, Villiger Y, Spiliopoulos A, Licker V, Robert J, et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Critical care (London, England). 2009;13(2):R41. https://doi.org/10.1186/cc7762.

    Article  Google Scholar 

  43. Sticher J, Muller M, Scholz S, Schindler E, Hempelmann G. Controlled hypercapnia during one-lung ventilation in patients undergoing pulmonary resection. Acta anaesthesiologica Scandinavica. 2001;45(7):842–7.

    Article  CAS  Google Scholar 

  44. Mekontso Dessap A, Charron C, Devaquet J, Aboab J, Jardin F, Brochard L, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35(11):1850–8. https://doi.org/10.1007/s00134-009-1569-2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurry TL, Bender SP, et al. Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–95. https://doi.org/10.1097/ALN.0000000000001100.

    Article  PubMed  Google Scholar 

  46. Colquhoun DA, Naik BI, Durieux ME, Shanks AM, Kheterpal S, Bender SP, et al. Management of 1-lung ventilation-variation and trends in clinical practice: a report from the multicenter perioperative outcomes group. Anesthesia and analgesia. 2018;126(2):495–502. https://doi.org/10.1213/ane.0000000000002642.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pereira SM, Tucci MR, Morais CCA, Simões CM, Tonelotto BFF, Pompeo MS, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology. 2018;129(6):1070–81. https://doi.org/10.1097/ALN.0000000000002435.

    Article  PubMed  Google Scholar 

  48. Kacmarek RM, Villar J. Lung-protective ventilation in the operating room: individualized positive end-expiratory pressure is needed! Anesthesiology. 2018;129(6):1057–9. https://doi.org/10.1097/aln.0000000000002476.

    Article  PubMed  Google Scholar 

  49. Duggan M, Kavanagh BP. Atelectasis in the perioperative patient. Current opinion in anaesthesiology. 2007;20(1):37–42. https://doi.org/10.1097/ACO.0b013e328011d7e5.

    Article  PubMed  Google Scholar 

  50. Ko R, McRae K, Darling G, Waddell TK, McGlade D, Cheung K, et al. The use of air in the inspired gas mixture during two-lung ventilation delays lung collapse during one-lung ventilation. Anesthesia and analgesia. 2009;108(4):1092–6. https://doi.org/10.1213/ane.0b013e318195415f.

    Article  PubMed  Google Scholar 

  51. Misthos P, Katsaragakis S, Milingos N, Kakaris S, Sepsas E, Athanassiadi K, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2005;27(3):379–82; discussion 82-3. https://doi.org/10.1016/j.ejcts.2004.12.023.

    Article  CAS  Google Scholar 

  52. Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. European journal of cardio-thoracic surgery. 2006;29(4):591–5. https://doi.org/10.1016/j.ejcts.2005.12.027.

    Article  PubMed  Google Scholar 

  53. Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Pasqualucci Mde O, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. Jama. 2012;308(16):1651–9. https://doi.org/10.1001/jama.2012.13730.

    Article  CAS  PubMed  Google Scholar 

  54. Neto AS, Simonis FD, Barbas CS, Biehl M, Determann RM, Elmer J, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med. 2015;43(10):2155–63. https://doi.org/10.1097/CCM.0000000000001189.

    Article  PubMed  Google Scholar 

  55. Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. The Lancet Respiratory medicine. 2014;2(12):1007–15. https://doi.org/10.1016/s2213-2600(14)70228-0.

    Article  PubMed  Google Scholar 

  56. Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology. 2015;123(1):66–78. https://doi.org/10.1097/aln.0000000000000706.

    Article  PubMed  Google Scholar 

  57. Zhang Z, Hu X, Zhang X, Zhu X, Chen L, Zhu L, et al. Lung protective ventilation in patients undergoing major surgery: a systematic review incorporating a Bayesian approach. BMJ Open. 2015;5(9). https://doi.org/10.1136/bmjopen-2014-007473.

  58. Zochios V, Klein AA, Gao F. Protective invasive ventilation in cardiac surgery: a systematic review with a focus on acute lung injury in adult cardiac surgical patients. Journal of cardiothoracic and vascular anesthesia. 2018;32(4):1922–36. https://doi.org/10.1053/j.jvca.2017.10.031.

    Article  PubMed  Google Scholar 

  59. Futier E, Constantin JM, Jaber S. Protective lung ventilation in operating room: a systematic review. Minerva anestesiologica. 2014;80(6):726–35.

    CAS  PubMed  Google Scholar 

  60. Yue T, Roth Z’graggen B, Blumenthal S, Neff SB, Reyes L, Booy C, et al. Postconditioning with a volatile anaesthetic in alveolar epithelial cells in vitro. European Respiratory Journal. 2008;31(1):118–25. https://doi.org/10.1183/09031936.00046307.

    Article  CAS  PubMed  Google Scholar 

  61. Reutershan J, Chang D, Hayes JK, Ley K. Protective effects of isoflurane pretreatment in endotoxin-induced lung injury. Anesthesiology. 2006;104(3):511–7.

    Article  CAS  Google Scholar 

  62. Voigtsberger S, Lachmann RA, Leutert AC, Schlapfer M, Booy C, Reyes L, et al. Sevoflurane ameliorates gas exchange and attenuates lung damage in experimental lipopolysaccharide-induced lung injury. Anesthesiology. 2009;111(6):1238–48. https://doi.org/10.1097/ALN.0b013e3181bdf857.

    Article  CAS  PubMed  Google Scholar 

  63. Ferrando C, Aguilar G, Piqueras L, Soro M, Moreno J, Belda FJ. Sevoflurane, but not propofol, reduces the lung inflammatory response and improves oxygenation in an acute respiratory distress syndrome model: a randomised laboratory study. Eur J Anaesthesiol. 2013;30(8):455–63. https://doi.org/10.1097/EJA.0b013e32835f0aa5.

    Article  CAS  PubMed  Google Scholar 

  64. Jabaudon M, Boucher P, Imhoff E, Chabanne R, Faure JS, Roszyk L, et al. Sevoflurane for sedation in acute respiratory distress syndrome. A randomized controlled pilot study. Am J Respir Crit Care Med. 2017;195(6):792–800. https://doi.org/10.1164/rccm.201604-0686OC.

    Article  CAS  PubMed  Google Scholar 

  65. Schilling T, Kozian A, Kretzschmar M, Huth C, Welte T, Buhling F, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. British journal of anaesthesia. 2007;99(3):368–75. https://doi.org/10.1093/bja/aem184.

    Article  CAS  PubMed  Google Scholar 

  66. Schilling T, Kozian A, Senturk M, Huth C, Reinhold A, Hedenstierna G, et al. Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology. 2011;115(1):65–74. https://doi.org/10.1097/ALN.0b013e318214b9de.

    Article  CAS  PubMed  Google Scholar 

  67. De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110(6):1316–26. https://doi.org/10.1097/ALN.0b013e3181a10731.

    Article  CAS  PubMed  Google Scholar 

  68. Kim HJ, Kim E, Baek SH, Kim HY, Kim JY, Park J, et al. Sevoflurane did not show better protective effect on endothelial glycocalyx layer compared to propofol during lung resection surgery with one lung ventilation. J Thor Dis. 2018;10(3):1468–75. https://doi.org/10.21037/jtd.2018.03.44.

    Article  Google Scholar 

  69. •• Beck-Schimmer B, Bonvini JM, Braun J, Seeberger M, Neff TA, Risch TJ, et al. Which anesthesia regimen is best to reduce morbidity and mortality in lung surgery?: a multicenter randomized controlled trial. Anesthesiology. 2016;125(2):313–21. https://doi.org/10.1097/ALN.0000000000001164To date, the largest RCT comparing volatile anesthetics to propofol in OLV patients.

    Article  CAS  PubMed  Google Scholar 

  70. de la Gala F, Pineiro P, Reyes A, Vara E, Olmedilla L, Cruz P, et al. Postoperative pulmonary complications, pulmonary and systemic inflammatory responses after lung resection surgery with prolonged one-lung ventilation. Randomized controlled trial comparing intravenous and inhalational anaesthesia. British journal of anaesthesia. 2017;119(4):655–63. https://doi.org/10.1093/bja/aex230.

    Article  CAS  PubMed  Google Scholar 

  71. Modolo NS, Modolo MP, Marton MA, Volpato E, Monteiro Arantes V, do Nascimento Junior P, et al. Intravenous versus inhalation anaesthesia for one-lung ventilation. Cochrane Database Syst Rev. 2013(7):Cd006313. https://doi.org/10.1002/14651858.CD006313.pub3.

  72. Sun B, Wang J, Bo L, Zang Y, Gu H, Li J, et al. Effects of volatile vs. propofol-based intravenous anesthetics on the alveolar inflammatory responses to one-lung ventilation: a meta-analysis of randomized controlled trials. J Anesth. 2015;29(4):570–9. https://doi.org/10.1007/s00540-015-1987-y.

    Article  PubMed  Google Scholar 

  73. Perry NJS, Buggy D, Ma D. Can anesthesia influence cancer outcomes after surgery? JAMA Surgery. 2019;154(4):279–80. https://doi.org/10.1001/jamasurg.2018.4619.

    Article  PubMed  Google Scholar 

  74. Heaney A, Buggy DJ. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? British journal of anaesthesia. 2012;109(Suppl 1):i17–28. https://doi.org/10.1093/bja/aes421.

    Article  PubMed  Google Scholar 

  75. Hashimoto M, Tanaka F, Yoneda K, Takuwa T, Matsumoto S, Okumura Y, et al. Significant increase in circulating tumour cells in pulmonary venous blood during surgical manipulation in patients with primary lung cancer. Interact Cardiovasc Thorac Surg. 2014;18(6):775–83. https://doi.org/10.1093/icvts/ivu048.

    Article  PubMed  Google Scholar 

  76. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. The New England journal of medicine. 2004;351(8):781–91. https://doi.org/10.1056/NEJMoa040766.

    Article  CAS  PubMed  Google Scholar 

  77. Yagi S, Koh Y, Akamatsu H, Kanai K, Hayata A, Tokudome N, et al. Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients. PLOS ONE. 2017;12(6):e0179744. https://doi.org/10.1371/journal.pone.0179744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Peach G, Kim C, Zacharakis E, Purkayastha S, Ziprin P. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review. British journal of cancer. 2010;102(9):1327–34. https://doi.org/10.1038/sj.bjc.6605651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ilie M, Long E, Butori C, Hofman V, Coelle C, Mauro V, et al. ALK-gene rearrangement: a comparative analysis on circulating tumour cells and tumour tissue from patients with lung adenocarcinoma. Ann Oncol. 2012;23(11):2907–13. https://doi.org/10.1093/annonc/mds137.

    Article  CAS  PubMed  Google Scholar 

  80. Kapeleris J, Kulasinghe A, Warkiani ME, Vela I, Kenny L, O’Byrne K, et al. The prognostic role of circulating tumor cells (CTCs) in lung cancer. Frontiers in oncology. 2018;8:311. https://doi.org/10.3389/fonc.2018.00311.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tartarone A, Rossi E, Lerose R, Mambella G, Calderone G, Zamarchi R, et al. Possible applications of circulating tumor cells in patients with non small cell lung cancer. Lung cancer (Amsterdam, Netherlands). 2017;107:59–64. https://doi.org/10.1016/j.lungcan.2016.05.027.

    Article  Google Scholar 

  82. Stollings LM, Jia LJ, Tang P, Dou H, Lu B, Xu Y. Immune modulation by volatile anesthetics. Anesthesiology. 2016;125(2):399–411. https://doi.org/10.1097/aln.0000000000001195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. • Hiller JG, Perry NJ, Poulogiannis G, Riedel B, Sloan EK. Perioperative events influence cancer recurrence risk after surgery. Nature reviews Clinical oncology. 2018;15(4):205–18. https://doi.org/10.1038/nrclinonc.2017.194Excellent review about the importance of the perioperative window for cancer recurrence.

    Article  PubMed  Google Scholar 

  84. •• Wigmore TJ, Mohammed K, Jhanji S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a retrospective analysis. Anesthesiology. 2016;124(1):69–79. https://doi.org/10.1097/aln.0000000000000936Retrospective analysis of a very large number of patients comparing intravenous with volatile anesthetics in cancer resection. This article highlights the detrimental effects of volatile anesthetics on cancer patients and warrants further clinical trials on the topic.

    Article  CAS  PubMed  Google Scholar 

  85. Ciechanowicz S, Zhao H, Chen Q, Cui J, Mi E, Mi E, et al. Differential effects of sevoflurane on the metastatic potential and chemosensitivity of non-small-cell lung adenocarcinoma and renal cell carcinoma in vitro. British journal of anaesthesia. 2018;120(2):368–75. https://doi.org/10.1016/j.bja.2017.11.066.

    Article  CAS  PubMed  Google Scholar 

  86. Sessler DI, Riedel B. Anesthesia and cancer recurrence: context for divergent study outcomes. Anesthesiology. 2019;130(1):3–5. https://doi.org/10.1097/aln.0000000000002506.

    Article  PubMed  Google Scholar 

  87. Miskovic A, Lumb AB. Postoperative pulmonary complications. British journal of anaesthesia. 2017;118(3):317–34. https://doi.org/10.1093/bja/aex002.

    Article  CAS  PubMed  Google Scholar 

  88. Xu YMD, Tan ZMDPD, Wang SMD, Shao HMD, Zhu XMD. Effect of thoracic epidural anesthesia with different concentrations of ropivacaine on arterial oxygenation during one-lung ventilation. Anesthesiology. 2010;112(5):1146–54. https://doi.org/10.1097/ALN.0b013e3181d40347.

    Article  CAS  PubMed  Google Scholar 

  89. Li X-Q, Tan W-F, Wang J, Fang B, Ma H. The effects of thoracic epidural analgesia on oxygenation and pulmonary shunt fraction during one-lung ventilation: an meta-analysis. BMC Anesthesiol. 2015;15(1). https://doi.org/10.1186/s12871-015-0142-5.

  90. Ozcan PE, Senturk M, Sungur Ulke Z, Toker A, Dilege S, Ozden E, et al. Effects of thoracic epidural anaesthesia on pulmonary venous admixture and oxygenation during one-lung ventilation. Acta anaesthesiologica Scandinavica. 2007;51(8):1117–22. https://doi.org/10.1111/j.1399-6576.2007.01374.x.

    Article  CAS  PubMed  Google Scholar 

  91. Davies RG, Myles PS, Graham JM. A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy--a systematic review and meta-analysis of randomized trials. British journal of anaesthesia. 2006;96(4):418–26. https://doi.org/10.1093/bja/ael020.

    Article  CAS  PubMed  Google Scholar 

  92. Ding X, Jin S, Niu X, Ren H, Fu S, Li Q. A comparison of the analgesia efficacy and side effects of paravertebral compared with epidural blockade for thoracotomy: an updated meta-analysis. PloS one. 2014;9(5):e96233-e. https://doi.org/10.1371/journal.pone.0096233.

    Article  CAS  Google Scholar 

  93. Scarfe AJ, Schuhmann-Hingel S, Duncan JK, Ma N, Atukorale YN, Cameron AL. Continuous paravertebral block for post-cardiothoracic surgery analgesia: a systematic review and meta-analysis. European journal of cardio-thoracic surgery. 2016;50(6):1010–8. https://doi.org/10.1093/ejcts/ezw168.

    Article  PubMed  Google Scholar 

  94. Yeung JH, Gates S, Naidu BV, Wilson MJ, Gao SF. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev. 2016;2:Cd009121. https://doi.org/10.1002/14651858.CD009121.pub2.

    Article  PubMed  Google Scholar 

  95. Joshi GP, Bonnet F, Shah R, Wilkinson RC, Camu F, Fischer B, et al. A systematic review of randomized trials evaluating regional techniques for postthoracotomy analgesia. Anesthesia and analgesia. 2008;107(3):1026–40. https://doi.org/10.1213/01.ane.0000333274.63501.ff.

    Article  CAS  PubMed  Google Scholar 

  96. Pei L, Tan G, Wang L, Guo W, Xiao B, Gao X, et al. Comparison of combined general-epidural anesthesia with general anesthesia effects on survival and cancer recurrence: a meta-analysis of retrospective and prospective studies. PLoS One. 2014;9(12):e114667. https://doi.org/10.1371/journal.pone.0114667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. • Weng M, Chen W, Hou W, Li L, Ding M, Miao C. The effect of neuraxial anesthesia on cancer recurrence and survival after cancer surgery: an updated meta-analysis. Oncotarget. 2016;7(12):15262–73. https://doi.org/10.18632/oncotarget.7683Most recent and largest meta-analysis evaluating the effect of neuraxial anesthetics on cancer reccurrence and survival.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cata JP. Outcomes of regional anesthesia in cancer patients. Current opinion in anaesthesiology. 2018;31(5):593–600. https://doi.org/10.1097/ACO.0000000000000636.

    Article  PubMed  Google Scholar 

  99. Lee EK, Ahn HJ, Zo JI, Kim K, Jung DM, Park JH. Paravertebral block does not reduce cancer recurrence, but is related to higher overall survival in lung cancer surgery: a retrospective cohort study. Anesthesia and analgesia. 2017;125(4):1322–8. https://doi.org/10.1213/ANE.0000000000002342.

    Article  PubMed  Google Scholar 

  100. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg. 2017;152(3):292–8. https://doi.org/10.1001/jamasurg.2016.4952.

    Article  PubMed  Google Scholar 

  101. Nicholson A, Lowe MC, Parker J, Lewis SR, Alderson P, Smith AF. Systematic review and meta-analysis of enhanced recovery programmes in surgical patients. Br J Surg. 2014;101(3):172–88. https://doi.org/10.1002/bjs.9394.

    Article  CAS  PubMed  Google Scholar 

  102. Fiore JF Jr, Bejjani J, Conrad K, Niculiseanu P, Landry T, Lee L, et al. Systematic review of the influence of enhanced recovery pathways in elective lung resection. J Thorac Cardiovasc Surg. 2016;151(3):708-15.e6. https://doi.org/10.1016/j.jtcvs.2015.09.112.

    Article  Google Scholar 

  103. Li S, Zhou K, Che G, Yang M, Su J, Shen C, et al. Enhanced recovery programs in lung cancer surgery: systematic review and meta-analysis of randomized controlled trials. Cancer management and research. 2017;9:657–70. https://doi.org/10.2147/cmar.S150500.

    Article  PubMed  PubMed Central  Google Scholar 

  104. • Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, Brunelli A, Cerfolio RJ, Gonzalez M, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the Enhanced Recovery After Surgery (ERAS(R)) Society and the European Society of Thoracic Surgeons (ESTS). European journal of cardio-thoracic surgery. 2019;55(1):91–115. https://doi.org/10.1093/ejcts/ezy301Official ERAS guidelines from the ERAS ® Society and the ESTS.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Beck-Schimmer.

Ethics declarations

Conflict of Interest

Andreas Pregernig declares that he has no conflict of interest.

Beatrice Beck-Schimmer receives research funding from Baxter AG, is a past participant at Advisory Board meetings held by Baxter AG, is an Associate Editor for Anesthesiology, and has a patent (20140100278) issued for injectable formulation for treatment and protection of patients having an inflammatory reaction or an ischemia-reperfusion event.

Human and Animal Rights and Informed Consent

All reported studies/experiment with human or animal subjects have been previously published. The authors of this article complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Thoracic Anesthesia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pregernig, A., Beck-Schimmer, B. Which Anesthesia Regimen Should Be Used for Lung Surgery?. Curr Anesthesiol Rep 9, 464–473 (2019). https://doi.org/10.1007/s40140-019-00356-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-019-00356-7

Keywords

Navigation