Skip to main content

Advertisement

Log in

Understanding Molecules that Mediate Leukocyte Extravasation

  • Wound Healing and Tissue Repair ( C Yates and R Mota, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Getting leukocytes to the site of inflammation is extremely important for maintaining homeostasis. Over time, leukocyte extravasation is resolved; however, in the case of chronic inflammatory diseases, it is not. When left unresolved, persistent leukocyte infiltration is detrimental to the host. Understanding how leukocytes get out of circulation and into the tissue puts us closer to combating these diseases. This review focuses on the molecules regulating leukocyte extravasation.

Recent Findings

There are multiple pathways regulating leukocyte transmigration. Targeted recycling of membrane from the lateral border recycling compartment is required for leukocyte extravasation. Differences in leukocyte phenotypes may contribute to different transmigration rates and extent.

Summary

Leukocyte transmigration is regulated by a multitude of molecules. How these molecules interact to coordinate the process is the subject of ongoing research. Characterization of these pathways will be useful in developing therapies for chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Muller WA. Getting leukocytes to the site of inflammation. Vet Pathol. 2013;50(1):7–22. https://doi.org/10.1177/0300985812469883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24(6):326–33.

    Google Scholar 

  3. Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27(11):2292–301. https://doi.org/10.1161/ATVBAHA.107.149179.

    Article  CAS  PubMed  Google Scholar 

  4. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    CAS  PubMed  Google Scholar 

  5. Zarbock A, Ley K, McEver RP, Hidalgo A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood. 2011;118(26):6743–51. https://doi.org/10.1182/blood-2011-07-343566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eriksson EE, Xie X, Werr J, Thoren P, Lindbom L. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med. 2001;194(2):205–18. https://doi.org/10.1084/jem.194.2.205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ley K, Bullard DC, Arbones ML, Bosse R, Vesweber D, Tedder TF, et al. Sequential contribution of L-and P-selectin to leukocyte rolling in vivo. J Exp Med. 1995;181(2):669–75.

    CAS  PubMed  Google Scholar 

  8. Kunkel EJ, Ley K. Distinct phenotype of E-selectin-deficient mice. E-selectin is required for slow leukocyte rolling in vivo. Circ Res. 1996;79(6):1196–204.

    CAS  PubMed  Google Scholar 

  9. Yago T, Shao B, Miner JJ, Yao L, Klopocki AG, Maeda K, et al. E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin alphaLbeta2-mediated slow leukocyte rolling. Blood. 2010;116(3):485–94. https://doi.org/10.1182/blood-2009-12-259556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmidt S, Moser M, Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol. 2013;55(1):49–58. https://doi.org/10.1016/j.molimm.2012.11.006.

    Article  CAS  PubMed  Google Scholar 

  11. Schenkel AR, Mamdouh Z, Muller WA. Locomotion of monocytes on endothelium is a critical step during extravasation. Nat Immunol. 2004;5(4):393–400.

    CAS  PubMed  Google Scholar 

  12. Heit B, Colarusso P, Kubes P. Fundamentally different roles for LFA-1, Mac-1 and alpha4-integrin in neutrophil chemotaxis. J Cell Sci. 2005;118(Pt 22):5205–20. https://doi.org/10.1242/jcs.02632.

    Article  CAS  PubMed  Google Scholar 

  13. Muller WA. Localized signals that regulate transendothelial migration. Curr Opin Immunol. 2016;38:24–9. https://doi.org/10.1016/j.coi.2015.10.006.

    Article  CAS  PubMed  Google Scholar 

  14. Muller WA. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol. 2011;6:323–44. https://doi.org/10.1146/annurev-pathol-011110-130224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rivera-Nieves J, Burcin TL, Olson TS, Morris MA, McDuffie M, Cominelli F, et al. Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis. J Exp Med. 2006;203(4):907–17. https://doi.org/10.1084/jem.20052530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. da Costa MP, Garcia-Vallejo JJ, van Thienen JV, Fernandez-Borja M, van Gils JM, Beckers C, et al. P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler Thromb Vasc Biol. 2007;27(5):1023–9. https://doi.org/10.1161/ATVBAHA.107.140442.

    Article  CAS  Google Scholar 

  17. McEver RP, Cummings RD. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest. 1997;100(11 Suppl):S97–103.

    CAS  PubMed  Google Scholar 

  18. Kunkel EJ, Chomas JE, Ley K. Role of primary and secondary capture for leukocyte accumulation in vivo. Circ Res. 1998;82(1):30–8.

    CAS  PubMed  Google Scholar 

  19. Sperandio M, Smith ML, Forlow SB, Olson TS, Xia L, McEver RP, et al. P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J Exp Med. 2003;197(10):1355–63. https://doi.org/10.1084/jem.20021854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science. 2003;301(5640):1720–5.

    CAS  PubMed  Google Scholar 

  21. Fan Z, Ley K. Leukocyte arrest: biomechanics and molecular mechanisms of beta2 integrin activation. Biorheology. 2015;52(5–6):353–77. https://doi.org/10.3233/BIR-15085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lefort CT, Rossaint J, Moser M, Petrich BG, Zarbock A, Monkley SJ, et al. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood. 2012;119(18):4275–82. https://doi.org/10.1182/blood-2011-08-373118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuwano Y, Spelten O, Zhang H, Ley K, Zarbock A. Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood. 2010;116(4):617–24. https://doi.org/10.1182/blood-2010-01-266122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghandour H, Cullere X, Alvarez A, Luscinskas FW, Mayadas TN. Essential role for Rap1 GTPase and its guanine exchange factor CalDAG-GEFI in LFA-1 but not VLA-4 integrin mediated human T-cell adhesion. Blood. 2007;110(10):3682–90. https://doi.org/10.1182/blood-2007-03-077628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hyduk SJ, Chan JR, Duffy ST, Chen M, Peterson MD, Waddell TK, et al. Phospholipase C, calcium, and calmodulin are critical for alpha4beta1 integrin affinity up-regulation and monocyte arrest triggered by chemoattractants. Blood. 2007;109(1):176–84. https://doi.org/10.1182/blood-2006-01-029199.

    Article  CAS  PubMed  Google Scholar 

  26. Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, Constantin G, et al. The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involved in sustained adhesion. J Immunol. 2006;177(1):604–11. https://doi.org/10.4049/jimmunol.177.1.604.

    Article  CAS  PubMed  Google Scholar 

  27. Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med. 2006;203(12):2569–75. https://doi.org/10.1084/jem.20060925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li N, Yang H, Wang M, Lu S, Zhang Y, Long M. Ligand-specific binding forces of LFA-1 and Mac-1 in neutrophil adhesion and crawling. Mol Biol Cell. 2018;29(4):408–18. https://doi.org/10.1091/mbc.E16-12-0827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kerfoot SM, Kubes P. Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol. 2002;169(2):1000–6.

    CAS  PubMed  Google Scholar 

  30. Dunne JL, Collins RG, Beaudet AL, Ballantyne CM, Ley K. Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J Immunol. 2003;171(11):6105–11. https://doi.org/10.4049/jimmunol.171.11.6105.

    Article  CAS  PubMed  Google Scholar 

  31. Dejana E, Giampietro C. Vascular endothelial-cadherin and vascular stability. Curr Opin Hematol. 2012;19(3):218–23. https://doi.org/10.1097/MOH.0b013e3283523e1c.

    Article  CAS  PubMed  Google Scholar 

  32. Alcaide P, Newton G, Auerbach S, Sehrawat S, Mayadas TN, Golan DE, et al. p120-Catenin regulates leukocyte transmigration through an effect on VE-cadherin phosphorylation. Blood. 2008;112(7):2770–9. https://doi.org/10.1182/blood-2008-03-147181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez AM, Cyrus BF, Muller WA. Targeted recycling of the lateral border recycling compartment precedes adherens junction dissociation during transendothelial migration. Am J Pathol. 2016;186(5):1387–402. https://doi.org/10.1016/j.ajpath.2016.01.010.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol. 2014;15(3):223–30. https://doi.org/10.1038/ni.2824.

    Article  CAS  PubMed  Google Scholar 

  35. Allingham MJ, van Buul JD, Burridge K. ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J Immunol. 2007;179(6):4053–64.

    CAS  PubMed  Google Scholar 

  36. Sullivan DP, Muller WA. Neutrophil and monocyte recruitment by PECAM, CD99, and other molecules via the LBRC. Semin Immunopathol. 2014;36(2):193–209. https://doi.org/10.1007/s00281-013-0412-6.

    Article  CAS  PubMed  Google Scholar 

  37. Newman PJ, Berndt MC, Gorski J, White GC 2nd, Lyman S, Paddock C, et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990;247(4947):1219–22.

    CAS  PubMed  Google Scholar 

  38. Muller WA, Weigl SA, Deng X, Phillips DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med. 1993;178:449–60.

    CAS  PubMed  Google Scholar 

  39. Liao F, Huynh HK, Eiroa A, Greene T, Polizzi E, Muller WA. Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J Exp Med. 1995;182:1337–43.

    CAS  PubMed  Google Scholar 

  40. Newman PJ. The biology of PECAM-1. JClinInvest. 1997;99:3–8.

    CAS  Google Scholar 

  41. Gumina RJ, Schultz JE, Yao Z, Kenny D, Warltier DC, Newman PJ, et al. Antibody to platelet/endothelial cell adhesion molecule-1 reduces myocardial infarct size in a rat model of ischemia-reperfusion injury. Circulation. 1996;94:3327–33.

    CAS  PubMed  Google Scholar 

  42. Mamdouh Z, Chen X, Pierini LM, Maxfield FR, Muller WA. Targeted recycling of PECAM from endothelial cell surface-connected compartments during diapedesis. Nature. 2003;421:748–53.

    CAS  PubMed  Google Scholar 

  43. Gratzinger D, Barreuther M, Madri JA. Platelet-endothelial cell adhesion molecule-1 modulates endothelial migration through its immunoreceptor tyrosine-based inhibitory motif. Biochem Biophys Res Commun. 2003;301(1):243–9.

    CAS  PubMed  Google Scholar 

  44. Masuda M, Osawa M, Shigematsu H, Harada N, Fujiwara K. Platelet endothelial cell adhesion molecule-1 is a major SH-PTP2 binding protein in vascular endothelial cells. FEBS Lett. 1997;408(3):331–6.

    CAS  PubMed  Google Scholar 

  45. Newman DK, Hamilton C, Newman PJ. Inhibition of antigen-receptor signaling by platelet endothelial cell adhesion molecule-1 (CD31) requires functional ITIMs, SHP-2, and p56(lck). Blood. 2001;97(8):2351–7.

    CAS  PubMed  Google Scholar 

  46. Newman PJ, Newman DK. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol. 2003;23(6):953–64.

    CAS  PubMed  Google Scholar 

  47. Dasgupta B, Dufour E, Mamdouh Z, Muller W. A novel and critical role for tyrosine 663 in PECAM trafficking and transendothelial migration. J Immunol. 2009;182(8):5041–51. https://doi.org/10.4049/jimmunol.0803192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muller WA. PECAM: regulating the start of diapedesis. In: Ley K, editor. Adhesion molecules: function and inhibition. Progress in inflammation research. Basel: Birkhauser Verlag AG; 2007. p. 201–20.

    Google Scholar 

  49. Huang AJ, Manning JE, Bandak TM, Ratau MC, Hanser KR, Silverstein SC. Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. JCell Biol. 1993;120:1371–80.

    CAS  Google Scholar 

  50. Kielbassa-Schnepp K, Strey A, Janning A, Missiaen L, Nilius B, Gerke V. Endothelial intracellular Ca2+ release following monocyte adhesion is required for the transendothelial migration of monocytes. Cell Calcium. 2001;30(1):29–40. https://doi.org/10.1054/ceca.2001.0210.

    Article  CAS  PubMed  Google Scholar 

  51. Weber EW, Han F, Tauseef M, Birnbaumer L, Mehta D, Muller WA. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. J Exp Med. 2015;212(11):1883–99. https://doi.org/10.1084/jem.20150353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gelin C, Aubrit F, Phalipon A, Raynal B, Cole S, Kaczorek M, et al. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J. 1989;8:3253–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol. 2002;3(2):143–50.

    CAS  PubMed  Google Scholar 

  54. • Goswami D, Marz S, Li YT, Artz A, Schafer K, Seelige R, et al. Endothelial CD99 supports arrest of mouse neutrophils in venules and binds to neutrophil PILRs. Blood. 2017;129(13):1811–22. https://doi.org/10.1182/blood-2016-08-733394These references provide insight of molecular mechanisms that regulate TEM. Seelige et al, introduces the role of a heterophilic ligand for CD99. Cyrus et al, explains the importance of kinesin light chain 1 variant in LBRC trafficking to sites of TEM.

    Article  CAS  PubMed  Google Scholar 

  55. Lou O, Alcaide P, Luscinskas FW, Muller WA. CD99 is a key mediator of the transendothelial migration of neutrophils. J Immunol. 2007;178:1136–43.

    CAS  PubMed  Google Scholar 

  56. Bixel G, Kloep S, Butz S, Petri B, Engelhardt B, Vestweber D. Mouse CD99 participates in T cell recruitment into inflamed skin. Blood. 2004;104:3205–13.

    CAS  PubMed  Google Scholar 

  57. Dufour EM, Deroche A, Bae Y, Muller WA. CD99 is essential for leukocyte diapedesis in vivo. Cell Commun Adhes. 2008;15(4):351–63. https://doi.org/10.1080/15419060802442191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. •• Watson RL, Buck J, Levin LR, Winger RC, Wang J, Arase H, et al. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration. J Exp Med. 2015;212(7):1021–41. https://doi.org/10.1084/jem.20150354These references introduce a signaling pathway and complex formed by CD99 (previously no downstream identified) to promote TEM. Sullivan et al, showed the difference in how inflammation is regulated by different strains of mice. This is very important for in vivo studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suh YH, Shin YK, Kook MC, Oh KI, Park WS, Kim SH, et al. Cloning, genomic organization, alternative transcripts and expression analysis of CD99L2, a novel paralog of human CD99, and identification of evolutionary conserved motifs. Gene. 2003;307:63–76.

    CAS  PubMed  Google Scholar 

  60. Rutledge NS, Weber EW, Winger R, Tourtellotte WG, Park SH, Muller WA. CD99-like 2 (CD99L2)-deficient mice are defective in the acute inflammatory response. Exp Mol Pathol. 2015;99(3):455–9. https://doi.org/10.1016/j.yexmp.2015.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schenkel AR, Dufour EM, Chew TW, Sorg E, Muller WA. The murine CD99-related molecule CD99-like 2 (CD99L2) is an adhesion molecule involved in the inflammatory response. Cell Commun Adhes. 2007;14(5):227–37.

    CAS  PubMed  Google Scholar 

  62. Seelige R, Natsch C, Marz S, Jing D, Frye M, Butz S, et al. Cutting edge: endothelial-specific gene ablation of CD99L2 impairs leukocyte extravasation in vivo. J Immunol. 2013;190(3):892–6. https://doi.org/10.4049/jimmunol.1202721.

    Article  CAS  PubMed  Google Scholar 

  63. Samus M, Seelige R, Schafer K, Sorokin L, Vestweber D. CD99L2 deficiency inhibits leukocyte entry into the central nervous system and ameliorates neuroinflammation. J Leukoc Biol. 2018;104(4):787–97. https://doi.org/10.1002/JLB.1A0617-228R.

    Article  CAS  PubMed  Google Scholar 

  64. Bixel MG, Li H, Petri B, Khandoga AG, Khandoga A, Zarbock A, et al. CD99 and CD99L2 act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis. Blood. 2010;116(7):1172–84. https://doi.org/10.1182/blood-2009-12-256388.

    Article  CAS  PubMed  Google Scholar 

  65. •• Sullivan DP, Watson RL, Muller WA. 4D intravital microscopy uncovers critical strain differences for the roles of PECAM and CD99 in leukocyte diapedesis. Am J Physiol Heart Circ Physiol. 2016;311(3):H621–32. https://doi.org/10.1152/ajpheart.00289.2016These references introduce a signaling pathway and complex formed by CD99 (previously no downstream identified) to promote TEM. Sullivan et al, showed the difference in how inflammation is regulated by different strains of mice. This is very important for in vivo studies.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mamdouh Z, Mikhailov A, Muller WA. Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J Exp Med. 2009;206(11):2795–808. https://doi.org/10.1084/jem.20082745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mamdouh Z, Kreitzer GE, Muller WA. Leukocyte transmigration requires kinesin-mediated microtubule-dependent membrane trafficking from the lateral border recycling compartment. J Exp Med. 2008;205(4):951–66. https://doi.org/10.1084/jem.20072328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. • Cyrus BF, Muller WA. A unique role for endothelial cell kinesin light chain 1, variant 1 in leukocyte transendothelial migration. Am J Pathol. 2016;186(5):1375–86. https://doi.org/10.1016/j.ajpath.2016.01.011These references provide insight of molecular mechanisms that regulate TEM. Seelige et al, introduces the role of a heterophilic ligand for CD99. Cyrus et al, explains the importance of kinesin light chain 1 variant in LBRC trafficking to sites of TEM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Randolph GJ, Luther T, Albrecht S, Magdolen V, Muller WA. Role of tissue factor in adhesion of mononuclear phagocytes to and trafficking through endothelium in vitro. Blood. 1998;92:4167–77.

    CAS  PubMed  Google Scholar 

  70. Randolph GJ, Furie MB. Mononuclear phagocytes egress from an in vitro model of the vascular wall by migrating across endothelium in the basal to apical direction: role of intercellular adhesion molecule 1 and the CD11/CD18 integrins. J Exp Med. 1995;183:451–62.

    Google Scholar 

  71. Buckley KA, Chan BY, Fraser WD, Gallagher JA. Human osteoclast culture from peripheral blood monocytes: phenotypic characterization and quantitation of resorption. Methods Mol Med. 2005;107:55–68.

    CAS  PubMed  Google Scholar 

  72. Bradfield PF, Scheiermann C, Nourshargh S, Ody C, Luscinskas FW, Rainger GE, et al. JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood. 2007;110(7):2545–55. https://doi.org/10.1182/blood-2007-03-078733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM, et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12(8):761–9. https://doi.org/10.1038/ni.2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Colom B, Bodkin JV, Beyrau M, Woodfin A, Ody C, Rourke C, et al. Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity. 2015;42(6):1075–86. https://doi.org/10.1016/j.immuni.2015.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nourshargh S, Renshaw SA, Imhof BA. Reverse migration of neutrophils: where, when, how, and why? Trends Immunol. 2016;37(5):273–86. https://doi.org/10.1016/j.it.2016.03.006.

    Article  CAS  PubMed  Google Scholar 

  76. Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol. 2006;80(6):1281–8. https://doi.org/10.1189/jlb.0506346.

    Article  CAS  PubMed  Google Scholar 

  77. Bradfield PF, Nourshargh S, Aurrand-Lions M, Imhof BA. JAM family and related proteins in leukocyte migration. Arterioscler Thromb Vasc Biol. 2007;27(10):2104–12. https://doi.org/10.1161/ATVBAHA.107.147694.

    Article  CAS  PubMed  Google Scholar 

  78. Sage PT, Carman CV. Settings and mechanisms for trans-cellular diapedesis. Front Biosci. 2009;14:5066–83.

    CAS  PubMed Central  Google Scholar 

  79. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood. 2005;106(2):584–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Abadier M, Haghayegh Jahromi N, Cardoso Alves L, Boscacci R, Vestweber D, Barnum S, et al. Cell surface levels of endothelial ICAM-1 influence the transcellular or paracellular T-cell diapedesis across the blood-brain barrier. Eur J Immunol. 2015;45(4):1043–58. https://doi.org/10.1002/eji.201445125.

    Article  CAS  PubMed  Google Scholar 

  81. Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol. 2004;167(2):377–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, et al. Transcellular diapedesis is initiated by invasive podosomes. Immunity. 2007;26(6):784–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Carman CV, Springer TA. Trans-cellular migration: cell-cell contacts get intimate. Curr Opin Cell Biol. 2008;20(5):533–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lossinsky AS, Shivers RR. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review. Histol Histopathol. 2004;19(2):535–64.

    CAS  PubMed  Google Scholar 

  85. Winger RC, Koblinski JE, Kanda T, Ransohoff RM, Muller WA. Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood-brain barrier. J Immunol. 2014;193(5):2427–37. https://doi.org/10.4049/jimmunol.1400700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jayadev R, Sherwood DR. Basement membranes. Curr Biol. 2017;27(6):R207–R11. https://doi.org/10.1016/j.cub.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  87. Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol. 2001;153(5):933–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D, Nilsson P, et al. Endothelial basement membrane laminin alpha5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med. 2009;15(5):519–27. https://doi.org/10.1038/nm.1957.

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Sheibani N. PECAM-1 isoform-specific activation of MAPK/ERKs and small GTPases: implications in inflammation and angiogenesis. J Cell Biochem. 2006;98(2):451–68. https://doi.org/10.1002/jcb.20827.

    Article  CAS  PubMed  Google Scholar 

  90. Kenne E, Soehnlein O, Genove G, Rotzius P, Eriksson EE, Lindbom L. Immune cell recruitment to inflammatory loci is impaired in mice deficient in basement membrane protein laminin alpha4. J Leukoc Biol. 2010;88(3):523–8. https://doi.org/10.1189/jlb.0110043.

    Article  CAS  PubMed  Google Scholar 

  91. Dangerfield J, Larbi KY, Huang MT, Dewar A, Nourshargh S. PECAM-1 (CD31) homophilic interaction up-regulates alpha6beta1 on transmigrated neutrophils in vivo and plays a functional role in the ability of α6β1 integrins to mediate leukocyte migration through the perivascular basement membrane. J Exp Med. 2002;196(9):1201–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Thompson RD, Noble KE, Larbi KY, Dewar A, Duncan GS, Mak TW, et al. Platelet-endothelial cell adhesion molecule-1 (PECAM-1)-deficient mice demonstrate a transient and cytokine-specific role for PECAM-1 in leukocyte migration through the perivascular basement membrane. Blood. 2001;97(6):1854–60.

    CAS  PubMed  Google Scholar 

  93. Liao F, Ali J, Greene T, Muller WA. Soluble domain 1 of platelet-endothelial cell adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo. J Exp Med. 1997;185:1349–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Westhorpe CL, Dufour EM, Maisa A, Jaworowski A, Crowe SM, Muller WA. Endothelial cell activation promotes foam cell formation by monocytes following transendothelial migration in an in vitro model. Exp Mol Pathol. 2012;93(2):220–6. https://doi.org/10.1016/j.yexmp.2012.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Witztum JL, Lichtman AH. The influence of innate and adaptive immune responses on atherosclerosis. Annu Rev Pathol. 2014;9:73–102. https://doi.org/10.1146/annurev-pathol-020712-163936.

    Article  CAS  PubMed  Google Scholar 

  96. Libby P, Hansson GK. Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res. 2015;116(2):307–11. https://doi.org/10.1161/CIRCRESAHA.116.301313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tuttolomondo A, Di Raimondo D, Pecoraro R, Arnao V, Pinto A, Licata G. Atherosclerosis as an inflammatory disease. Curr Pharm Des. 2012;18(28):4266–88. https://doi.org/10.2174/138161212802481237.

    Article  CAS  PubMed  Google Scholar 

  98. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  99. Rice GP, Hartung HP, Calabresi PA. Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology. 2005;64(8):1336–42. https://doi.org/10.1212/01.WNL.0000158329.30470.D0.

    Article  CAS  PubMed  Google Scholar 

  100. Kotsovilis S, Andreakos E. Therapeutic human monoclonal antibodies in inflammatory diseases. Methods Mol Biol. 2014;1060:37–59. https://doi.org/10.1007/978-1-62703-586-6_3.

    Article  CAS  Google Scholar 

  101. Park SC, Jeen YT. Anti-integrin therapy for inflammatory bowel disease. World J Gastroenterol. 2018;24(17):1868–80. https://doi.org/10.3748/wjg.v24.i17.1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. Jama. 2018;320(13):1360–72. https://doi.org/10.1001/jama.2018.13103.

    Article  PubMed  Google Scholar 

  103. Getter T, Margalit R, Kahremany S, Levy L, Blum E, Khazanov N, et al. Novel inhibitors of leukocyte transendothelial migration. Bioorg Chem. 2019;92:103250. https://doi.org/10.1016/j.bioorg.2019.103250.

    Article  CAS  PubMed  Google Scholar 

  104. Winger RC, Harp CT, Chiang MY, Sullivan DP, Watson RL, Weber EW, et al. Cutting edge: CD99 is a novel therapeutic target for control of T cell-mediated central nervous system autoimmune disease. J Immunol. 2016;196(4):1443–8. https://doi.org/10.4049/jimmunol.1501634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang Y, Han JJ, Liang XY, Zhao L, Zhang F, Rasouli J, et al. miR-23b suppresses leukocyte migration and pathogenesis of experimental autoimmune encephalomyelitis by targeting CCL7. Mol Ther. 2018;26(2):582–92. https://doi.org/10.1016/j.ymthe.2017.11.013.

    Article  CAS  PubMed  Google Scholar 

  106. Woodfin A, Voisin MB, Imhof BA, Dejana E, Engelhardt B, Nourshargh S. Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A and PECAM-1. Blood. 2009;113(24):6246–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Muller WA. Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev. 2016;273(1):61–75. https://doi.org/10.1111/imr.12443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Figure 1 was designed with the assistance of Dr. David Sullivan in our lab.

Funding

This work was funded by NIH grants F31 HL13135504, R01 HL046849, and R01 HL064774.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Muller.

Ethics declarations

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Wound Healing and Tissue Repair

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutledge, N.S., Muller, W.A. Understanding Molecules that Mediate Leukocyte Extravasation. Curr Pathobiol Rep 8, 25–35 (2020). https://doi.org/10.1007/s40139-020-00207-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-020-00207-9

Keywords

Navigation