Skip to main content

Advertisement

Log in

Modeling and Restoring the Tear Film

  • Regenerative Medicine in Ophthalmology (D Myung, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the major factors currently implicated in the pathogenesis of tear film related ocular disorders, including dysfunctional adhesions, inflammatory factors, and insufficient lubrication by ocular surface mucins, and highlights the potential of in vitro models to propel more effective treatments into the clinic while improving fundamental understanding of ocular surface biology.

Recent Findings

The cornea and conjunctiva form a continuous ocular surface that shields the visual system from environmental threats. Because of its precise composition and organization, the ocular surface also refracts and focuses light rays, enabling clear vision. In many ocular surface diseases such as dry eye, tear film homeostasis is disrupted, causing inflammation, dryness, and epithelial damage. These friction-driven phenomena result in negative feedback loops in the eye that cause significant discomfort and compromise visual acuity over time.

Summary

Despite the prevalence of lubrication-related eye disorders, much remains unknown about disease initiation and progression, a knowledge gap reflected in the limited treatment options currently available. As novel therapeutics are developed to treat these conditions, scalable, cost-effective model systems that sufficiently recapitulate the complexities of the native ocular surface are needed to streamline drug screening and clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gipson IK. The Ocular Surface: the challenge to enable and protect vision: the Friedenwald lecture. Investig Opthalmol Vis Sci. 2007;48:4391.

    Google Scholar 

  2. Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018;66:190–4.

    PubMed  PubMed Central  Google Scholar 

  3. Fini ME, Jeong S, Gong H, Martinez-Carrasco R, Laver NMV, Hijikata M, et al. Membrane-associated mucins of the ocular surface: new genes, new protein functions and new biological roles in human and mouse. Prog Retin Eye Res. 2020;75:100777.

    CAS  PubMed  Google Scholar 

  4. Franzco IC. Blink-related microtrauma: when the ocular surface harms itself. Clin Exp Ophthalmol. 2003;31:183–90.

    Google Scholar 

  5. Cher I. A new look at lubrication of the ocular surface: fluid mechanics behind the blinking eyelids. Ocul Surf. 2008;6:79–86.

    PubMed  Google Scholar 

  6. Pult H, Tosatti SGP, Spencer ND, Asfour JM, Ebenhoch M, Murphy PJ. Spontaneous blinking from a tribological viewpoint. Ocul Surf. 2015;13:236–49.

    PubMed  Google Scholar 

  7. McDonald M, Patel DA, Keith MS, Snedecor SJ. Economic and humanistic burden of dry eye disease in Europe, North America, and Asia: a systematic literature review. Ocul Surf. 2016;14:144–67.

    PubMed  Google Scholar 

  8. Yu J, Asche CV, Fairchild CJ. The economic burden of dry eye disease in the United States: a decision tree analysis. Cornea. 2011;30:379–87.

    PubMed  Google Scholar 

  9. Govindarajan B, Gipson IK. Membrane-tethered mucins have multiple functions on the ocular surface. Exp Eye Res. 2010;90:655–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pflugfelder SC, Bian F, Paiva CD. Matrix metalloproteinase-9 in the pathophysiology and diagnosis of dry eye syndrome. Metalloprotein Med. 2017;4:37–46 https://www.dovepress.com/matrix-metalloproteinase-9-in-the-pathophysiology-and-diagnosis-of-dry-peer-reviewed-article-MNM.

    CAS  Google Scholar 

  11. Xin Y, Lu Q, Li Q. 14-3-3σ controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway. Biochem Biophys Res Commun. 2010;392:593–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stepp MA, Spurr-Michaud S, Gipson IK. Integrins in the wounded and unwounded stratified squamous epithelium of the cornea. Invest Ophthalmol Vis Sci. 1993;34:1829–44.

    CAS  PubMed  Google Scholar 

  13. Gipson IK. Adhesive mechanisms of the corneal epithelium. Acta Ophthalmol. 1992;70:13–7.

    Google Scholar 

  14. Nemeth G, Felszeghy S, Kenyeres A, Szentmary N, Berta A, Suveges I, et al. Cell adhesion molecules in stromal corneal dystrophies. Histol Histopathol. 2008;23:945–52.

    PubMed  Google Scholar 

  15. Mantelli F, Mauris J, Argüeso P. The ocular surface epithelial barrier and other mechanisms of mucosal protection: from allergy to infectious diseases. Curr Opin Allergy Clin Immunol. 2013;13:563–8.

    PubMed  Google Scholar 

  16. AbuSamra DB, Argüeso P. Lectin-glycan interactions in corneal infection and inflammation. Front Immunol. 2018;9:2338.

    PubMed  PubMed Central  Google Scholar 

  17. Labbé A, Alalwani H, van Went C, Brasnu E, Georgescu D, Baudouin C. The relationship between subbasal nerve morphology and corneal sensation in ocular surface disease. Invest Ophthalmol Vis Sci. 2012;53:4926–31.

    PubMed  Google Scholar 

  18. Rosenthal P, Borsook D. The corneal pain system. Part I: the missing piece of the dry eye puzzle∗. Ocul Surf. 2012;10:2–14.

    PubMed  Google Scholar 

  19. Galor A. Painful dry eye symptoms: a nerve problem or a tear problem? Ophthalmology. 2019;126:648–51.

    PubMed  Google Scholar 

  20. Wei ZG, Wu RL, Lavker RM, Sun TT. In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells. Invest Ophthalmol Vis Sci. 1993;34:1814–28.

    CAS  PubMed  Google Scholar 

  21. Shafaie S, Hutter V, Cook MT, Brown MB, Chau DYS. In vitro cell models for ophthalmic drug development applications. BioRes Open Access. 2016;5:94–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Uchino Y. The ocular surface glycocalyx and its alteration in dry eye disease: a review. Invest Ophthalmol Vis Sci. 2018;59:DES157–62.

    CAS  PubMed  Google Scholar 

  23. Marko CK, Menon BB, Chen G, Whitsett JA, Clevers H, Gipson IK. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye. Am J Pathol. 2013;183:35–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gipson IK. Goblet cells of the conjunctiva: a review of recent findings. Prog Retin Eye Res. 2016;54:49–63.

    PubMed  PubMed Central  Google Scholar 

  25. Gipson IK, Hori Y, Argüeso P. Character of ocular surface mucins and their alteration in dry eye disease. Ocul Surf. 2004;2:131–48.

    PubMed  Google Scholar 

  26. Rosenfeld L, Fuller GG. Consequences of interfacial viscoelasticity on thin film stability. Langmuir. 2012;28:14238–44.

    CAS  PubMed  Google Scholar 

  27. Bhamla MS, Chai C, Rabiah NI, Frostad JM, Fuller GG. Instability and breakup of model tear films. Invest Ophthalmol Vis Sci. 2016;57:949–58.

    CAS  PubMed  Google Scholar 

  28. Leiske DL, Raju SR, Ketelson HA, Millar TJ, Fuller GG. The interfacial viscoelastic properties and structures of human and animal meibomian lipids. Exp Eye Res. 2010;90:598–604.

    CAS  PubMed  Google Scholar 

  29. Leiske DL, Leiske CI, Leiske DR, Toney MF, Senchyna M, Ketelson HA, et al. Temperature-induced transitions in the structure and interfacial rheology of human meibum. Biophys J. 2012;102:369–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Millar TJ, Schuett BS. The real reason for having a meibomian lipid layer covering the outer surface of the tear film – a review. Exp Eye Res. 2015;137:125–38.

    CAS  PubMed  Google Scholar 

  31. Baudouin C, Rolando M, Benitez del Castillo JM, Messmer EM, Figueiredo FC, Irkec M, et al. Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog Retin Eye Res. 2019;71:68–87.

    CAS  PubMed  Google Scholar 

  32. Spurr-Michaud S, Argüeso P, Gipson I. Assay of mucins in human tear fluid. Exp Eye Res. 2007;84:939–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bansil R, Stanley E, Lamont JT. Mucin biophysics. Annu Rev Physiol. 1995;57:635–57.

    CAS  PubMed  Google Scholar 

  34. Mantelli F, Argüeso P. Functions of ocular surface mucins in health and disease. Curr Opin Allergy Clin Immunol. 2008;8:477–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Argüeso P. Glycobiology of the ocular surface: mucins and lectins. Jpn J Ophthalmol. 2013;57:150–5.

    PubMed  PubMed Central  Google Scholar 

  36. Sumiyoshi M, Ricciuto J, Tisdale A, Gipson IK, Mantelli F, Argu¨eso P. Antiadhesive character of mucin O-glycans at the apical surface of corneal epithelial cells. Invest Ophthalmol Vis Sci. 2008;49:197–203.

    PubMed  PubMed Central  Google Scholar 

  37. Gipson IK. Distribution of mucins at the ocular surface. Exp Eye Res. 2004;78:379–88.

    CAS  PubMed  Google Scholar 

  38. Gipson IK, Spurr-Michaud S, Argu¨eso P, Tisdale A, Ng TF, Russo CL. Mucin gene expression in immortalized human corneal–limbal and conjunctival epithelial cell lines. Invest Ophthalmol Vis Sci. 2003;44:2496–506.

    PubMed  Google Scholar 

  39. Pitenis AA, Urueña JM, Hormel TT, Bhattacharjee T, Niemi SR, Marshall SL, et al. Corneal cell friction: survival, lubricity, tear films, and mucin production over extended duration in vitro studies. Biotribology. 2017;11:77–83.

    Google Scholar 

  40. Ablamowicz AF, Nichols JJ. Ocular surface membrane-associated mucins. Ocul Surf. 2016;14:331–41.

    PubMed  Google Scholar 

  41. Gipson IK, Spurr-Michaud S, Tisdale A, Menon BB. Comparison of the transmembrane mucins MUC1 and MUC16 in epithelial barrier function. PLoS One. 2014;9:e100393.

    PubMed  PubMed Central  Google Scholar 

  42. Guzman-Aranguez A, Argüeso P. Structure and biological roles of mucin-type O-glycans at the ocular surface. Ocul Surf. 2010;8:8–17.

    PubMed  PubMed Central  Google Scholar 

  43. Fini ME, Bauskar A, Jeong S, Wilson MR. Clusterin in the eye: an old dog with new tricks at the ocular surface. Exp Eye Res. 2016;147:57–71.

    CAS  PubMed  Google Scholar 

  44. Taniguchi T, Woodward AM, Magnelli P, McColgan NM, Lehoux S, Jacobo SMP, et al. N-glycosylation affects the stability and barrier function of the MUC16 mucin. J Biol Chem. 2017;292:11079–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Inatomi T, Spurr-Michaud S, Tisdale AS, Gipson IK. Human corneal and conjunctival epithelia express MUC1 mucin. Invest Ophthalmol Vis Sci. 1995;36:1818–27.

    CAS  PubMed  Google Scholar 

  46. Blalock TD, Spurr-Michaud SJ, Tisdale AS, Gipson IK. Release of membrane-associated mucins from ocular surface epithelia. Invest Ophthalmol Vis Sci. 2008;49:1864–71.

    PubMed  PubMed Central  Google Scholar 

  47. Blalock TD, Spurr-Michaud SJ, Tisdale AS, Heimer SR, Gilmore MS, Ramesh V, et al. Functions of MUC16 in corneal epithelial cells. Invest Ophthalmol Vis Sci. 2007;48:4509–18.

    PubMed  Google Scholar 

  48. Hori Y, Spurr-Michaud S, Russo CL, Argüeso P, Gipson IK. Differential regulation of membrane-associated mucins in the human ocular surface epithelium. Invest Ophthalmol Vis Sci. 2004;45:114–22.

    PubMed  Google Scholar 

  49. Schmidt TA, Sullivan DA, Knop E, Richards SM, Knop N, Liu S, et al. Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface. JAMA Ophthalmol. 2013;131:766–76.

    CAS  PubMed  Google Scholar 

  50. Das N, Schmidt TA, Krawetz RJ, Dufour A. Proteoglycan 4: from mere lubricant to regulator of tissue homeostasis and inflammation. BioEssays. 2019;41:1800166.

    Google Scholar 

  51. Regmi SC, Samsom ML, Heynen ML, Jay GD, Sullivan BD, Srinivasan S, et al. Degradation of proteoglycan 4/lubricin by cathepsin S: potential mechanism for diminished ocular surface lubrication in Sjögren’s syndrome. Exp Eye Res. 2017;161:1–9.

    CAS  PubMed  Google Scholar 

  52. Elsaid KA, Jay GD, Warman ML, Rhee DK, Chichester CO. Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis Rheum. 2005;52:1746–55.

    CAS  PubMed  Google Scholar 

  53. Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman ML, Jay GD. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci. 2013;110:5852–7.

    CAS  PubMed  Google Scholar 

  54. Jay GD, Waller KA. The biology of lubricin: near frictionless joint motion. Matrix Biol. 2014;39:17–24.

    CAS  PubMed  Google Scholar 

  55. Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS. The role of lubricin in the mechanical behavior of synovial fluid. Proc Natl Acad Sci. 2007;104:6194–9.

    CAS  PubMed  Google Scholar 

  56. Reesink HL, Bonnevie ED, Liu S, Shurer CR, Hollander MJ, Bonassar LJ, et al. Galectin-3 binds to lubricin and reinforces the lubricating boundary layer of articular cartilage. Sci Rep. 2016;6:25463.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rhee DK, Marcelino J, Baker MA, Gong Y, Smits P, Lefebvre V, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 2005;115:622–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rhee DK, Marcelino J, al-Mayouf S, Schelling DK, Bartels CF, Cui Y, et al. Consequences of disease-causing mutations on lubricin protein synthesis, secretion, and post-translational processing. J Biol Chem. 2005;280:31325–32.

    CAS  PubMed  Google Scholar 

  59. Schaefer DB, Wendt D, Moretti M, Jakob M, Jay GD, Heberer M, et al. Lubricin reduces cartilage-cartilage integration. Biorheology. 2004;41:503–8.

    CAS  PubMed  Google Scholar 

  60. Greene GW, Martin LL, Tabor RF, Michalczyk A, Ackland LM, Horn R. Lubricin: a versatile, biological anti-adhesive with properties comparable to polyethylene glycol. Biomaterials. 2015;53:127–36.

    CAS  PubMed  Google Scholar 

  61. Greene GW, Ortiz V, Pozo-Gonzalo C, Moulton SE, Wang X, Martin LL, et al. Lubricin antiadhesive coatings exhibit size-selective transport properties that inhibit biofouling of electrode surfaces with minimal loss in electrochemical activity. Adv Mater Interfaces. 2018;5:1701296.

    Google Scholar 

  62. John T, Greene GW, Patil NA, Dealey TJA, Hossain MA, Abel B, et al. Adsorption of amyloidogenic peptides to functionalized surfaces is biased by charge and hydrophilicity. Langmuir. 2019;35:14522–31.

    CAS  PubMed  Google Scholar 

  63. Huang S, et al. Cathepsin g degrades both glycosylated and unglycosylated regions of lubricin, a synovial mucin. Sci Rep. 2020;10:1–12.

    Google Scholar 

  64. Samsom ML, Morrison S, Masala N, Sullivan BD, Sullivan DA, Sheardown H, et al. Characterization of full-length recombinant human proteoglycan 4 as an ocular surface boundary lubricant. Exp Eye Res. 2014;127:14–9.

    CAS  PubMed  Google Scholar 

  65. Seo J, Byun WY, Alisafaei F, Georgescu A, Yi YS, Massaro-Giordano M, et al. Multiscale reverse engineering of the human ocular surface. Nat Med. 2019;25:1310–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lambiase A, et al. A two-week, randomized, double-masked study to evaluate safety and efficacy of lubricin (150 μg/mL) eye drops versus sodium hyaluronate (HA) 0.18% eye drops (Vismed®) in patients with moderate dry eye disease. Ocul Surf. 2017;15:77–87.

    PubMed  Google Scholar 

  67. Zappone B, Greene GW, Oroudjev E, Jay GD, Israelachvili JN. Molecular aspects of boundary lubrication by human lubricin: effect of disulfide bonds and enzymatic digestion. Langmuir. 2008;24:1495–508.

    CAS  PubMed  Google Scholar 

  68. Coles JM, Chang DP, Zauscher S. Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins. Curr Opin Colloid Interface Sci. 2010;15:406–16.

    CAS  Google Scholar 

  69. Jay GD, Harris DA, Cha C-J. Boundary lubrication by lubricin is mediated by O-linked β(1-3)Gal-GalNAc oligosaccharides. Glycoconj J. 2001;18:807–15.

    CAS  PubMed  Google Scholar 

  70. Flowers SA, Zieba A, Örnros J, Jin C, Rolfson O, Björkman LI, et al. Lubricin binds cartilage proteins, cartilage oligomeric matrix protein, fibronectin and collagen II at the cartilage surface. Sci Rep. 2017;7:13149.

    PubMed  PubMed Central  Google Scholar 

  71. Chang DP, Abu-Lail NI, Guilak F, Jay GD, Zauscher S. Conformational mechanics, adsorption, and normal force interactions of lubricin and hyaluronic acid on model surfaces. Langmuir. 2008;24:1183–93.

    CAS  PubMed  Google Scholar 

  72. Murphy G, Knäuper V. Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol. 1997;15:511–8.

    CAS  PubMed  Google Scholar 

  73. Gleghorn JP, Jones ARC, Flannery CR, Bonassar LJ. Boundary mode frictional properties of engineered cartilaginous tissues. Eur Cell Mater. 2007;14:20–9.

    CAS  PubMed  Google Scholar 

  74. Jones ARC, Gleghorn JP, Hughes CE, Fitz LJ, Zollner R, Wainwright SD, et al. Binding and localization of recombinant lubricin to articular cartilage surfaces. J Orthop Res. 2007;25:283–92.

    CAS  PubMed  Google Scholar 

  75. Han M, Silva SM, Lei W, Quigley A, Kapsa RMI, Moulton SE, et al. Adhesion and self-assembly of lubricin (PRG4) brush layers on different substrate surfaces. Langmuir. 2019;35:15834–48.

    CAS  PubMed  Google Scholar 

  76. Zappone B, Ruths M, Greene GW, Jay GD, Israelachvili JN. Adsorption, lubrication, and wear of lubricin on model surfaces: polymer brush-like behavior of a glycoprotein. Biophys J. 2007;92:1693–708.

    CAS  PubMed  Google Scholar 

  77. Majd SE, Kuijer R, Köwitsch A, Groth T, Schmidt TA, Sharma PK. Both hyaluronan and collagen type II keep proteoglycan 4 (lubricin) at the cartilage surface in a condition that provides low friction during boundary lubrication. Langmuir. 2014;30:14566–72.

    CAS  PubMed  Google Scholar 

  78. Greene GW, Thapa R, Holt SA, Wang X, Garvey CJ, Tabor RF. Structure and property changes in self-assembled lubricin layers induced by calcium ion interactions. Langmuir. 2017;33:2559–70.

    CAS  PubMed  Google Scholar 

  79. Chang DP, Abu-Lail NI, Coles JM, Guilak F, Jay GD, Zauscher S. Friction force microscopy of lubricin and hyaluronic acid between hydrophobic and hydrophilic surfaces. Soft Matter. 2009;5:3438–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Abubacker S, Ponjevic D, Ham HO, Messersmith PB, Matyas JR, Schmidt TA. Effect of disulfide bonding and multimerisation on proteoglycan 4’s cartilage boundary lubricating ability and adsorption. Connect Tissue Res. 2016;57:113–23.

    CAS  PubMed  Google Scholar 

  81. Swann DA, Hendren RB, Radin EL, Sotman SL. The lubricating activity of synovial fluid glycoproteins. Arthritis Rheum. 1981;24:22–30.

    CAS  PubMed  Google Scholar 

  82. Iqbal SM, Leonard C, C. Regmi S, de Rantere D, Tailor P, Ren G, et al. Lubricin/proteoglycan 4 binds to and regulates the activity of Toll-like receptors in vitro. Sci Rep. 2016;6:18910.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Alquraini A, Jamal M, Zhang L, Schmidt T, Jay GD, Elsaid KA. The autocrine role of proteoglycan-4 (PRG4) in modulating osteoarthritic synoviocyte proliferation and expression of matrix degrading enzymes. Arthritis Res Ther. 2017;19:89.

    PubMed  PubMed Central  Google Scholar 

  84. Al-Sharif A, et al. Lubricin/proteoglycan 4 binding to CD44 receptor: a mechanism of the suppression of proinflammatory cytokine–induced synoviocyte proliferation by lubricin. Arthritis Rheum. 2015;67:1503–13.

    CAS  Google Scholar 

  85. Park DSJ, et al. Human pericardial proteoglycan 4 (lubricin): implications for postcardiotomy intrathoracic adhesion formation. J Thorac Cardiovasc Surg. 2018;156:1598–1608.e1.

    PubMed  Google Scholar 

  86. Ikegawa S, Sano M, Koshizuka Y, Nakamura Y. Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes. Cytogenet Genome Res. 2000;90:291–7.

    CAS  Google Scholar 

  87. Jin C, Ekwall AKH, Bylund J, Björkman L, Estrella RP, Whitelock JM, et al. Human synovial Lubricin expresses Sialyl Lewis x determinant and has L-selectin ligand activity. J Biol Chem. 2012;287:35922–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yu-Wai-Man C, Tagalakis AD, Meng J, Bouremel Y, Lee RMH, Virasami A, et al. Genotype-phenotype associations of IL6 and PRG4 with conjunctival fibrosis after glaucoma surgery. JAMA Ophthalmol. 2017;135:1147–55.

    PubMed  PubMed Central  Google Scholar 

  89. Wang J, Chen D, Sullivan DA, Xie H, Li Y, Liu Y. Expression of Lubricin in the human amniotic membrane. Cornea. 2020;39:118–21.

    PubMed  Google Scholar 

  90. Oh J, Kuan KG, Tiong LU, Trochsler MI, Jay G, Schmidt TA, et al. Recombinant human lubricin for prevention of postoperative intra-abdominal adhesions in a rat model. J Surg Res. 2017;208:20–5.

    CAS  PubMed  Google Scholar 

  91. Navascues-Cornago M, Maldonado-Codina C, Morgan PB. Mechanical sensitivity of the human conjunctiva. Cornea. 2014;33:855–9.

    PubMed  Google Scholar 

  92. Kato H, Yokoi N, Watanabe A, Komuro A, Sonomura Y, Sotozono C, et al. Relationship between ocular surface epithelial damage, tear abnormalities, and blink in patients with dry eye. Cornea. 2019;38:318–24.

    PubMed  Google Scholar 

  93. Qin G, Baidouri H, Glasser A, Raghunathan VK, Morris C, Maltseva I, et al. Development of an in vitro model to study the biological effects of blinking. Ocul Surf. 2018;16:226–34.

    PubMed  Google Scholar 

  94. Vu CHV, Kawashima M, Yamada M, Suwaki K, Uchino M, Shigeyasu C, et al. Influence of meibomian gland dysfunction and friction-related disease on the severity of dry eye. Ophthalmology. 2018;125:1181–8.

    PubMed  Google Scholar 

  95. Meloni M, De Servi B, Marasco D, Del Prete S. Molecular mechanism of ocular surface damage: application to an in vitro dry eye model on human corneal epithelium. Mol Vis. 2011;17:113–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Berry M, Pult H, Purslow C, Murphy PJ. Mucins and ocular signs in symptomatic and asymptomatic contact lens wear. Optom Vis Sci. 2008;85:E930–8.

    PubMed  Google Scholar 

  97. Uchino M, Schaumberg DA. Dry eye disease: impact on quality of life and vision. Curr Ophthalmol Rep. 2013;1:51–7.

    PubMed  PubMed Central  Google Scholar 

  98. Georgiev GA, Eftimov P, Yokoi N. Contribution of mucins towards the physical properties of the tear film: a modern update. Int J Mol Sci. 2019;20:6132.

    CAS  PubMed Central  Google Scholar 

  99. Pult H, Purslow C, Murphy PJ. The relationship between clinical signs and dry eye symptoms. Eye. 2011;25:502–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Holland EJ, Darvish M, Nichols KK, Jones L, Karpecki PM. Efficacy of topical ophthalmic drugs in the treatment of dry eye disease: a systematic literature review. Ocul Surf. 2019;17:412–23.

    PubMed  Google Scholar 

  101. Nebbioso M, Fameli V, Gharbiya M, Sacchetti M, Zicari AM, Lambiase A. Investigational drugs in dry eye disease. Expert Opin Investig Drugs. 2016;25:1437–46.

    CAS  PubMed  Google Scholar 

  102. Gipson IK, Spurr-Michaud SJ, Senchyna M, Ritter R, Schaumberg D. Comparison of mucin levels at the ocular surface of postmenopausal women with and without a history of dry eye. Cornea. 2011;30:1346–52.

    PubMed  PubMed Central  Google Scholar 

  103. Aragona P, Aguennouz M'H, Rania L, Postorino E, Sommario MS, Roszkowska AM, et al. Matrix metalloproteinase 9 and transglutaminase 2 expression at the ocular surface in patients with different forms of dry eye disease. Ophthalmology. 2015;122:62–71.

    PubMed  Google Scholar 

  104. Paiva CSD, et al. Dry eye–induced conjunctival epithelial squamous metaplasia is modulated by interferon-γ. Invest Ophthalmol Vis Sci. 2007;48:2553–60.

    PubMed  Google Scholar 

  105. Alex A, Edwards A, Hays JD, Kerkstra M, Shih A, de Paiva CS, et al. Factors predicting the ocular surface response to desiccating environmental stress. Invest Ophthalmol Vis Sci. 2013;54:3325–32.

    PubMed  PubMed Central  Google Scholar 

  106. Krauss AH, Corrales RM, Pelegrino FSA, Tukler-Henriksson J, Pflugfelder SC, de Paiva CS. Improvement of outcome measures of dry eye by a novel integrin antagonist in the murine desiccating stress model. Invest Ophthalmol Vis Sci. 2015;56:5888–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Albertsmeyer A-C, Kakkassery V, Spurr-Michaud S, Beeks O, Gipson IK. Effect of pro-inflammatory mediators on membrane-associated mucins expressed by human ocular surface epithelial cells. Exp Eye Res. 2010;90:444–51.

    CAS  PubMed  Google Scholar 

  108. Arafat SN, Suelves AM, Spurr-Michaud S, Chodosh J, Foster CS, Dohlman CH, et al. Neutrophil collagenase, gelatinase, and myeloperoxidase in tears of patients with Stevens-Johnson syndrome and ocular cicatricial pemphigoid. Ophthalmology. 2014;121:79–87.

    PubMed  Google Scholar 

  109. Chotikavanich S, de Paiva CS, Li DQ, Chen JJ, Bian F, Farley WJ, et al. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci. 2009;50:3203–9.

    PubMed  PubMed Central  Google Scholar 

  110. Li D-Q, Lokeshwar BL, Solomon A, Monroy D, Ji Z, Pflugfelder SC. Regulation of MMP-9 production by human corneal epithelial cells. Exp Eye Res. 2001;73:449–59.

    CAS  PubMed  Google Scholar 

  111. Yang Y-N, Bauer D, Wasmuth S, Steuhl K-P, Heiligenhaus A. Matrix metalloproteinases (MMP-2 and 9) and tissue inhibitors of matrix metalloproteinases (TIMP-1 and 2) during the course of experimental necrotizing herpetic keratitis. Exp Eye Res. 2003;77:227–37.

    CAS  PubMed  Google Scholar 

  112. Garrana RM, Zieske JD, Assouline M, Gipson IK. Matrix metalloproteinases in epithelia from human recurrent corneal erosion. Invest Ophthalmol Vis Sci. 1999;40:1266–70.

    CAS  PubMed  Google Scholar 

  113. Shimazaki J, et al. A prospective, randomized trial of two mucin secretogogues for the treatment of dry eye syndrome in office workers. Sci Rep. 2017;7:1–9.

    CAS  Google Scholar 

  114. Danjo Y, Watanabe H, Tisdale AS, George M, Tsumura T, Abelson MB, et al. Alteration of mucin in human conjunctival epithelia in dry eye. Invest Ophthalmol Vis Sci. 1998;39:2602–9.

    CAS  PubMed  Google Scholar 

  115. Argüeso P, Balaram M, Spurr-Michaud S, Keutmann HT, Dana MR, Gipson IK. Decreased levels of the goblet cell mucin MUC5AC in tears of patients with Sjögren syndrome. Invest Ophthalmol Vis Sci. 2002;43:1004–11.

    PubMed  Google Scholar 

  116. Mantelli F, Schaffer L, Dana R, Head SR, Argüeso P. Glycogene expression in conjunctiva of patients with dry eye: downregulation of Notch signaling. Invest Ophthalmol Vis Sci. 2009;50:2666–72.

    PubMed  Google Scholar 

  117. Xiong L, Woodward AM, Argüeso P. Notch signaling modulates MUC16 biosynthesis in an in vitro model of human corneal and conjunctival epithelial cell differentiation. Invest Ophthalmol Vis Sci. 2011;52:5641–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kalangara JP, et al. Burning eye syndrome: do neuropathic pain mechanisms underlie chronic dry eye? Pain Med. 2016;17:746–55.

    PubMed  Google Scholar 

  119. Mcmonnies CW. The potential role of neuropathic mechanisms in dry eye syndromes. Aust J Optom. 2017;10:5–13.

    Google Scholar 

  120. Lambiase A, et al. Alterations of tear neuromediators in dry eye disease. Arch Ophthalmol. 2011;129:981–6.

    CAS  PubMed  Google Scholar 

  121. Lambiase A, Micera A, Pellegrini G, Merlo D, Rama P, de Luca M, et al. In vitro evidence of nerve growth factor effects on human conjunctival epithelial cell differentiation and mucin gene expression. Invest Ophthalmol Vis Sci. 2009;50:4622–30.

    PubMed  Google Scholar 

  122. Kheirkhah A, Dohlman TH, Amparo F, Arnoldner MA, Jamali A, Hamrah P, et al. Effects of corneal nerve density on the response to treatment in dry eye disease. Ophthalmology. 2015;122:662–8.

    PubMed  Google Scholar 

  123. Akpek EK, Bunya VY, Saldanha IJ. Sjögren’s syndrome: more than just dry eye. Cornea. 2019;38:658–61.

    PubMed  PubMed Central  Google Scholar 

  124. Pal-Ghosh S, Pajoohesh-Ganji A, Brown M, Stepp MA. A mouse model for the study of recurrent corneal epithelial erosions: α9β1 integrin implicated in progression of the disease. Invest Ophthalmol Vis Sci. 2004;45:1775–88.

    PubMed  Google Scholar 

  125. Kang Y, Li S, Liu C, Liu M, Shi S, Xu M, et al. A rabbit model for assessing symblepharon after alkali burn of the superior conjunctival sac. Sci Rep. 2019;9:13857.

    PubMed  PubMed Central  Google Scholar 

  126. Shimazaki J, Shinozaki N, Tsubota K. Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. Br J Ophthalmol. 1998;82:235–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Goyal R, Jones SM, Espinosa M, Green V, Nischal KK. Amniotic membrane transplantation in children with symblepharon and massive pannus. Arch Ophthalmol. 2006;124:1435–40.

    PubMed  Google Scholar 

  128. Wanzeler ACV, Barbosa IAF, Duarte B, Barbosa EB, Borges DA, Alves M. Impact of pterygium on the ocular surface and meibomian glands. PLoS One. 2019;14:e0213956.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chan CML, Liu YP, Tan DTH. Ocular surface changes in pterygium. Cornea. 2002;21:38–42.

    PubMed  Google Scholar 

  130. Barabino S, Dana MR. Animal models of dry eye: a critical assessment of opportunities and limitations. Invest Ophthalmol Vis Sci. 2004;45:1641–6.

    PubMed  Google Scholar 

  131. Li X, Kang B, Woo IH, Eom Y, Lee HK, Kim HM, et al. Effects of topical mucolytic agents on the tears and ocular surface: a plausible animal model of mucin-deficient dry eye. Invest Ophthalmol Vis Sci. 2018;59:3104–14.

    CAS  PubMed  Google Scholar 

  132. Marko CK, Tisdale A, Spurr-Michaud S, Gipson IK. The effect of desiccating environmental stress on Spdef null mice that lack conjunctival goblet cells. Invest Ophthalmol Vis Sci. 2012;53:–2329.

  133. Chung S-H, Lee SK, Cristol SM, Lee ES, Lee DW, Seo KY, et al. Impact of short-term exposure of commercial eyedrops preserved with benzalkonium chloride on precorneal mucin. Mol Vis. 2006;12:415–21.

    CAS  PubMed  Google Scholar 

  134. Leonard BC, Yañez-Soto B, Raghunathan VK, Abbott NL, Murphy CJ. Species variation and spatial differences in mucin expression from corneal epithelial cells. Exp Eye Res. 2016;152:43–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Meyer AE, Baier RE, Chen H, Chowhan M. Differential tissue-on-tissue lubrication by ophthalmic formulations. J Biomed Mater Res B Appl Biomater. 2007;82B:74–88.

    CAS  Google Scholar 

  136. Yáñez-Soto B, Leonard BC, Raghunathan VK, Abbott NL, Murphy CJ. Effect of stratification on surface properties of corneal epithelial cells. Invest Ophthalmol Vis Sci. 2015;56:8340–8.

    PubMed  PubMed Central  Google Scholar 

  137. Postnikoff CK, Pintwala R, Williams S, Wright AM, Hileeto D, Gorbet MB. Development of a curved, stratified, in vitro model to assess ocular biocompatibility. PLoS One. 2014;9:e96448.

    PubMed  PubMed Central  Google Scholar 

  138. Robertson DM, Li L, Fisher S, Pearce VP, Shay JW, Wright WE, et al. Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelial cell line. Invest Ophthalmol Vis Sci. 2005;46:470–8.

    PubMed  Google Scholar 

  139. Takeji Y, Urashima H, Aoki A, Shinohara H. Rebamipide increases the mucin-like glycoprotein production in corneal epithelial cells. J Ocul Pharmacol Ther. 2012;28:259–63.

    CAS  PubMed  Google Scholar 

  140. Itoh S, Itoh K, Shinohara H. Regulation of human corneal epithelial mucins by rebamipide. Curr Eye Res. 2014;39:133–41.

    CAS  PubMed  Google Scholar 

  141. Uchino Y, Woodward AM, Argüeso P. Differential effect of rebamipide on transmembrane mucin biosynthesis in stratified ocular surface epithelial cells. Exp Eye Res. 2016;153:1–7.

    CAS  PubMed  Google Scholar 

  142. Masterton S, Ahearne M. The effect of calcium and glucose concentration on corneal epithelial cell lines differentiation, proliferation, and focal adhesion expression. BioRes Open Access. 2019;8:74–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Barabino S, De Servi B, Aragona S, Manenti D, Meloni M. Efficacy of a new ocular surface modulator in restoring epithelial changes in an in vitro model of dry eye syndrome. Curr Eye Res. 2017;42:358–63.

    CAS  PubMed  Google Scholar 

  144. Kaluzhny Y, Kinuthia MW, Lapointe AM, Truong T, Klausner M, Hayden P. Oxidative stress in corneal injuries of different origin: utilization of 3D human corneal epithelial tissue model. Exp Eye Res. 2020;190:107867.

    CAS  PubMed  Google Scholar 

  145. Lu Q, Yin H, Grant MP, Elisseeff JH. An in vitro model for the ocular surface and tear film system. Sci Rep. 2017;7:1–11.

    Google Scholar 

  146. Govindarajan B, Menon BB, Spurr-Michaud S, Rastogi K, Gilmore MS, Argüeso P, et al. A metalloproteinase secreted by Streptococcus pneumoniae removes membrane mucin MUC16 from the epithelial glycocalyx barrier. PLoS One. 2012;7:e32418.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Yu ACY, Worrall LJ, Strynadka NCJ. Structural insight into the bacterial mucinase StcE essential to adhesion and immune evasion during enterohemorrhagic E. coli infection. Structure. 2012;20:707–17.

    CAS  PubMed  Google Scholar 

  148. Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, Pett C, et al. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci. 2019;116:7278–87.

    CAS  PubMed  Google Scholar 

  149. Grys TE, Walters LL, Welch RA. Characterization of the StcE protease activity of Escherichia coli O157:H7. J Bacteriol. 2006;188:4646–53.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors and the editors of Current Ophthalmology Reports would like to thank Dr. Matias Soifer, Foster Center for Ocular Immunology, Duke University Eye Center, for his careful review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Myung.

Ethics declarations

Conflict of Interest

Amy C. Madl and Gerald F. Fuller each declares no potential conflicts of interest. David Myung is a section editor of Current Ophthalmology Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regenerative Medicine in Ophthalmology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madl, A.C., Fuller, G.F. & Myung, D. Modeling and Restoring the Tear Film. Curr Ophthalmol Rep 8, 281–300 (2020). https://doi.org/10.1007/s40135-020-00258-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-020-00258-6

Keywords

Navigation