Skip to main content

Advertisement

Log in

The Regulatory Role of miRNAs in Ethanol-induced TLR4 Activation and Neuroinflammation

  • The Pathobiology of Alcohol Consumption (P Molina and M Ronis, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Alcohol is a neurotoxic compound and its abuse can induce brain damage and neurodegeneration. Evidence from the last decade demonstrates the critical role of the innate immune system in neuroinflammation associated with alcohol abuse. In this review, we discuss the role of miRNAs as regulators of immune Toll-like receptors (TLR4), the neuroimmune response associated with alcohol abuse, and the importance of glial extracellular vesicles in amplifying neuroinflammation.

Recent Findings

Current studies demonstrate the role of glial extracellular vesicles/exosomes in extending neuroinflammation, and the importance of miRNAs as key regulators of different biological functions. However, dysregulation of miRNAs also participates in neurological and neurodegenerative diseases associated with neuroinflammation. Recent findings indicate the possibility of circulating miRNAs being used as biomarkers to screen neurological and neuroinflammatory disorders as early diagnosis and therapy.

Summary

This article highlights the role of miRNAs in regulating neuroinflammation associated with alcohol abuse and the importance of glial extracellular vesicles/exosomes in extending neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zahr NM, Pfefferbaum A. Alcohol’s effects on the brain: neuroimaging results in humans and animal models. Alcohol Research: Current Reviews; 2017.

  2. Pfefferbaum A, Rosenbloom MJ, Fama R, Sassoon SA, Sullivan EV. Transcallosal white matter degradation detected with quantitative fiber tracking in alcoholic men and women: selective relations to dissociable functions. Alcohol Clin Exp Res. 2010;34(7):1201–11.

    PubMed  PubMed Central  Google Scholar 

  3. Alfonso-Loeches S, Pascual M, Gomez-Pinedo U, Pascual-Lucas M, Renau-Piqueras J, Guerri C. Toll-like receptor 4 participates in the myelin disruptions associated with chronic alcohol abuse. Glia. 2012;60(6):948–64.

    Article  PubMed  Google Scholar 

  4. Lewohl JM, Wang L, Miles MF, Zhang L, Dodd PR, Harris RA. Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol Clin Exp Res. 2000;24(12):1873–82.

    Article  CAS  PubMed  Google Scholar 

  5. Mayfield RD, Lewohl JM, Dodd PR, Herlihy A, Liu J, Harris RA. Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J Neurochem. 2002;81(4):802–13.

    Article  CAS  PubMed  Google Scholar 

  6. Putzke J, De Beun R, Schreiber R, De Vry J, Tolle TR, Zieglgansberger W, et al. Long-term alcohol self-administration and alcohol withdrawal differentially modulate microtubule-associated protein 2 (MAP2) gene expression in the rat brain. Brain Res Mol Brain Res. 1998;62(2):196–205.

    Article  CAS  PubMed  Google Scholar 

  7. Paula-Barbosa MM, Tavares MA. Long term alcohol consumption induces microtubular changes in the adult rat cerebellar cortex. Brain Res. 1985;339(1):195–9.

    Article  CAS  PubMed  Google Scholar 

  8. Pascual M, Montesinos J, Guerri C. Role of the innate immune system in the neuropathological consequences induced by adolescent binge drinking. J Neurosci Res. 2018;96(5):765–80.

    Article  CAS  PubMed  Google Scholar 

  9. Montesinos J, Pascual M, Pla A, Maldonado C, Rodriguez-Arias M, Minarro J, et al. TLR4 elimination prevents synaptic and myelin alterations and long-term cognitive dysfunctions in adolescent mice with intermittent ethanol treatment. Brain Behav Immun. 2015;45:233–44.

    Article  CAS  PubMed  Google Scholar 

  10. Montesinos J, Pascual M, Rodriguez-Arias M, Minarro J, Guerri C. Involvement of TLR4 in the long-term epigenetic changes, rewarding and anxiety effects induced by intermittent ethanol treatment in adolescence. Brain Behav Immun. 2016;53:159–71.

    Article  CAS  PubMed  Google Scholar 

  11. Pandey SC, Sakharkar AJ, Tang L, Zhang H. Potential role of adolescent alcohol exposure-induced amygdaloid histone modifications in anxiety and alcohol intake during adulthood. Neurobiol Dis. 2015;82:607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Skike CE, Diaz-Granados JL, Matthews DB. Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats. Alcohol Clin Exp Res 2015;39(2):262–271.

  13. Crews FT, Vetreno RP. Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology. 2016;233(9):1543–57.

    Article  CAS  PubMed  Google Scholar 

  14. Szabo G, Saha B. Alcohol’s effect on host defense. Alcohol Res. 2015;37(2):159–70.

    PubMed  PubMed Central  Google Scholar 

  15. Lampron A, Elali A, Rivest S. Innate immunity in the CNS: redefining the relationship between the CNS and Its environment. Neuron. 2013;78(2):214–32.

    Article  CAS  PubMed  Google Scholar 

  16. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.

    Article  CAS  PubMed  Google Scholar 

  17. Dantzer R. Neuroimmune Interactions: from the brain to the immune system and vice versa. Physiol Rev. 2018;98(1):477–504.

    Article  CAS  PubMed  Google Scholar 

  18. Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer’s disease. J Neurochem. 2016;136(3):475–91.

    Article  CAS  PubMed  Google Scholar 

  19. Boulanger LM. Immune proteins in brain development and synaptic plasticity. Neuron. 2009;64(1):93–109.

    Article  CAS  PubMed  Google Scholar 

  20. Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181–213.

    Article  CAS  PubMed  Google Scholar 

  21. Niranjan R. Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochem Int. 2018;120:13–20.

    Article  CAS  PubMed  Google Scholar 

  22. Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 2015;9:476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kohno M, Link J, Dennis LE, McCready H, Huckans M, Hoffman WF, et al. Neuroinflammation in addiction: a review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav. 2019;179:34–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Montesinos J, Alfonso-Loeches S, Guerri C. Impact of the innate immune response in the actions of ethanol on the central nervous system. Alcohol Clin Exp Res. 2016;40(11):2260–70.

    Article  CAS  PubMed  Google Scholar 

  25. Crews FT, Sarkar DK, Qin L, Zou J, Boyadjieva N, Vetreno RP. Neuroimmune function and the consequences of alcohol exposure. Alcohol Res. 2015;37(2):331–41 44–51.

    PubMed  PubMed Central  Google Scholar 

  26. Mayfield J, Ferguson L, Harris RA. Neuroimmune signaling: a key component of alcohol abuse. Curr Opin Neurobiol. 2013;23(4):513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roberto M, Patel RR, Bajo M. Ethanol and cytokines in the central nervous system. Handb Exp Pharmacol. 2018;248:397–431.

    Article  PubMed  CAS  Google Scholar 

  28. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S. TLRs/NLRs: shaping the landscape of host immunity. Int Rev Immunol. 2018;37(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  30. Blanco AM, Perez-Arago A, Fernandez-Lizarbe S, Guerri C. Ethanol mimics ligand-mediated activation and endocytosis of IL-1RI/TLR4 receptors via lipid rafts caveolae in astroglial cells. J Neurochem. 2008;106(2):625–39.

    Article  CAS  PubMed  Google Scholar 

  31. Blanco AM, Valles SL, Pascual M, Guerri C. Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol. 2005;175(10):6893–9.

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez-Lizarbe S, Pascual M, Guerri C. Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol. 2009;183(7):4733–44.

    Article  CAS  PubMed  Google Scholar 

  33. Pascual-Lucas M, Fernandez-Lizarbe S, Montesinos J, Guerri C. LPS or ethanol triggers clathrin- and rafts/caveolae-dependent endocytosis of TLR4 in cortical astrocytes. J Neurochem. 2014;129(3):448–62.

    Article  CAS  PubMed  Google Scholar 

  34. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci. 2010;30(24):8285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alfonso-Loeches S, Urena-Peralta J, Morillo-Bargues MJ, Gomez-Pinedo U, Guerri C. Ethanol-induced TLR4/NLRP3 neuroinflammatory response in microglial cells promotes leukocyte infiltration across the BBB. Neurochem Res. 2016;41(1–2):193–209.

    Article  CAS  PubMed  Google Scholar 

  36. Alfonso-Loeches S, Urena-Peralta JR, Morillo-Bargues MJ, Oliver-De La Cruz J, Guerri C. Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci 2014;8:216.

  37. Warden AS, Azzam M, DaCosta A, Mason S, Blednov YA, Messing RO, et al. Toll-like receptor 3 activation increases voluntary alcohol intake in C57BL/6J male mice. Brain Behav Immun. 2019;77:55–65.

    Article  CAS  PubMed  Google Scholar 

  38. Su W, Aloi MS, Garden GA. MicroRNAs mediating CNS inflammation: small regulators with powerful potential. Brain Behav Immun. 2016;52:1–8.

    Article  PubMed  CAS  Google Scholar 

  39. Lewohl JM, Nunez YO, Dodd PR, Tiwari GR, Harris RA, Mayfield RD. Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res. 2011;35(11):1928–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nunez YO, Mayfield RD. Understanding alcoholism through microRNA signatures in brains of human alcoholics. Front Genet. 2012;3:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nunez YO, Truitt JM, Gorini G, Ponomareva ON, Blednov YA, Harris RA, et al. Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence. BMC Genomics. 2013;14:725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lippai D, Bala S, Csak T, Kurt-Jones EA, Szabo G. Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice. PLoS One. 2013;8(8):e70945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS. 2018;15(1):19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 Cell. 1993;75(5):843–54.

  45. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    Article  CAS  PubMed  Google Scholar 

  47. Felekkis K, Touvana E, Stefanou C, Deltas C. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14(4):236–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet. 2008;82(2):283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, et al. MicroRNAs can regulate human APP levels. Mol Neurodegener. 2008;3:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding Cell. 2013;153(3):654–665.

  51. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

    Article  CAS  PubMed  Google Scholar 

  52. Bayraktar R, Van Roosbroeck K, Calin GA. Cell-to-cell communication: microRNAs as hormones. Mol Oncol 2017;11(12):1673–1686.

  53. Slota JA, Booth SA. MicroRNAs in neuroinflammation: implications in disease pathogenesis, biomarker discovery and therapeutic applications. Noncoding RNA. 2019:5(2).

  54. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA expression. J Transl Med. 2016;14(1):143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Contet C. Gene expression under the influence: transcriptional profiling of ethanol in the brain. Curr Psychopharmacol. 2012;1(4):301–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mizuo K, Katada R, Okazaki S, Tateda K, Watanabe S, Matsumoto H. Epigenetic regulation of MIR-124 under ethanol dependence and withdrawal. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2012;47(3):155–63.

    CAS  PubMed  Google Scholar 

  58. Tapocik JD, Barbier E, Flanigan M, Solomon M, Pincus A, Pilling A, et al. MicroRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. J Neurosci 2014;34(13):4581–4588.

  59. Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Mol Psychiatry. 2015;20(10):1219–31.

    Article  CAS  PubMed  Google Scholar 

  60. Most D, Salem NA, Tiwari GR, Blednov YA, Mayfield RD, Harris RA. Silencing synaptic MicroRNA-411 reduces voluntary alcohol consumption in mice. Addict Biol. 2019;24(4):604–16.

    Article  CAS  PubMed  Google Scholar 

  61. Fernandes JCR, Acuna SM, Aoki JI, Floeter-Winter LM, Muxel SM. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 2019;5(1).

  62. Sartor GC, St Laurent G 3rd, Wahlestedt C. The emerging role of non-coding RNAs in drug addiction. Front Genet. 2012;3:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kryger R, Fan L, Wilce PA, Jaquet V. MALAT-1, a non protein-coding RNA is upregulated in the cerebellum, hippocampus and brain stem of human alcoholics. Alcohol. 2012;46(7):629–34.

    Article  CAS  PubMed  Google Scholar 

  64. Abdulle LE, Hao JL, Pant OP, Liu XF, Zhou DD, Gao Y, et al. MALAT1 as a diagnostic and therapeutic target in diabetes-related complications: a promising long-noncoding RNA. Int J Med Sci. 2019;16(4):548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bohnsack JP, Teppen T, Kyzar EJ, Dzitoyeva S, Pandey SC. The lncRNA BDNF-AS is an epigenetic regulator in the human amygdala in early onset alcohol use disorders. Transl Psychiatry. 2019;9(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Robinson G, Most D, Ferguson LB, Mayfield J, Harris RA, Blednov YA. Neuroimmune pathways in alcohol consumption: evidence from behavioral and genetic studies in rodents and humans. Int Rev Neurobiol. 2014;118:13–39.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Wei G, Di Z, Zhao Q. miR-339-5p inhibits alcohol-induced brain inflammation through regulating NF-kappaB pathway. Biochem Biophys Res Commun. 2014;452(3):450–6.

    Article  CAS  PubMed  Google Scholar 

  68. Miguel-Hidalgo JJ, Hall KO, Bonner H, Roller AM, Syed M, Park CJ, et al. MicroRNA-21: expression in oligodendrocytes and correlation with low myelin mRNAs in depression and alcoholism. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;79(Pt B):503–14.

    Article  CAS  Google Scholar 

  69. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D62.

    Article  CAS  PubMed  Google Scholar 

  70. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73(10):1907–20.

    Article  CAS  Google Scholar 

  72. Gupta A, Pulliam L. Exosomes as mediators of neuroinflammation. J Neuroinflammation. 2014;11:68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Caruso Bavisotto C, Scalia F, Marino Gammazza A, Carlisi D, Bucchieri F, Conway de Macario E, et al. Extracellular vesicle-mediated cell(−)cell communication in the nervous system: focus on neurological diseases. Int J Mol Sci. 2019:20(2).

  74. Frohlich D, Kuo WP, Fruhbeis C, Sun JJ, Zehendner CM, Luhmann HJ, et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond Ser B Biol Sci. 1652;369:2014.

    Google Scholar 

  75. Li D, Li YP, Li YX, Zhu XH, Du XG, Zhou M, et al. Effect of regulatory network of exosomes and microRNAs on neurodegenerative diseases. Chin Med J. 2018;131(18):2216–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chen JJ, Zhao B, Zhao J, Li S. Potential roles of exosomal microRNAs as diagnostic biomarkers and therapeutic application in Alzheimer’s disease. Neural Plast. 2017;2017:7027380.

    PubMed  PubMed Central  Google Scholar 

  77. Ebrahimkhani S, Vafaee F, Young PE, Hur SSJ, Hawke S, Devenney E, et al. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep. 2017;7(1):14293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L. Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep. 2012;39(5):6219–25.

    Article  CAS  PubMed  Google Scholar 

  79. Malm T, Loppi S, Kanninen KM. Exosomes in Alzheimer’s disease. Neurochem Int. 2016;97:193–9.

    Article  CAS  PubMed  Google Scholar 

  80. Yang TT, Liu CG, Gao SC, Zhang Y, Wang PC. The serum exosome derived microRNA-135a, −193b, and − 384 were potential alzheimer’s disease biomarkers. Biomed Environ Sci. 2018;31(2):87–96.

    PubMed  Google Scholar 

  81. Ibanez F, Montesinos J, Urena-Peralta JR, Guerri C, Pascual M. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J Neuroinflammation. 2019;16(1):136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Tseng AM, Chung DD, Pinson MR, Salem NA, Eaves SE, Miranda RC. Ethanol exposure increases miR-140 in extracellular vesicles: Implications for fetal neural stem cell proliferation and maturation. Alcohol Clin Exp Res. 2019;43(7):1414–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Momen-Heravi F, Bala S, Kodys K, Szabo G. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep. 2015;5:9991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saha B, Momen-Heravi F, Kodys K, Szabo G. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J Biol Chem. 2016;291(1):149–59.

    Article  CAS  PubMed  Google Scholar 

  85. Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 2015;13:261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bisgin H, Gong B, Wang Y, Tong W. Evaluation of bioinformatics approaches for next-generation sequencing analysis of microRNAs with a toxicogenomics study design. Front Genet. 2018;9:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wang LL, Zhang Z, Li Q, Yang R, Pei X, Xu Y, et al. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod. 2009;24(3):562–79.

    Article  CAS  PubMed  Google Scholar 

  88. Mantha K, Laufer BI, Singh SM. Molecular changes during neurodevelopment following second-trimester binge ethanol exposure in a mouse model of fetal alcohol spectrum disorder: from immediate effects to long-term adaptation. Dev Neurosci. 2014;36(1):29–43.

    Article  CAS  PubMed  Google Scholar 

  89. Most D, Leiter C, Blednov YA, Harris RA, Mayfield RD. Synaptic microRNAs coordinately regulate synaptic mRNAs: perturbation by chronic alcohol consumption. Neuropsychopharmacology. 2016;41(2):538–48.

    Article  CAS  PubMed  Google Scholar 

  90. Osterndorff-Kahanek EA, Tiwari GR, Lopez MF, Becker HC, Harris RA, Mayfield RD. Long-term ethanol exposure: temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One. 2018;13(1):e0190841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Urena-Peralta JR, Alfonso-Loeches S, Cuesta-Diaz CM, Garcia-Garcia F, Guerri C. Deep sequencing and miRNA profiles in alcohol-induced neuroinflammation and the TLR4 response in mice cerebral cortex. Sci Rep. 2018;8(1):15913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ignacio C, Hicks SD, Burke P, Lewis L, Szombathyne-Meszaros Z, Middleton FA. Alterations in serum microRNA in humans with alcohol use disorders impact cell proliferation and cell death pathways and predict structural and functional changes in brain. BMC Neurosci. 2015;16:55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. WHO. Status report on alcohol consumption, harm and policy responses in 30 European countries 2019. In: Abuse DoMHaS, editor. Geneva: WHO Press; 2019.

  94. Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav. 2019;177:34–60.

    Article  CAS  PubMed  Google Scholar 

  95. Pascual M, Blanco AM, Cauli O, Minarro J, Guerri C. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioral alterations in adolescent rats. Eur J Neurosci. 2007;25(2):541–50.

    Article  PubMed  Google Scholar 

  96. Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory micrornas and their potential for inflammatory diseases treatment. Front Immunol. 2018;9:1377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Liu W, Bai X, Zang A, Huang J, Xu S, Zhang J. Role of exosomes in central nervous system diseases 2019; 12:2140.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consuelo Guerri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies conducted with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on The Pathobiology of Alcohol Consumption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascual, M., Ureña-Peralta, J.R. & Guerri, C. The Regulatory Role of miRNAs in Ethanol-induced TLR4 Activation and Neuroinflammation. Curr Pathobiol Rep 8, 37–45 (2020). https://doi.org/10.1007/s40139-020-00208-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-020-00208-8

Keywords

Navigation