Skip to main content

Advertisement

Log in

Advances in Functional Reconstruction After Bony Sarcoma Resection

  • Plastic Surgery (A. Mericli and M. Schaverien, Section Editors)
  • Published:
Current Surgery Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Management of patients with bony sarcoma requires a multidisciplinary approach that optimizes oncologic and functional outcomes.

Recent Findings

With the advent of new orthopedic and plastic surgery techniques, limb salvage is becoming a more common treatment for bony sarcomas. Bony reconstruction has evolved to include allograft, alloplastic, autograft, and combined approaches. Soft tissue options for coverage and functional reconstruction have also expanded. When amputation is indicated, function and pain outcomes can be optimized.

Summary

Limb-sparing resection for bony sarcoma is an excellent option for most patients, thanks to advancements in oncologic and surgical treatment options. With preservation or reconstruction of vital soft tissues, reconstruction of bone defects often can be addressed with a prosthetic implant, allograft, autograft, or combination of techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. SEER [Internet]. Cancer of the Bones and Joints—Cancer Stat Facts. https://seer.cancer.gov/statfacts/html/bones.html

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  3. Osteosarcoma—StatPearls—NCBI Bookshelf [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK549868/

  4. Cannon CP, Chang DW. Skeletal reconstruction after bone sarcoma resection. In: Lin PP, Patel S, editors. Bone sarcoma. Boston: Springer; 2013. p. 153–75. https://doi.org/10.1007/978-1-4614-5194-5_9.

    Chapter  Google Scholar 

  5. Gupta GR, Yasko AW, Lewis VO, Cannon CP, Raymond AK, Patel S, et al. Risk of local recurrence after deltoid-sparing resection for osteosarcoma of the proximal humerus. Cancer. 2009;115(16):3767–73.

    Article  PubMed  Google Scholar 

  6. •Hopyan S. Reconstruction for bone tumours of the shoulder and humerus in children and adolescents. J Child Orthop. 2021;15(4):358–65. Modern approaches to management of pediatric upper extremity sarcoma with a focus on form and function

  7. Cladière-Nassif V, Bourdet C, Audard V, Babinet A, Anract P, Biau D. Is it safe to preserve the deltoid when resecting the proximal humerus for a primary malignant bone tumour? A comparative study. Bone Jt J. 2017;99(B-9):1244–9.

    Article  Google Scholar 

  8. Liu T, Zhang Q, Guo X, Zhang X, Li Z, Li X. Treatment and outcome of malignant bone tumors of the proximal humerus: biological versus endoprosthetic reconstruction. BMC Musculoskelet Disord. 2014;15(1):69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ogink PT, Teunissen FR, Massier JR, Raskin KA, Schwab JH, Lozano-Calderon SA. Allograft reconstruction of the humerus: complications and revision surgery. J Surg Oncol. 2019;119(3):329–35.

    Article  PubMed  Google Scholar 

  10. O’Connor MI, Sim FH, Chao EY. Limb salvage for neoplasms of the shoulder girdle. Intermediate reconstructive and functional results. J Bone Joint Surg Am. 1996;78(12):1872–88.

    Article  PubMed  Google Scholar 

  11. Innocenti M, Delcroix L, Romano GF. Epiphyseal transplant: harvesting technique of the proximal fibula based on the anterior tibial artery. Microsurgery. 2005;25:284–92.

    Article  PubMed  Google Scholar 

  12. Ejiri S, Tajino T, Kawakami R, Hakozaki M, Konno SI. Long-term follow-up of free vascularized fibular head graft for reconstruction of the proximal humerus after wide resection for bone sarcoma. Fukushima J Med Sci. 2015;61(1):58–65.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stevenson JD, Doxey R, Abudu A, Parry M, Evans S, Peart F, et al. Vascularized fibular epiphyseal transfer for proximal humeral reconstruction in children with a primary sarcoma of bone. Bone Jt J. 2018;100(4):535–41.

    Article  Google Scholar 

  14. Kurlander DE, Shue S, Schwarz GS, Ghaznavi AM. Vascularized fibula epiphysis transfer for pediatric extremity reconstruction: a systematic review and meta-analysis. Ann Plast Surg. 2019;82(3):344–51.

    Article  CAS  PubMed  Google Scholar 

  15. Houdek MT, Wellings EP, Saifuddin H, Moran SL. Composite-free vascularized fibular epiphyseal flap and proximal humeral allograft for proximal humerus reconstruction in a pediatric patient. J Am Acad Orthop Surg Glob Res Rev. 2021;5(7): e21. https://doi.org/10.5435/JAAOSGlobal-D-21-00009.

    Article  PubMed Central  Google Scholar 

  16. Pollock RE, Randall RL, O’Sullivan B. Sarcoma oncology: a multidisciplinary approach. PMPH USA, Ltd; 2019 May 15.

  17. Rosenberg SA, Tepper J, Glatstein E, Costa J, Baker A, Brennan M, et al. The treatment of soft-tissue sarcomas of the extremities: prospective randomized evaluations of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy. Ann Surg. 1982;196(3):305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop. 1990;250:8–26.

    Article  Google Scholar 

  19. Tsuchiya H, Tomita K, Minematsu K, Mori Y, Asada N, Kitano S. Limb salvage using distraction osteogenesis. A classification of the technique. J Bone Joint Surg Br. 1997;79(3):403–11.

    Article  CAS  PubMed  Google Scholar 

  20. Levin AS, Arkader A, Morris CD. Reconstruction following tumor resections in skeletally immature patients. J Am Acad Orthop Surg. 2017;25(3):204–13.

    Article  PubMed  Google Scholar 

  21. Capanna R, Campanacci DA, Belot N, Beltrami G, Manfrini M, Innocenti M, et al. A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques. Orthop Clin North Am. 2007;38(1):51–60.

    Article  PubMed  Google Scholar 

  22. Zekry KM, Yamamoto N, Hayashi K, Takeuchi A, Alkhooly AZA, Abd-Elfattah AS, et al. Reconstruction of intercalary bone defect after resection of malignant bone tumor. J Orthop Surg Hong Kong. 2019;27(1):2309499019832970.

    PubMed  Google Scholar 

  23. Bonilla K, Arkader A. Tips and tricks: vascularized free fibula intercalated graft for humeral shaft reconstruction after Ewing’s sarcoma resection.

  24. Rose PS, Shin AY, Bishop AT, Moran SL, Sim FH. Vascularized free fibula transfer for oncologic reconstruction of the humerus. Clin Orthop Relat Res. 2005;438:80.

    Article  PubMed  Google Scholar 

  25. Hassan AM, Tesfaye EA, Rashiwala A, Roubaud MJ, Mericli AF. Functional muscle transfer after oncologic extremity resection. J Reconstr Microsurg. 2023;39(03):195–208.

    Article  PubMed  Google Scholar 

  26. Goulding KA, Schwartz A, Hattrup SJ, Randall RL, Lee D, Rispoli DM, et al. Use of compressive osseointegration endoprostheses for massive bone loss from tumor and failed arthroplasty: a viable option in the upper extremity. Clin Orthop Relat Res. 2017;475(6):1702–11.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wafa H, Reddy K, Grimer R, Abudu A, Jeys L, Carter S, et al. Does total humeral endoprosthetic replacement provide reliable reconstruction with preservation of a useful extremity? Clin Orthop Relat Res. 2015;473(3):917–25.

    Article  PubMed  Google Scholar 

  28. Kamal AF, Putra A, Widodo W. Vascularized fibular graft as a surgical option for osteosarcoma of distal humerus: a case report. Int J Surg Case Rep. 2017;39:280–4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wysocki RW, Soni E, Virkus WW, Scarborough MT, Leurgans SE, Gitelis S. Is intralesional treatment of giant cell tumor of the distal radius comparable to resection with respect to local control and functional outcome? Clin Orthop Relat Res. 2015;473(2):706–15.

    Article  PubMed  Google Scholar 

  30. Innocenti M, Baldrighi C, Menichini G. Long term results of epiphyseal transplant in distal radius reconstruction in children. Handchir Mikrochir Plast Chir. 2015;47(2):83–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bitoiu B, Grigor E, Abdelbary H, Cormier NS, Zhang J. Free functional muscle transfer following upper extremity sarcoma resection: a case report. Plast Reconstr Surg Glob Open. 2022;10(6): e4367.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Innocenti M, Delcroix L, Lucattelli E, Bastoni S, Daolio PA. Functional forearm reconstruction with a Latissimus dorsi free flap and tendon transfer after congenital soft-tissue sarcoma resection in a 29-week-old girl: a case report. HSS J. 2022;18(1):161–5.

    Article  PubMed  Google Scholar 

  33. •Zoccali C, Careri S, Attala D, Florio M, Milano GM, Giordano M. A New Proximal Femur Reconstruction Technique after Bone Tumor Resection in a Very Small Patient: An Exemplificative Case. Child Basel Switz. 2021;8(6):442. Case report of a femoral stem cemented into the distal third of a homoplastic humerus and a carbon fiber plate for stabilization in small patients who otherwise are difficult to reconstruct given size of distraction devices or endoprothesis in relation to bone diameter.

  34. Manfrini M, Innocenti M, Ceruso M, Mercuri M. Original biological reconstruction of the hip in a 4-year-old girl. Lancet Lond Engl. 2003;361(9352):140–2.

    Article  Google Scholar 

  35. Seu MY, Haley A, Cho BH, Carl HM, Bos TJ, Hassanein AH, et al. Proximal femur reconstruction using a vascularized fibular epiphysis within a cadaveric femoral allograft in a child with Ewing sarcoma: a case report. Plast Aesthetic Res. 2017;30(4):209–14.

    Article  Google Scholar 

  36. Abed R, Grimer R. Surgical modalities in the treatment of bone sarcoma in children. Cancer Treat Rev. 2010;36(4):342–7.

    Article  PubMed  Google Scholar 

  37. The use of allograft shell with intramedullary vascularized fibula graft for intercalary reconstruction after diaphyseal resection for lower extremity bony malignancy—Li—2010—Journal of Surgical Oncology—Wiley Online Library [Internet]. https://doi.org/10.1002/jso.21620

  38. Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. SICOT-J. 2018;4:12.

    Article  PubMed  PubMed Central  Google Scholar 

  39. ••Yamamoto N, Araki Y, Tsuchiya H. Joint-preservation surgery for bone sarcoma in adolescents and young adults. Int J Clin Oncol. 2023;28(1):12–27. This is a comprehensive review that focuses on shift towards biologic options for joint preservation and reconstruction for sarcoma and 3D-reconstructive techniques as a shift towards the future of sarcoma reconstruction.

  40. Hu Y. Surgical technique for reconstruction of diaphyseal defect with endoprosthesis following intercalary resection in femoral shaft. Orthop Surg. 2014;6(4):329–31.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ortiz-Cruz E, Gebhardt MC, Jennings LC, Springfield DS, Mankin HJ. The results of transplantation of intercalary allografts after resection of tumors. A long-term follow-up study. J Bone Joint Surg Am. 1997;79(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  42. Park JE, Chang DW. Advances and innovations in microsurgery. Plast Reconstr Surg. 2016;138(5):915e-e924.

    Article  CAS  PubMed  Google Scholar 

  43. Bakri K, Stans AA, Mardini S, Moran SL. Combined massive allograft and intramedullary vascularized fibula transfer: the Capanna technique for lower-limb reconstruction. Semin Plast Surg. 2008;22(3):234–41.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li J, Chen G, Lu Y, Zhu H, Ji C, Wang Z. Factors influencing osseous union following surgical treatment of bone tumors with use of the capanna technique. JBJS. 2019;101(22):2036.

    Article  Google Scholar 

  45. Zaretski A, Gur E, Kollander Y, Meller I, Dadia S. Biological reconstruction of bone defects: the role of the free fibula flap. J Child Orthop. 2011;5(4):241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen KT, Mardini S, Chuang DCC, Lin CH, Cheng MH, Lin YT, et al. Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers. Plast Reconstr Surg. 2007;120(1):187–95.

    Article  CAS  PubMed  Google Scholar 

  47. Houdek MT, Wellings EP, Mallett KE, Honig RL, Rose PS, Moran SL. Free functional Latissimus dorsi reconstruction of the quadriceps and hamstrings following oncologic resection of soft tissue sarcomas of the thigh. Sarcoma. 2021;8(2021): e8480737.

    Google Scholar 

  48. •Baysal Ö, Sağlam F, Akgülle AH, Baykan SE, Erol B. Prediction of soft tissue coverage following distal femur bone sarcoma resection: A preliminary report. J Orthop Res. 2022;40(2):468–74. Utilization of preoperative MRI to measure tumor and soft tissue loss volume to determine if rotational soft tissue flaps are required for reconstruction.

  49. ••Hassan AM, Tesfaye EA, Rashiwala A, Roubaud MJ, Mericli AF. Functional Muscle Transfer after Oncologic Extremity Resection. J Reconstr Microsurg. 2023;39(03):195–208.

  50. Farid Y, Lin PP, Lewis VO, Yasko AW. Endoprosthetic and allograft-prosthetic composite reconstruction of the proximal femur for bone neoplasms. Clin Orthop Relat Res. 2006;442:223.

    Article  PubMed  Google Scholar 

  51. •Mazaleyrat M, Le Nail LR, Auberger G, Biau D, Rosset P, Waast D, et al. Survival and complications in hinged knee reconstruction prostheses after distal femoral or proximal tibial tumor resection: A retrospective study of 161 cases. Orthop Traumatol Surg Res. 2020;106(3):403–7. Failure rate of hinged knee prosthesis higher in the proximal tibial population mainly from asceptic loosening or infection

  52. Biau DJ, Ferguson PC, Chung P, Griffin AM, Catton CN, O’Sullivan B, et al. Local recurrence of localized soft tissue sarcoma: a new look at old predictors. Cancer. 2012;118(23):5867–77.

    Article  PubMed  Google Scholar 

  53. Ayerza MA, Aponte-Tinao LA, Abalo E, Muscolo DL. Continuity and function of patellar tendon host-donor suture in tibial allograft. Clin Orthop. 2006;450:33–8.

    Article  PubMed  Google Scholar 

  54. Gilbert NF, Yasko AW, Oates SD, Lewis VO, Cannon CP, Lin PP. Allograft-prosthetic composite reconstruction of the proximal part of the tibia. An analysis of the early results. J Bone Joint Surg Am. 2009;91(7):1646–56.

    Article  PubMed  Google Scholar 

  55. Cipriano CA, Dalton J, McDonald DJ. Does patellar tendon repair with gastrocnemius flap augmentation effectively restore active extension after proximal tibial sarcoma resection? Clin Orthop. 2019;477(3):584–93.

    Article  PubMed  Google Scholar 

  56. Ninković M, Ninković M. Neuromusculotendinous transfer: an original surgical conceptfor the treatment of drop foot with long-term follow-up. Plast Reconstr Surg. 2013;132(3):438e-e445.

    Article  PubMed  Google Scholar 

  57. •Lewis VO, Kemp A, Roubaud MJ, Ajay D, Westney OL, Smith TI, et al. Multidisciplinary Approach to Hemipelvectomy for Pelvic Sarcomas. JBJS Rev. 2022;10(5):e20.00233. Ideal treatment for hemipelvectomy consists of an orthopaedic oncologist, a surgical oncologist, a urologist, a vascular surgeon, a gynecologic oncologist, a plastic and reconstructive surgeon, a dedicated anesthesia team, and a dedicated rehabilitation physical therapy team.

  58. Mericli AF, Boukovalas S, Roubaud MS, Kai-Cheng Chu C, Bird J, Lewis VO, et al. Restoration of spinopelvic continuity with the free fibula flap after limb-sparing oncologic resection is associated with a high union rate and superior functional outcomes. Plast Reconstr Surg. 2020;146(3):650.

    Article  CAS  PubMed  Google Scholar 

  59. Chao AH, Mayerson JL, Chandawarkar R, Scharschmidt TJ. Surgical management of soft tissue sarcomas: extremity sarcomas. J Surg Oncol. 2015;111(5):540–5.

    Article  PubMed  Google Scholar 

  60. Qu H, Li D, Tang S, Zang J, Wang Y, Guo W. Pelvic reconstruction following resection of tumour involving the whole ilium and acetabulum. J Bone Oncol. 2019;27(16): 100234.

    Article  Google Scholar 

  61. Chang DW, Fortin AJ, Oates SD, Lewis VO. Reconstruction of the pelvic ring with vascularized double-strut fibular flap following internal hemipelvectomy. Plast Reconstr Surg. 2008;121(6):1993.

    Article  CAS  PubMed  Google Scholar 

  62. ••Erol B, Sofulu O, Sirin E, Saglam F, Baysal O, Tetik C. Pelvic Ring Reconstruction After Iliac or Iliosacral Resection of Pediatric Pelvic Ewing Sarcoma: Use of a Double-Barreled Free Vascularized Fibular Graft and Minimal Spinal Instrumentation. JBJS. 2021;103(11):1000. New reconstructive method in the field of pediatric sarcoma of the pelvis with high rates of bone union, decreased risks of infection and improved function postoperatively.

  63. Wilson RJ, Freeman TH, Halpern JL, Schwartz HS, Holt GE. Surgical outcomes after limb-sparing resection and reconstruction for pelvic sarcoma: a systematic review. JBJS Rev. 2018;6(4): e10.

    Article  PubMed  Google Scholar 

  64. Imanishi J, Yazawa Y, Oda H, Okubo T. Type 3 internal hemipelvectomy: a report of two cases. J Orthop Surg (Hong Kong). 2015;23(2):255–8.

    Article  PubMed  Google Scholar 

  65. Arkoulis N, Savanis G, Simatos G, Zerbinis H, Nisiotis A. Incisional hernia of the urinary bladder following internal hemipelvectomy. Int J Surg Case Rep. 2012;3(7):316–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. •Mayerson JL, Wooldridge AN, Scharschmidt TJ. Pelvic resection: current concepts. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2014; 22(4):214–22.

  67. Chao AH, Neimanis SA, Chang DW, Lewis VO, Hanasono MM. Reconstruction after internal hemipelvectomy: outcomes and reconstructive algorithm. Ann Plast Surg. 2015;74(3):342–9.

    Article  CAS  PubMed  Google Scholar 

  68. DiCaprio MR, Friedlaender GE. Malignant bone tumors: limb sparing versus amputation. J Am Acad Orthop Surg. 2003;11(1):25–37.

    Article  PubMed  Google Scholar 

  69. Roubaud MS, Hassan AM, Shin A, Mericli AF, Adelman DM, Hagan K, et al. Outcomes of targeted muscle reinnervation and regenerative peripheral nerve interfaces for chronic pain control in the oncologic amputee population. J Am Coll Surg. 2023;237(4):644–54.

    Article  PubMed  Google Scholar 

  70. Kuiken TA, Barlow AK, Hargrove L, Dumanian GA. Targeted muscle reinnervation for the upper and lower extremity. Tech Orthop Rockv Md. 2017;32(2):109–16.

    Article  Google Scholar 

  71. Dumanian GA, Potter BK, Mioton LM, Ko JH, Cheesborough JE, Souza JM, et al. Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. Ann Surg. 2019;270(2):238–46.

    Article  PubMed  Google Scholar 

  72. •Valerio IL, Larsen M, Eberlin KR. Application of Spare Parts in Combination with Targeted Muscle Reinnervation Surgery. Plast Reconstr Surg. 2021;147(2):279e–83e. Use of this technique shows benefit in reduction of neuroma formation and phantom limb pain in forequarter and hindlimb amputations.

  73. •Chang BL, Kleiber GM. Prophylactic Targeted Muscle Reinnervation Reduces Pain and Improves Ambulation in Patients Undergoing a Below-the-Knee Amputation. J Am Coll Surg. 2020;231(4):S231. TMR improves pain and return to ambulatory status in paitents with below knee amputations.

  74. Alexander JH, Jordan SW, West JM, Compston A, Fugitt J, Byers Bowen J, et al. Targeted muscle reinnervation in oncologic amputees: early experience of a novel institutional protocol. J Surg Oncol. 2019;120(3):348–58.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hooper RC, Cederna PS, Brown DL, Haase SC, Waljee JF, Egeland BM, et al. Regenerative peripheral nerve interfaces for the management of symptomatic hand and digital neuromas. Plast Reconstr Surg Glob Open. 2020;8(6): e2792.

    Article  PubMed  PubMed Central  Google Scholar 

  76. ••Roubaud M, Asaad M, Liu J, Mericli A, Kapur S, Adelman D, et al. The free filet flap of the lower extremity: 38 oncologic amputations with 7 examples of the incorporation of Targeted Muscle Reinnervation (TMR) and Regenerative Peripheral Nerve Interfaces (RPNIs). Plast Reconstr Surg. 2023; Data demonstrating utility of TMR and RPNI in improving post-operative residual and phantom limb pain after amputation for lower extremity sarcoma

  77. Kreutz-Rodrigues L, Mohan AT, Moran SL, Carlsen BT, Mardini S, Houdek MT, et al. Extremity free fillet flap for reconstruction of massive oncologic resection-Surgical technique and outcomes. J Surg Oncol. 2020;121(3):465–73.

    Article  PubMed  Google Scholar 

  78. Kiiski J, Laitinen MK, Nail LRL, Kuokkanen HO, Peart F, Rosset P, et al. Soft tissue reconstruction after pelvic amputation: The efficacy and reliability of free fillet flap reconstruction. J Plast Reconstr Aesthet Surg. 2021;74(5):987–94.

    Article  PubMed  Google Scholar 

  79. •Markewych A, Hansdorfer M, Blank A, Kokosis G, Kurlander DE. Forequarter Amputation: Reconstruction With Targeted Muscle Reinnervation to the Filet of Forearm Free Flap. Tech Hand Up Extrem Surg. 2023 Jan 10 Case report of patient who underwent “spare parts” procedure for reconstruction and TMR with favorable outcomes after forequarter amputation which usually is associated with high morbidity.

  80. •Tropf JG, Potter BK. Osseointegration for amputees: Current state of direct skeletal attachment of prostheses. Orthoplastic Surg. 2023;12:20–8. Up-to-date review for understanding current technologies for osseointegration of prostheses and how reconstruction can be optimized for future function.

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

I.PA, A.M, D.K wrote the main manuscript text D.K, S.G and A.B provided figures I.PA prepared the figures I.PA prepared literature review and references All authors edited the manuscript

Corresponding author

Correspondence to David E. Kurlander.

Ethics declarations

Conflict of interest

The authors have the following conflicts of interests with respect to authorship or publication of this manuscript. Blank: Onkos Surgical, Signature Orthopedics, Bonesupport: Paid consultant, Swim Across America Cancer Research Grant: Research support,Reviewer for JOP, Lancet Oncology, CORR, Arthoplasty, BMJ exparel/pacira: Stock or stock Options, Musculoskeletal Tumor Society: Board or committee member, AAOS: Board or Committee member, JSO, Rare Tumors, Arthroplasty, ROJ: Editorial or governing board. Perez-Alvarez, Markewych, Yu, Gitelis, Kurlander have no conflicts.

Research Involving Human and Animal Participants

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Alvarez, I., Markewych, A., Yu, A. et al. Advances in Functional Reconstruction After Bony Sarcoma Resection. Curr Surg Rep 12, 173–185 (2024). https://doi.org/10.1007/s40137-024-00403-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40137-024-00403-1

Keywords

Navigation