Skip to main content

Advertisement

Log in

Circulating microRNAs involved in multiple sclerosis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an immune-mediated, demyelinating and neurodegenerative disease of the central nervous system. After traumatic brain injury, it is the leading cause of neurology disability in young adults. Considerable advances have been made in identifying genes involved in MS but the genetic and phenotypic complexity associated with this disease significantly hinders any progress. A novel class of small RNA molecules, microRNAs (miRNAs) has acquired much attention because they regulate the expression of up to 30% of protein-coding genes and may play a pivotal role in the development of many, if not all, complex diseases. Seven published studies investigated miRNAs from peripheral blood mononuclear cells, CD4+, CD8+ T cell, B lymphocytes, peripheral blood leukocytes, whole blood and brain astrocytes with MS risk. The absence of MS studies investigating plasma miRNA prompted the current investigation of identifying a circulating miRNA signature in MS. We conducted a microarray analysis of over 900 known miRNA transcripts from plasma samples collected from four MS individuals and four sex-aged and ethnicity matched healthy controls. We identified six plasma miRNA (miR-614, miR-572, miR-648, miR-1826, miR-422a and miR-22) that were significantly up-regulated and one plasma miRNA (miR-1979) that was significantly down-regulated in MS individuals. Both miR-422a and miR-22 have previously been implicated in MS. The present study is the first to show a circulating miRNA signature involved in MS that could serve as a potential prognostic and diagnostic biomarker for MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Page WF, Kurtzke JF, Murphy FM, Norman JE Jr (1993) Epidemiology of multiple sclerosis in US veterans: V. Ancestry and the risk of multiple sclerosis. Ann Neurol 33:632–639

    Article  PubMed  CAS  Google Scholar 

  2. Poser CM (1994) The epidemiology of multiple sclerosis: a general overview. Ann Neurol 36:S180–S193

    Article  PubMed  Google Scholar 

  3. Rothwell PM, Charlton D (1998) High incidence and prevalence of multiple sclerosis in south east Scotland: evidence of a genetic predisposition. J Neurol Neurosurg Psychiatry 64:730–735

    Article  PubMed  CAS  Google Scholar 

  4. Weinshenker BG (1994) Natural history of multiple sclerosis. Ann Neurol 36:S6–S11

    Article  PubMed  Google Scholar 

  5. Al-Omaishi J, Bashir R, Gendelman HE (1999) The cellular immunology of multiple sclerosis. J Leukoc Biol 65:444–452

    PubMed  CAS  Google Scholar 

  6. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  PubMed  CAS  Google Scholar 

  7. Ramagopalan SV, Handel A, Giovannoni G, Rutherford Siegel S, Ebers GC, Chaplin G (2011) Period prevalence of multiple sclerosis in England: relationship to UV exposure. Neurology 76:1410–1414

    Article  PubMed  CAS  Google Scholar 

  8. Ramagopalan SV, Ebers GC (2008) Genes for multiple sclerosis. Lancet 371:283–285

    Article  PubMed  Google Scholar 

  9. De Smaele E, Ferretti E, Gulino A (2010) MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res 1338:100–111

    Article  PubMed  Google Scholar 

  10. Tufekci KU, Oner MG, Genc S, Genc K (2010) MicroRNAs and multiple sclerosis. Autoimmune Dis 2011:807426

    PubMed  Google Scholar 

  11. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2011) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  Google Scholar 

  12. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    Article  PubMed  CAS  Google Scholar 

  13. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

  14. Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, Emanueli C (2011) Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123:282–291

    Article  PubMed  CAS  Google Scholar 

  15. Bostjancic E, Zidar N, Stajer D, Glavac D (2010) MicroRNAs miR-1 miR-133a miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169

    Article  PubMed  CAS  Google Scholar 

  16. D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–2773

    Article  PubMed  Google Scholar 

  17. Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR, Li PF (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–78

    Article  PubMed  Google Scholar 

  18. Dinger ME, Mercer TR, Mattick JS (2008) RNAs as extracellular signaling molecules. J Mol Endocrinol 40:115–151

    Article  Google Scholar 

  19. Hill AF (2009) Exosomes in neurological disease. Curr Med Lit Neurol 25:27–32

    Google Scholar 

  20. Bartel DP (2004) MicroRNAs: genomics biogenesis mechanism and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  21. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008

    Article  PubMed  CAS  Google Scholar 

  22. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55:1944–1949

    Article  PubMed  CAS  Google Scholar 

  23. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391:73–77

    Article  PubMed  CAS  Google Scholar 

  24. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    Article  PubMed  CAS  Google Scholar 

  25. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817

    Article  PubMed  CAS  Google Scholar 

  26. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506

    Article  PubMed  Google Scholar 

  27. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666

    Article  PubMed  Google Scholar 

  28. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039

    Article  PubMed  CAS  Google Scholar 

  29. De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M, Zagatti B, Battistini L, Borsellino G, Fainardi E, Gavioli R, Negrini M, Furlan R, Granieri E (2010) Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 226:165–171

    Article  PubMed  Google Scholar 

  30. Otaegui D, Baranzini SE, Armañanzas R, Calvo B, Muñoz-Culla M, Khankhanian P, Inza I, Lozano JA, Castillo-Triviño T, Asensio A, Olaskoaga J, López de Munain A (2009) Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 4:e6309

    Article  PubMed  Google Scholar 

  31. Lindberg RL, Hoffman F, Mehling M, Kuhle J, Kappos L (2010) Altered expression of miR-17-5p in CD4(+) lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol 40:888–898

    Article  PubMed  CAS  Google Scholar 

  32. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259

    Article  PubMed  CAS  Google Scholar 

  33. Cox MB, Cairns MJ, Gandhi KS, Carroll AP, Moscovis S, Stewart GJ, Broadley S, Scott RJ, Booth DR, Lechner-Scott J, ANZgene Multiple Sclerosis Genetics Consortium (2010) MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 5:e12132

    Article  PubMed  Google Scholar 

  34. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, Lenhof HP, Ruprechtm K, Meese E (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 4:e7440

    Article  PubMed  Google Scholar 

  35. Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, Hohlfeld R, Meinl E (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352

    Article  PubMed  Google Scholar 

  36. Jung R, Lübcke C, Wagener C, Neumaier M (1997) Reversal of RT-PCR inhibition observed in heparinized clinical specimens. Biotechniques 23:24, 26, 28

    Google Scholar 

  37. Nagino K, Nomura O, Takii Y, Myomoto A, Ichikawa M, Nakamur F, Higasa M (2006) Ultrasensitive DNA chip: gene expression profile analysis without RNA amplification. J Biochem 139:697–703

    Article  PubMed  CAS  Google Scholar 

  38. Kaushansky N, Eisenstein M, Zilkha-Falb R, Ben-Nun A (2010) The myelin-associated oligodendrocytic basic protein (MOBP) as a relevant primary target autoantigen in multiple sclerosis. Autoimmun Rev 9:233–236

    Article  PubMed  CAS  Google Scholar 

  39. Doi Y, Oki S, Ozawa T, Hohjoh H, Miyake S, Yamamura T (2008) Orphan nuclear receptor NR4A2 expressed in T cells from multiple sclerosis mediates production of inflammatory cytokines. Proc Natl Acad Sci USA 105:8381–8386

    Article  PubMed  CAS  Google Scholar 

  40. Saini HK, Enright AJ, Griffiths-Jones S (2008) Annotation of mammalian primary microRNAs. BMC Genomics 9:564

    Article  PubMed  Google Scholar 

  41. Banerjee D (2011) Recent Advances in the pathobiology of Hodgkin’s lymphoma: potential impact on diagnostic predictive and therapeutic strategies. Adv Hematol 2011:439456

    PubMed  Google Scholar 

  42. Van Vlierberghe P, De Weer A, Mestdagh P, Feys T, De Preter K, De Paepe P, Lambein K, Vandesompele J, Van Roy N, Verhasselt B, Poppe B, Speleman F (2009) Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs. BMJ 147:686–690

    Google Scholar 

  43. Zhang K, Zhang L, Rao F, Brar B, Rodriguez-Flores JL, Taupenot L, O’Connor DT (2010) Human tyrosine hydroxylase natural genetic variation delineation of functional transcriptional control motifs disrupted in the proximal promoter. Circ Cardiovasc Genet 3:187–198

    Article  PubMed  CAS  Google Scholar 

  44. Lin L, Peng SL (2006) Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1. J Immunol 176:4793–4803

    PubMed  CAS  Google Scholar 

  45. Nahta R, Yuan LX, Fiterman DJ, Zhang L, Symmans WF, Ueno NT, Esteva FJ (2006) B cell translocation gene 1 contributes to antisense Bcl-2-mediated apoptosis in breast cancer cells. Mol Cancer Ther 5:1593–1601

    Article  PubMed  CAS  Google Scholar 

  46. Lee H, Cha S, Lee MS, Cho GJ, Choi WS, Suk K (2003) Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activation-induced cell death of brain microglia. J Immunol 171:5802

    PubMed  CAS  Google Scholar 

  47. Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29:3783–3790

    Article  PubMed  CAS  Google Scholar 

  48. Verhagen APM, Pruijn GJM (2011) Are the Ro RNP-associated Y RNAs concealing microRNAs? Y RNA-derived miRNAs may be involved in autoimmunity. Bioessays 33:674–682

    Article  PubMed  CAS  Google Scholar 

  49. Chen X, Quinn AM, Wolin SL (2000) Ro ribonucleopreotiens contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev 14:777–782

    PubMed  CAS  Google Scholar 

  50. Chen X, Wolin SL (2004) The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J Mol Med 82:232–239

    Article  PubMed  CAS  Google Scholar 

  51. Xue D, Shi H, Smith JD, Chen X, Noe DA, Cedervall T, Yang DD, Eynon E, Brash DE, Kashgarian M, Flavell RA, Wolin SL (2003) A lupus-like syndrome develops in mice lacking the Ro 60 kDa protein a major lupus autoantigen. Proc Natl Acad Sci USA 100:7503–7508

    Article  PubMed  CAS  Google Scholar 

  52. Massaro AR, De Pascalis D, Carnevale A, Carbone G (2009) The neural cell adhesion molecule (NCAM) present in the cerebrospinal fluid of multiple sclerosis patients is unsialylated. Eur Rev Med Pharmacol Sci 13:397–399

    PubMed  CAS  Google Scholar 

  53. Byun E, Caillier SJ, Montalban X, Villoslada P, Fernandez O, Brassat D, Comabella M, Wang J, Barcellos LF, Baranzini SE, Oksenberg JR (2008) Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol 65:337–344

    Article  PubMed  Google Scholar 

  54. Song KH, Li T, Owsley E, Chiang JY (2010) A putative role of micro RNA in regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes. J Lipid Res 51:2223–2233

    Article  PubMed  CAS  Google Scholar 

  55. Kim JW, Mori S, Nevins JR (2011) Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res 70:4820–4828

    Article  Google Scholar 

  56. Russell DW, Setchell KD (1992) Bile acid biosynthesis. Biochemistry 31:4737–4749

    Article  PubMed  CAS  Google Scholar 

  57. Simons M, Kramer EM, Macchi P, Rathke-Hartlieb S, Trotter J, Nave KA, Schulz JB (2002) Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease. J Cell Biol 157:327–336

    Article  PubMed  CAS  Google Scholar 

  58. Rouault JP, Rimokh R, Tessa C, Paranhos G, Ffrench M, Duret L, Garoccio M, Germain D, Samarut J, Magaud JP (1992) BTG1 a member of a new family of antiproliferative genes. EMBO J 11:1663–1670

    PubMed  CAS  Google Scholar 

  59. Mandel M, Gurevich M, Pauzner R, Kaminski N, Achiron A (2004) Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin Exp Immunol 138:164–170

    Article  PubMed  CAS  Google Scholar 

  60. Lélu K, Laffont S, Delpy L, Paulet PE, Périnat T, Tschanz SA, Pelletier L, Engelhardt B, Guéry JC (2011) Estrogen receptor alpha signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J Immunol 187:2386–2393

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to the participants in this project. We thank Satoko Takizawa for her technical assistance. This research was supported by funding from a 3D-Gene® Competition Award for Microarray analysis 2009 from Toray Industries. Also, we gratefully acknowledge an MSRA Postgraduate scholarship supporting Jason Mackenzie.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Rutherford Siegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, S.R., Mackenzie, J., Chaplin, G. et al. Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 39, 6219–6225 (2012). https://doi.org/10.1007/s11033-011-1441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1441-7

Keywords

Navigation