Skip to main content

Advertisement

Log in

Polypoidal Choroidal Vasculopathy

  • Therapies in Aged-Related Macular Degeneration (R Goldhardt, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this paper is to review the recent literature of polypoidal choroidal vasculopathy (PCV) and provide an update on the epidemiology, pathophysiology, clinical findings, and management.

Recent Findings

Although indocyanine-green angiography (ICGA) is still the gold standard for diagnosis of PCV, the use of en face optical coherence tomography (OCT) and OCT angiography are useful tools in the diagnosis of PCV. Studies demonstrate superior treatment outcomes with combination photodynamic therapy (PDT) and anti-vascular endothelial growth factor (VEGF) therapy.

Summary

PCV is a disease most common in Asians and African-Americans and presents with an orange-red nodule in the macula or the peripapillary region. While ICGA remains the most accurate method to diagnose PCV, newer non-invasive imaging modalities (e.g., OCT-A and en face OCT) can be used to identify PCV lesions. The combination of PDT and anti-VEGF therapy is superior to either monotherapy. Future studies of OCT modalities and other anti-VEGF agents will be important in guiding PCV diagnosis and management, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as •• Of major importance

  1. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina Phila Pa. 1990;10(1):1–8.

    Article  CAS  Google Scholar 

  2. Japanese Study Group of Polypoidal Choroidal Vasculopathy. Criteria for diagnosis of polypoidal choroidal vasculopathy. Nippon Ganka Gakkai Zasshi. 2005 Jul;109(7):417–27.

    Google Scholar 

  3. Byeon SH, Lee SC, Oh H-S, Kim SS, Koh HJ, Kwon OW. Incidence and clinical patterns of polypoidal choroidal vasculopathy in Korean patients. Jpn J Ophthalmol. 2008;52(1):57–62.

    Article  PubMed  Google Scholar 

  4. Chang Y-C, Wu W-C. Polypoidal choroidal vasculopathy in Taiwanese patients. Ophthalmic Surg Lasers Imaging Off J Int Soc Imaging Eye. 2009;40(6):576–81.

    Article  Google Scholar 

  5. Cheung CMG, Li X, Cheng C-Y, Zheng Y, Mitchell P, Wang JJ, et al. Prevalence, racial variations, and risk factors of age-related macular degeneration in Singaporean Chinese, Indians, and Malays. Ophthalmology. 2014;121(8):1598–603.

    Article  PubMed  Google Scholar 

  6. Coscas G, Yamashiro K, Coscas F, De Benedetto U, Tsujikawa A, Miyake M, et al. Comparison of exudative age-related macular degeneration subtypes in Japanese and French patients: multicenter diagnosis with multimodal imaging. Am J Ophthalmol. 2014;158(2):309–318.e2.

    Article  PubMed  Google Scholar 

  7. Maruko I, Iida T, Saito M, Nagayama D, Saito K. Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol. 2007;144(1):15–22.

    Article  PubMed  Google Scholar 

  8. Liu Y, Wen F, Huang S, Luo G, Yan H, Sun Z, et al. Subtype lesions of neovascular age-related macular degeneration in Chinese patients. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2007;245(10):1441–5.

    Article  Google Scholar 

  9. Sho K, Takahashi K, Yamada H, Wada M, Nagai Y, Otsuji T, et al. Polypoidal choroidal vasculopathy: incidence, demographic features, and clinical characteristics. Arch Ophthalmol Chic Ill 1960. 2003;121(10):1392–6.

    Article  Google Scholar 

  10. Li Y, You QS, Wei WB, Xu J, Chen CX, Wang YX, et al. Polypoidal choroidal vasculopathy in adult chinese: the Beijing eye study. Ophthalmology. 2014;121(11):2290–1.

    Article  PubMed  Google Scholar 

  11. Wen F, Chen C, Wu D, Li H. Polypoidal choroidal vasculopathy in elderly Chinese patients. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2004;242(8):625–9.

    Article  Google Scholar 

  12. Ciardella AP, Donsoff IM, Huang SJ, Costa DL, Yannuzzi LA. Polypoidal choroidal vasculopathy. Surv Ophthalmol. 2004;49(1):25–37.

    Article  PubMed  Google Scholar 

  13. Bessho H, Honda S, Imai H, Negi A. Natural course and funduscopic findings of polypoidal choroidal vasculopathy in a Japanese population over 1 year of follow-up. Retina Phila Pa. 2011;31(8):1598–602.

    Article  Google Scholar 

  14. Al-Rashaed S. Idiopathic polypoidal choroidal vasculopathy in a young man: case report and literature review. Middle East Afr J Ophthalmol. 2008;15(2):90–3.

    Article  PubMed  Google Scholar 

  15. Imamura Y, Engelbert M, Iida T, Freund KB, Yannuzzi LA. Polypoidal choroidal vasculopathy: a review. Surv Ophthalmol. 2010;55(6):501–15.

    Article  PubMed  Google Scholar 

  16. Yannuzzi LA, Wong DWK, Sforzolini BS, Goldbaum M, Tang KC, Spaide RF, et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch Ophthalmol. 1999;117(11):1503–10.

    Article  CAS  PubMed  Google Scholar 

  17. Ueta T, Obata R, Inoue Y, Iriyama A, Takahashi H, Yamaguchi T, et al. Background comparison of typical age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese patients. Ophthalmology. 2009;116(12):2400–6.

    Article  PubMed  Google Scholar 

  18. Sakurada Y, Yoneyama S, Imasawa M, Iijima H. Systemic risk factors associated with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Retina Phila Pa. 2013;33(4):841–5.

    Article  Google Scholar 

  19. Hirami Y, Tsujikawa A, Otani A, Yodoi Y, Aikawa H, Mandai M, et al. Hemorrhagic complications after photodynamic therapy for polypoidal choroidal vasculopathy. Retina Phila Pa. 2007;27(3):335–41.

    Article  Google Scholar 

  20. Woo SJ, Ahn J, Morrison MA, Ahn SY, Lee J, Kim KW, et al. Analysis of genetic and environmental risk factors and their interactions in Korean patients with age-related macular degeneration. PLoS One. 2015;10(7):e0132771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cackett P, Yeo I, Cheung CMG, Vithana EN, Wong D, Tay WT, et al. Relationship of smoking and cardiovascular risk factors with polypoidal choroidal vasculopathy and age-related macular degeneration in Chinese persons. Ophthalmology. 2011 May;118(5):846–52.

    Article  PubMed  Google Scholar 

  22. Laude A, Cackett PD, Vithana EN, Yeo IY, Wong D, Koh AH, et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res. 2010 Jan;29(1):19–29.

    Article  PubMed  Google Scholar 

  23. Cheng H-C, Liu J-H, Lee S-M, Lin P-K. Hyperhomocysteinemia in patients with polypoidal choroidal vasculopathy: a case control study. PLoS One. 2014;9(10):e110818.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yang LH, Jonas JB, Wei WB. Conversion of central serous chorioretinopathy to polypoidal choroidal vasculopathy. Acta Ophthalmol. 2015;93(6):e512–4.

    Article  PubMed  Google Scholar 

  25. Kim JH, Chang YS, Kim JW, Lee TG, Kim CG. Prevalence of subtypes of reticular pseudodrusen in newly diagnosed exudative age-related macular degeneration and polypoidal choroidal vasculopathy in Korean patients. Retina. 2015;35(12):2604–12.

    Article  PubMed  Google Scholar 

  26. Lim FPM, Wong CW, Loh BK, Chan CM, Yeo I, Lee SY, et al. Prevalence and clinical correlates of focal choroidal excavation in eyes with age-related macular degeneration, polypoidal choroidal vasculopathy and central serous chorioretinopathy. Br J Ophthalmol. 2015;bjophthalmol–2015.

  27. Chung Y-R, Seo EJ, Kim YH, Yang H, Lee K. Hypertension as a risk factor for recurrent subretinal hemorrhage in polypoidal choroidal vasculopathy. Can J Ophthalmol Can Ophtalmol. 2016;51(5):348–53.

    Article  Google Scholar 

  28. Tsujikawa A, Sasahara M, Otani A, Gotoh N, Kameda T, Iwama D, et al. Pigment epithelial detachment in polypoidal choroidal vasculopathy. Am J Ophthalmol. 2007;143(1):102–11.

    Article  PubMed  Google Scholar 

  29. Musashi K, Tsujikawa A, Hirami Y, Otani A, Yodoi Y, Tamura H, et al. Microrips of the retinal pigment epithelium in polypoidal choroidal vasculopathy. Am J Ophthalmol. 2007;143(5):883–5.

    Article  PubMed  Google Scholar 

  30. Kuroiwa S, Tateiwa H, Hisatomi T, Ishibashi T, Yoshimura N. Pathological features of surgically excised polypoidal choroidal vasculopathy membranes. Clin Experiment Ophthalmol. 2004;32(3):297–302.

    Article  PubMed  Google Scholar 

  31. Nakajima M, Yuzawa M, Shimada H, Mori R. Correlation between indocyanine green angiographic findings and histopathology of polypoidal choroidal vasculopathy. Jpn J Ophthalmol. 2004;48(3):249–55.

    Article  PubMed  Google Scholar 

  32. Nakashizuka H, Mitsumata M, Okisaka S, Shimada H, Kawamura A, Mori R, et al. Clinicopathologic findings in polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2008;49(11):4729–37.

    Article  PubMed  Google Scholar 

  33. Okubo A, Sameshima M, Uemura A, Kanda S, Ohba N. Clinicopathological correlation of polypoidal choroidal vasculopathy revealed by ultrastructural study. Br J Ophthalmol. 2002;86(10):1093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Terasaki H, Miyake Y, Suzuki T, Nakamura M, Nagasaka T. Polypoidal choroidal vasculopathy treated with macular translocation: clinical pathological correlation. Br J Ophthalmol. 2002;86(3):321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosa RH, Davis JL, Eifrig CW. Clinicopathologic correlation of idiopathic polypoidal choroidal vasculopathy. Arch Ophthalmol. 2002;120(4):502–8.

    Article  PubMed  Google Scholar 

  36. Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci. 1995 Jul;15(7 Pt 1):4738–47.

    CAS  PubMed  Google Scholar 

  37. Kvanta A, Algvere PV, Berglin L, Seregard S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci. 1996;37(9):1929–34.

    CAS  PubMed  Google Scholar 

  38. Witmer AN, Vrensen GFJM, Van Noorden CJF, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22(1):1–29.

    Article  CAS  PubMed  Google Scholar 

  39. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285(5425):245–8.

    Article  CAS  PubMed  Google Scholar 

  40. Ogata N, Wada M, Otsuji T, Jo N, Tombran-Tink J, Matsumura M. Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2002;43(4):1168–75.

    PubMed  Google Scholar 

  41. Matsuoka M, Ogata N, Otsuji T, Nishimura T, Takahashi K, Matsumura M. Expression of pigment epithelium derived factor and vascular endothelial growth factor in choroidal neovascular membranes and polypoidal choroidal vasculopathy. Br J Ophthalmol. 2004;88(6):809–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tong J-P, Chan W-M, Liu DTL, Lai TYY, Choy K-W, Pang C-P, et al. Aqueous humor levels of vascular endothelial growth factor and pigment epithelium-derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization. Am J Ophthalmol. 2006;141(3):456–62.

    Article  CAS  PubMed  Google Scholar 

  43. Agawa T, Usui Y, Wakabayashi Y, Okunuki Y, Juan M, Umazume K, et al. Profile of intraocular immune mediators in patients with age-related macular degeneration and the effect of intravitreal bevacizumab injection. Retina Phila Pa. 2014;34(9):1811–8.

    Article  CAS  Google Scholar 

  44. Sasaki S, Miyazaki D, Miyake K, Terasaka Y, Kaneda S, Ikeda Y, et al. Associations of IL-23 with polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2012 Jun 5;53(7):3424–30.

    Article  CAS  PubMed  Google Scholar 

  45. Hu J, Leng X, Hu Y, Atik A, Song X, Li Z, et al. The features of inflammation factors concentrations in aqueous humor of polypoidal choroidal vasculopathy. PLoS One. 2016;11(1):e0147346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hsu M-Y, Hung Y-C, Hwang D-K, Lin S-C, Lin K-H, Wang C-Y, et al. Detection of aqueous VEGF concentrations before and after intravitreal injection of anti-VEGF antibody using low-volume sampling paper-based ELISA. Sci Rep [Internet]. 2016 11 [cited 2016 Nov 14];6. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5057087/

  47. Baek J, Lee JH, Lee WK. CLINICAL RELEVANCE OF AQUEOUS VASCULAR ENDOTHELIAL GROWTH FACTOR LEVELS IN POLYPOIDAL CHOROIDAL VASCULOPATHY. Retina Phila Pa. 2016;

  48. •• Ma L, Li Z, Liu K, Rong SS, Brelen ME, Young AL, et al. Association of genetic variants with polypoidal choroidal vasculopathy: a systematic review and updated meta-analysis. Ophthalmology. 2015;122(9):1854–65. This systemic review and meta-analysis reviews recent primary literature of GWAS of PCV and identifies polymorphisms in genes/loci that are associated with PCV susceptibility. Allelic diversity in certain genes may contribute to phenotypic differences in PCV and NV-AMD

    Article  PubMed  Google Scholar 

  49. Jirarattanasopa P, Ooto S, Nakata I, Tsujikawa A, Yamashiro K, Oishi A, et al. Choroidal thickness, vascular hyperpermeability, and complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2012 Jun 14;53(7):3663–72.

    Article  CAS  PubMed  Google Scholar 

  50. Sakurada Y, Kubota T, Imasawa M, Mabuchi F, Tanabe N, Iijima H. Association of LOC387715 A69S genotype with visual prognosis after photodynamic therapy for polypoidal choroidal vasculopathy. Retina Phila Pa. 2010;30(10):1616–21.

    Article  Google Scholar 

  51. Park DH, Kim IT. LOC387715/HTRA1 variants and the response to combined photodynamic therapy with intravitreal bevacizumab for polypoidal choroidal vasculopathy. Retina Phila Pa. 2012;32(2):299–307.

    Article  CAS  Google Scholar 

  52. Kanda A, Chen W, Othman M, Branham KEH, Brooks M, Khanna R, et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci U S A. 2007;104(41):16227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jones A, Kumar S, Zhang N, Tong Z, Yang J-H, Watt C, et al. Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice. Proc Natl Acad Sci U S A. 2011;108(35):14578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu K, Chen LJ, Lai TYY, Tam POS, Ho M, Chiang SWY, et al. Genes in the high-density lipoprotein metabolic pathway in age-related macular degeneration and polypoidal choroidal vasculopathy. Ophthalmology. 2014;121(4):911–6.

    Article  PubMed  Google Scholar 

  55. Kokame GT. Prospective evaluation of subretinal vessel location in polypoidal choroidal vasculopathy (PCV) and response of hemorrhagic and exudative PCV to high-dose antiangiogenic therapy (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2014;112:74–93.

    PubMed  PubMed Central  Google Scholar 

  56. Spaide RF, Yannuzzi LA, Slakter JS, Sorenson J, Orlach DA. Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina Phila Pa. 1995;15(2):100–10.

    Article  CAS  Google Scholar 

  57. Kim H, Lee JH, Kwon KY, Byeon SH, Lee SC, Lee CS. Punctate hyperfluorescent spots associated with polypoidal choroidal vasculopathy on indocyanine green angiography. Ophthalmic Surg Lasers Imaging Retina. 2015;46(4):423–7.

    Article  PubMed  Google Scholar 

  58. Kim JH, Chang YS, Lee TG, Kim CG. Choroidal vascular hyperpermeability and punctate hyperfluorescent spot in choroidal neovascularization. Invest Ophthalmol Vis Sci. 2015;56(3):1909–15.

    Article  CAS  PubMed  Google Scholar 

  59. Sato T, Kishi S, Watanabe G, Matsumoto H, Mukai R. Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina Phila Pa. 2007;27(5):589–94.

    Article  Google Scholar 

  60. De Salvo G, Vaz-Pereira S, Keane PA, Tufail A, Liew G. Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol. 2014;158(6):1228–1238.e1.

    Article  PubMed  Google Scholar 

  61. •• Liu R, Li J, Li Z, Yu S, Yang Y, Yan H, et al. Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography. Retina Phila Pa. 2016;36(4):778–86. This prospective clinical trial studied sensitivity and specificity of SS-OCT in distinguishing PCV from NV-AMD. The authors concluded presence of two out of three positive signs of PED, double-layer sign, and thumb-like polyps to be sensitive and specific in distinguishing PCV from NV-AMD, suggesting SS-OCT may be a useful screening test to differentiate the two entities prior

    Article  Google Scholar 

  62. Lee WK, Baek J, Dansingani KK, Lee JH, Freund KB. Choroidal morphology in eyes with polypoidal choroidal vasculopathy and normal or subnormal subfoveal choroidal thickness. Retina Phila Pa. 2016;

  63. •• Saito M, Kano M, Itagaki K, Ise S, Imaizumi K, Sekiryu T. Subfoveal choroidal thickness in polypoidal choroidal vasculopathy after switching to intravitreal aflibercept injection. Jpn J Ophthalmol. 2016;60(1):35–41. A retrospective study that reported that eyes refractory to ranibizumab had significant improvement after switching to aflibercept. This study suggests that switching anti-VEGF agents should be considered when PCV is refractory to a particular anti-VEGF treatment

    Article  CAS  PubMed  Google Scholar 

  64. Kim JH, Lee TG, Chang YS, Kim CG, Cho SW. Short-term choroidal thickness changes in patients treated with either ranibizumab or aflibercept: a comparative study. Br J Ophthalmol. 2016;100(12):1634–9.

    Article  PubMed  Google Scholar 

  65. Uzun S, Pehlivan E. Subfoveal choroidal thickness as a predictor of treatment response to anti-vascular endothelial growth factor therapy for polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2016;254(8):1651–2.

    Article  Google Scholar 

  66. Editors, Japanese Journal of Ophthalmology. Subfoveal choroidal thickness in polypoidal choroidal vasculopathy after switching to intravitreal aflibercept injection. Jpn J Ophthalmol. 2016.

  67. Semoun O, Coscas F, Coscas G, Lalloum F, Srour M, Souied EH. En face enhanced depth imaging optical coherence tomography of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2016;100(8):1028–34.

    Article  PubMed  Google Scholar 

  68. Kokame GT, Shantha JG, Hirai K, Ayabe J. En face spectral-domain optical coherence tomography for the diagnosis and evaluation of polypoidal choroidal vasculopathy. Ophthalmic Surg Lasers Imaging Retina. 2016;47(8):737–44.

    Article  PubMed  Google Scholar 

  69. Alasil T, Ferrara D, Adhi M, Brewer E, Kraus MF, Baumal CR, et al. En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography. Am J Ophthalmol. 2015;159(4):634–43.

    Article  PubMed  Google Scholar 

  70. Inoue M, Balaratnasingam C, Freund KB. Optical coherence tomography angiography of polypoidal choroidal vasculopathy and polypoidal choroidal neovascularization. Retina Phila Pa. 2015;35(11):2265–74.

    Article  Google Scholar 

  71. Srour M, Querques G, Semoun O, El Ameen A, Miere A, Sikorav A, et al. Optical coherence tomography angiography characteristics of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2016;

  72. Wang M, Zhou Y, Gao SS, Liu W, Huang Y, Huang D, et al. Evaluating polypoidal choroidal vasculopathy with optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT526–32.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tanaka K, Mori R, Kawamura A, Nakashizuka H, Wakatsuki Y, Yuzawa M. Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2017 Jan;101(1):51–5.

    Article  PubMed  Google Scholar 

  74. Tomiyasu T, Nozaki M, Yoshida M, Ogura Y. Characteristics of polypoidal choroidal vasculopathy evaluated by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT324–30.

    Article  CAS  PubMed  Google Scholar 

  75. Ozkok A, Sigford DK, Tezel TH. Patterns of fundus autofluorescence defects in neovascular age-related macular degeneration subtypes. Retina Phila Pa. 2016;36(11):2191–6.

    Article  Google Scholar 

  76. Yamagishi T, Koizumi H, Yamazaki T, Kinoshita S. Changes in fundus autofluorescence after treatments for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2014;98(6):780–4.

    Article  PubMed  Google Scholar 

  77. Uyama M, Wada M, Nagai Y, Matsubara T, Matsunaga H, Fukushima I, et al. Polypoidal choroidal vasculopathy: natural history. Am J Ophthalmol. 2002;133(5):639–48.

    Article  PubMed  Google Scholar 

  78. Sudhalkar A, Balakrishnan D, Jalali S, Narayanan R. Systemic steroids as an aid to the management of idiopathic polypoidal choroidal vasculopathy (IPCV): a descriptive analysis. Saudi J Ophthalmol. 2016;30(1):14–9.

    Article  PubMed  Google Scholar 

  79. Kapoor KG, Wagner AL. Eplerenone in the treatment of polypoidal choroidal vasculopathy. Case Rep Ophthalmol. 2015;6(3):477–81.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Introini U, Casalino G, Triolo G, O”Shaughnessy D, Shusterman EM, Chakravarthy U, et al. Stereotactic radiotherapy for polypoidal choroidal vasculopathy: a pilot study. Ophthalmologica. 2014;233(2):82–8.

    Article  PubMed  CAS  Google Scholar 

  81. Lai TYY, Chan W-M. An update in laser and pharmaceutical treatment for polypoidal choroidal vasculopathy. Asia-Pac J Ophthalmol Phila Pa. 2012;1(2):97–104.

    Article  Google Scholar 

  82. Koh A, Lee WK, Chen L-J, Chen S-J, Hashad Y, Kim H, et al. EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina Phila Pa. 2012;32(8):1453–64.

    Article  CAS  Google Scholar 

  83. Nowak-Sliwinska P, van den Bergh H, Sickenberg M, Koh AHC. Photodynamic therapy for polypoidal choroidal vasculopathy. Prog Retin Eye Res. 2013;37:182–99.

    Article  PubMed  Google Scholar 

  84. Wang W, He M, Zhang X. Combined intravitreal anti-VEGF and photodynamic therapy versus photodynamic monotherapy for polypoidal choroidal vasculopathy: a systematic review and meta-analysis of comparative studies. PLoS One. 2014;9(10):e110667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wong CW, Cheung CMG, Mathur R, Li X, Chan CM, Yeo I, et al. Three-year results of polypoidal choroidal vasculopathy treated with photodynamic therapy: retrospective study and systematic review. Retina Phila Pa. 2015;35(8):1577–93.

    Article  Google Scholar 

  86. Hikichi T, Ohtsuka H, Higuchi M, Matsushita T, Ariga H, Kosaka S, et al. Factors predictive of visual acuity outcomes 1 year after photodynamic therapy in Japanese patients with polypoidal choroidal vasculopathy. Retina Phila Pa. 2011 May;31(5):857–65.

    Article  CAS  Google Scholar 

  87. Chan W-M, Lam DSC, Lai TYY, Liu DTL, Li KKW, Yao Y, et al. Photodynamic therapy with verteporfin for symptomatic polypoidal choroidal vasculopathy: one-year results of a prospective case series. Ophthalmology. 2004;111(8):1576–84.

    Article  PubMed  Google Scholar 

  88. Spaide RF, Donsoff I, Lam DL, Yannuzzi LA, Jampol LM, Slakter J, et al. Treatment of polypoidal choroidal vasculopathy with photodynamic therapy. 2002. Retina Phila Pa. 2012;32(Suppl 1):529–35.

    Article  Google Scholar 

  89. Mauget-Faÿsse M, Quaranta-El Maftouhi M, De La Marnièrre E, Leys A. Photodynamic therapy with verteporfin in the treatment of exudative idiopathic polypoidal choroidal vasculopathy. Eur J Ophthalmol. 2006;16(5):695–704.

    PubMed  Google Scholar 

  90. Silva RM, Figueira J, Cachulo ML, Duarte L, Faria de Abreu JR, Cunha-Vaz JG. Polypoidal choroidal vasculopathy and photodynamic therapy with verteporfin. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2005;243(10):973–9.

    Article  CAS  Google Scholar 

  91. Akaza E, Yuzawa M, Matsumoto Y, Kashiwakura S, Fujita K, Mori R. Role of photodynamic therapy in polypoidal choroidal vasculopathy. Jpn J Ophthalmol. 2007;51(4):270–7.

    Article  PubMed  Google Scholar 

  92. Mori R, Yuzawa M, Lee Z, Haruyama M, Akaza E. Factors influencing visual outcome of polypoidal choroidal vasculopathy one year after photodynamic therapy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2010;248(9):1233–9.

    Article  Google Scholar 

  93. Lee WK, Lee PY, Lee SK. Photodynamic therapy for polypoidal choroidal vasculopathy: vaso-occlusive effect on the branching vascular network and origin of recurrence. Jpn J Ophthalmol. 2008;52(2):108–15.

    Article  PubMed  Google Scholar 

  94. Gomi F, Ohji M, Sayanagi K, Sawa M, Sakaguchi H, Oshima Y, et al. One-year outcomes of photodynamic therapy in age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese patients. Ophthalmology. 2008;115(1):141–6.

    Article  PubMed  Google Scholar 

  95. Otani A, Sasahara M, Yodoi Y, Aikawa H, Tamura H, Tsujikawa A, et al. Indocyanine green angiography: guided photodynamic therapy for polypoidal choroidal vasculopathy. Am J Ophthalmol. 2007;144(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  96. Akaza E, Yuzawa M, Mori R. Three-year follow-up results of photodynamic therapy for polypoidal choroidal vasculopathy. Jpn J Ophthalmol. 2011;55(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  97. Miki A, Honda S, Kojima H, Nishizaki M, Nagai T, Fujihara M, et al. Visual outcome of photodynamic therapy for typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy over 5 years of follow-up. Jpn J Ophthalmol. 2013;57(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  98. Ojima Y, Tsujikawa A, Otani A, Hirami Y, Aikawa H, Yoshimura N. Recurrent bleeding after photodynamic therapy in polypoidal choroidal vasculopathy. Am J Ophthalmol. 2006;141(5):958–60.

    Article  PubMed  Google Scholar 

  99. Stangos AN, Gandhi JS, Nair-Sahni J, Heimann H, Pournaras CJ, Harding SP. Polypoidal choroidal vasculopathy masquerading as neovascular age-related macular degeneration refractory to ranibizumab. Am J Ophthalmol. 2010;150(5):666–73.

    Article  CAS  PubMed  Google Scholar 

  100. Hatz K, Prünte C. Polypoidal choroidal vasculopathy in Caucasian patients with presumed neovascular age-related macular degeneration and poor ranibizumab response. Br J Ophthalmol. 2014;98(2):188–94.

    Article  PubMed  Google Scholar 

  101. Cho M, Barbazetto IA, Freund KB. Refractory neovascular age-related macular degeneration secondary to polypoidal choroidal vasculopathy. Am J Ophthalmol. 2009;148(1):70–78.e1.

    Article  PubMed  Google Scholar 

  102. Oishi A, Miyamoto N, Mandai M, Honda S, Matsuoka T, Oh H, et al. LAPTOP study: a 24-month trial of verteporfin versus ranibizumab for polypoidal choroidal vasculopathy. Ophthalmology. 2014;121(5):1151–2.

    Article  PubMed  Google Scholar 

  103. Ogino K, Tsujikawa A, Yamashiro K, Ooto S, Oishi A, Nakata I, et al. Intravitreal injection of ranibizumab for recovery of macular function in eyes with subfoveal polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2013;54(5):3771–9.

    Article  PubMed  Google Scholar 

  104. Matsumiya W, Honda S, Kusuhara S, Tsukahara Y, Negi A. Effectiveness of intravitreal ranibizumab in exudative age-related macular degeneration (AMD): comparison between typical neovascular AMD and polypoidal choroidal vasculopathy over a 1 year follow-up. BMC Ophthalmol. 2013;13:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hikichi T, Kitamei H, Shioya S. Prognostic factors of 2-year outcomes of ranibizumab therapy for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2015;99(6):817–22.

    Article  PubMed  Google Scholar 

  106. Kang HM, Koh HJ. Long-term visual outcome and prognostic factors after intravitreal ranibizumab injections for polypoidal choroidal vasculopathy. Am J Ophthalmol. 2013;156(4):652–60.

    Article  PubMed  Google Scholar 

  107. Gomi F, Sawa M, Sakaguchi H, Tsujikawa M, Oshima Y, Kamei M, et al. Efficacy of intravitreal bevacizumab for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2008;92(1):70–3.

    Article  CAS  PubMed  Google Scholar 

  108. Lai TYY, Lee GKY, Luk FOJ, Lam DSC. Intravitreal ranibizumab with or without photodynamic therapy for the treatment of symptomatic polypoidal choroidal vasculopathy. Retina Phila Pa. 2011;31(8):1581–8.

    Article  CAS  Google Scholar 

  109. Kokame GT, Yeung L, Teramoto K, Lai JC, Wee R. Polypoidal choroidal vasculopathy exudation and hemorrhage: results of monthly ranibizumab therapy at one year. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd. 2014;231(2):94–102.

    CAS  Google Scholar 

  110. Suzuki M, Nagai N, Shinoda H, Uchida A, Kurihara T, Tomita Y, et al. Distinct responsiveness to Intravitreal Ranibizumab therapy in polypoidal choroidal vasculopathy with single or multiple polyps. Am J Ophthalmol. 2016;166:52–9.

    Article  CAS  PubMed  Google Scholar 

  111. Cho HJ, Baek JS, Lee DW, Kim CG, Kim JW. Short-term effectiveness of intravitreal bevacizumab vs. ranibizumab injections for patients with polypoidal choroidal vasculopathy. Korean J Ophthalmol KJO. 2012;26(3):157–62.

    Article  CAS  PubMed  Google Scholar 

  112. Hara C, Sawa M, Sayanagi K, Nishida K. One-year results of intravitreal aflibercept for polypoidal choroidal vasculopathy. Retina Phila Pa. 2016;36(1):37–45.

    Article  CAS  Google Scholar 

  113. Cho HJ, Kim KM, Kim HS, Han JI, Kim CG, Lee TG, et al. Intravitreal aflibercept and ranibizumab injections for polypoidal choroidal vasculopathy. Am J Ophthalmol. 2016;165:1–6.

    Article  CAS  PubMed  Google Scholar 

  114. Moon DRC, Lee DK, Kim SH, You YS, Kwon OW. Aflibercept treatment for neovascular age-related macular degeneration and polypoidal choroidal vasculopathy refractory to anti-vascular endothelial growth factor. Korean J Ophthalmol KJO. 2015;29(4):226–32.

    Article  PubMed  Google Scholar 

  115. Yamamoto A, Okada AA, Kano M, Koizumi H, Saito M, Maruko I, et al. One-year results of intravitreal aflibercept for polypoidal choroidal vasculopathy. Ophthalmology. 2015;122(9):1866–72.

    Article  PubMed  Google Scholar 

  116. Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF trap, ranibizumab and bevacizumab. Angiogenesis. 2012;15(2):171–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kokame GT, Lai JC, Wee R, Yanagihara R, Shantha JG, Ayabe J, et al. Prospective clinical trial of Intravitreal aflibercept treatment for polypoidal choroidal vasculopathy with hemorrhage or exudation (EPIC study): 6 month results. BMC Ophthalmol. 2016;16:127.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Patel KH, Chow CC, Rathod R, Mieler WF, Lim JI, Ulanski LJ, et al. Rapid response of retinal pigment epithelial detachments to intravitreal aflibercept in neovascular age-related macular degeneration refractory to bevacizumab and ranibizumab. Eye Lond Engl. 2013;27(5):663–7. quiz 668

    CAS  Google Scholar 

  119. Chan CK, Jain A, Sadda S, Varshney N. Optical coherence tomographic and visual results at six months after transitioning to aflibercept for patients on prior ranibizumab or bevacizumab treatment for exudative age-related macular degeneration (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2014;112:160–98.

    PubMed  PubMed Central  Google Scholar 

  120. Julien S, Biesemeier A, Taubitz T, Schraermeyer U. Different effects of intravitreally injected ranibizumab and aflibercept on retinal and choroidal tissues of monkey eyes. Br J Ophthalmol. 2014;98(6):813–25.

    Article  PubMed  Google Scholar 

  121. Oishi A, Tsujikawa A, Yamashiro K, Ooto S, Tamura H, Nakanishi H, et al. One-year result of aflibercept treatment on age-related macular degeneration and predictive factors for visual outcome. Am J Ophthalmol. 2015 May;159(5):853–860.e1.

  122. Videkar C, Kapoor A, Chhablani J, Narayanan R. Ziv-aflibercept: a novel option for the treatment of polypoidal choroidal vasculopathy. BMJ Case Rep. 2015;2015:bcr2015212988.

    Article  PubMed  Google Scholar 

  123. Cheng Y, Shi X, Qu J-F, Zhao M-W, Li X-X. Comparison of the 1-year outcomes of Conbercept therapy between two different angiographic subtypes of polypoidal choroidal vasculopathy. Chin Med J. 2016;129(21):2610–6.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Qu J, Cheng Y, Li X, Yu L, Ke X, Group AS, et al. Efficacy of intravitreal injection of conbercept in polypoidal choroidal vasculopathy: subgroup analysis of the aurora study. Retina. 2016;36(5):926–37.

    Article  CAS  PubMed  Google Scholar 

  125. Sakai T, Okano K, Kohno H, Tsuneoka H. Three-year visual outcomes of intravitreal ranibizumab with or without photodynamic therapy for polypoidal choroidal vasculopathy. Acta Ophthalmol (Copenh). 2016;

  126. Wong RLM, Lai TYY. Polypoidal choroidal vasculopathy: an update on therapeutic approaches. J Ophthalmic Vis Res. 2013;8(4):359–71.

    PubMed  PubMed Central  Google Scholar 

  127. Tatar O, Shinoda K, Adam A, Eckert T, Eckardt C, Lucke K, et al. Effect of verteporfin photodynamic therapy on endostatin and angiogenesis in human choroidal neovascular membranes. Br J Ophthalmol. 2007;91(2):166–73.

    Article  PubMed  Google Scholar 

  128. Tatar O, Kaiserling E, Adam A, Gelisken F, Shinoda K, Völker M, et al. Consequences of verteporfin photodynamic therapy on choroidal neovascular membranes. Arch Ophthalmol Chic Ill 1960. 2006 Jun;124(6):815–23.

  129. Tatar O, Adam A, Shinoda K, Stalmans P, Eckardt C, Lüke M, et al. Expression of VEGF and PEDF in choroidal neovascular membranes following verteporfin photodynamic therapy. Am J Ophthalmol. 2006;142(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  130. Schmidt-Erfurth U, Schlötzer-Schrehard U, Cursiefen C, Michels S, Beckendorf A, Naumann GOH. Influence of photodynamic therapy on expression of vascular endothelial growth factor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor. Invest Ophthalmol Vis Sci. 2003;44(10):4473–80.

    Article  PubMed  Google Scholar 

  131. Saito M, Iida T, Kano M, Itagaki K. Two-year results of combined intravitreal ranibizumab and photodynamic therapy for polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2013;251(9):2099–110.

    Article  CAS  Google Scholar 

  132. Lee YH, Lee E-K, Shin KS, Lee K-M, Kim JY. Intravitreal ranibizumab combined with verteporfin photodynamic therapy for treating polypoidal choroidal vasculopathy. Retina. 2011;31(7):1287–93.

    Article  CAS  PubMed  Google Scholar 

  133. Visual outcome in patients with symptomatic macular pcv treated with either ranibizumab as monotherapy or combined with verteporfin photodynamic therapy.—full text view—ClinicalTrials.gov [Internet]. [cited 2016 Dec 21]. Available from: https://clinicaltrials.gov/ct2/show/NCT01846273?term=EVEREST+II+macular+pcv&rank=1

  134. Aflibercept in polypoidal choroidal vasculopathy—full text view—ClinicalTrials.gov [Internet]. [cited 2016 Dec 21]. Available from: https://clinicaltrials.gov/ct2/show/NCT02120950

  135. Lai TYY, Lam CPS, Luk FOJ, Chan RPS, Chan W-M, Liu DTL, et al. Photodynamic therapy with or without intravitreal triamcinolone acetonide for symptomatic polypoidal choroidal vasculopathy. J Ocul Pharmacol Ther. 2010;26(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  136. Nakata I, Tsujikawa A, Yamashiro K, Otani A, Ooto S, Akagi-Kurashige Y, et al. Two-year outcome of photodynamic therapy combined with intravitreal injection of bevacizumab and triamcinolone acetonide for polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2013;251(4):1073–80.

    Article  CAS  Google Scholar 

  137. Sakai T, Ohkuma Y, Kohno H, Hayashi T, Watanabe A, Tsuneoka H. Three-year visual outcome of photodynamic therapy plus intravitreal bevacizumab with or without subtenon triamcinolone acetonide injections for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2014;98(12):1642–8.

    Article  PubMed  Google Scholar 

  138. Cho JH, Ryoo N-K, Cho KH, Park SJ, Park KH, Woo SJ. Incidence rate of massive submacular hemorrhage and its risk factors in polypoidal choroidal vasculopathy. Am J Ophthalmol. 2016;169:79–88.

    Article  PubMed  Google Scholar 

  139. Shienbaum G, Garcia Filho CAA, Flynn HW, Nunes RP, Smiddy WE, Rosenfeld PJ. Management of submacular hemorrhage secondary to neovascular age-related macular degeneration with anti–vascular endothelial growth factor monotherapy. Am J Ophthalmol. 2013;155(6):1009–13.

    Article  CAS  PubMed  Google Scholar 

  140. Chen CY, Hooper C, Chiu D, Chamberlain M, Karia N, Heriot WJ. Management of submacular hemorrhage with intravitreal injection of tissue plasminogen activator and expansile gas. Retina. 2007;27(3):321–8.

    Article  PubMed  Google Scholar 

  141. Papavasileiou E, Steel DHW, Liazos E, McHugh D, Jackson TL. Intravitreal tissue plasminogen activator, perfluoropropane (C3F8), and ranibizumab or photodynamic therapy for submacular hemorrhage secondary to wet age-related macular degeneration. Retina Phila Pa. 2013 Apr;33(4):846–53.

    Article  CAS  Google Scholar 

  142. Sandhu SS, Manvikar S, Steel DH. Displacement of submacular hemorrhage associated with age-related macular degeneration using vitrectomy and submacular tPA injection followed by intravitreal ranibizumab. Clin Ophthalmol. 2010;4:637–42.

    PubMed  PubMed Central  Google Scholar 

  143. Arias L, Monés J. Transconjunctival sutureless vitrectomy with tissue plasminogen activator, gas and intravitreal bevacizumab in the management of predominantly hemorrhagic age-related macular degeneration. Clin Ophthalmol Auckl NZ. 2010;4:67.

    Article  Google Scholar 

  144. Chan W-M, Liu DT, Lai TY, Li H, Tong J-P, Lam DS. Extensive submacular haemorrhage in polypoidal choroidal vasculopathy managed by sequential gas displacement and photodynamic therapy: a pilot study of one-year follow up. Clin Experiment Ophthalmol. 2005;33(6):611–8.

    Article  PubMed  Google Scholar 

  145. Kung Y-H, Wu T-T, Hong M-C, Sheu S-J. Intravitreal tissue plasminogen activator and pneumatic displacement of submacular hemorrhage. J Ocul Pharmacol Ther. 2010;26(5):469–74.

    Article  CAS  PubMed  Google Scholar 

  146. Bressler NM, Bressler SB, Childs AL, Haller JA, Hawkins BS, Lewis H, et al. Surgery for hemorrhagic choroidal neovascular lesions of age-related macular degeneration: ophthalmic findings: SST report no. 13. Ophthalmology. 2004;111(11):1993–2006.

    Article  PubMed  Google Scholar 

  147. Hattenbach LO, Klais C, Koch FH, Gümbel HO. Intravitreous injection of tissue plasminogen activator and gas in the treatment of submacular hemorrhage under various conditions. Ophthalmology. 2001;108(8):1485–92.

    Article  CAS  PubMed  Google Scholar 

  148. Hirashima T, Moriya T, Bun T, Utsumi T, Hirose M, Oh H. Optical coherence tomography findings and surgical outcomes of tissue plasminogen activator-assisted vitrectomy for submacular hemorrhage secondary to age-related macular degeneration. Retina Phila Pa. 2015;35(10):1969–78.

    Article  CAS  Google Scholar 

  149. Olivier S, Chow DR, Packo KH, MacCumber MW, Awh CC. Subretinal recombinant tissue plasminogen activator injection and pneumatic displacement of thick submacular hemorrhage in age-related macular degeneration. Ophthalmology. 2004;111(6):1201–8.

    Article  PubMed  Google Scholar 

  150. Schulze SD, Hesse L. Tissue plasminogen activator plus gas injection in patients with subretinal hemorrhage caused by age-related macular degeneration: predictive variables for visual outcome. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2002 Sep;240(9):717–20.

    Article  CAS  Google Scholar 

  151. Haupert CL, McCuen BW, Jaffe GJ, Steuer ER, Cox TA, Toth CA, et al. Pars plana vitrectomy, subretinal injection of tissue plasminogen activator, and fluid-gas exchange for displacement of thick submacular hemorrhage in age-related macular degeneration. Am J Ophthalmol. 2001;131(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  152. Chang MA, Do DV, Bressler SB, Cassard SD, Gower EW, Bressler NM. Prospective one-year study of ranibizumab for predominantly hemorrhagic choroidal neovascular lesions in age-related macular degeneration. Retina Phila Pa. 2010;30(8):1171–6.

    Article  Google Scholar 

  153. Cho HJ, Koh KM, Kim HS, Lee TG, Kim CG, Kim JW. Anti-vascular endothelial growth factor monotherapy in the treatment of submacular hemorrhage secondary to polypoidal choroidal vasculopathy. Am J Ophthalmol. 2013;156(3):524–531.e1.

    Article  CAS  PubMed  Google Scholar 

  154. Kim JH, Chang YS, Kim JW, Kim CG, Yoo SJ, Cho HJ. Intravitreal anti-vascular endothelial growth factor for submacular hemorrhage from choroidal neovascularization. Ophthalmology. 2014;121(4):926–35.

    Article  PubMed  Google Scholar 

  155. Steel DHW, Sandhu SS. Submacular haemorrhages associated with neovascular age-related macular degeneration. Br J Ophthalmol. 2011;95(8):1051–7.

    Article  PubMed  Google Scholar 

  156. Stifter E, Michels S, Prager F, Georgopoulos M, Polak K, Hirn C, et al. Intravitreal bevacizumab therapy for neovascular age-related macular degeneration with large submacular hemorrhage. Am J Ophthalmol. 2007;144(6):886–92.

    Article  CAS  PubMed  Google Scholar 

  157. Kitahashi M, Baba T, Sakurai M, Yokouchi H, Kubota-Taniai M, Mitamura Y, et al. Pneumatic displacement with intravitreal bevacizumab for massive submacular hemorrhage due to polypoidal choroidal vasculopathy. Clin Ophthalmol Auckl NZ. 2014;8:485–92.

    Article  CAS  Google Scholar 

  158. Klettner A, Grotelüschen S, Treumer F, Roider J, Hillenkamp J. Compatibility of recombinant tissue plasminogen activator (rtPA) and aflibercept or ranibizumab coapplied for neovascular age-related macular degeneration with submacular haemorrhage. Br J Ophthalmol. 2015;99(6):864–9.

    Article  PubMed  Google Scholar 

  159. Martel JN, Mahmoud TH. Subretinal pneumatic displacement of subretinal hemorrhage. JAMA Ophthalmol. 2013;131(12):1632–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay E. Kuriyan.

Ethics declarations

Disclosures

J-BK: None, RSN: None, AEK: Consultant for Allergan.

Funding

This study was supported in part by an Unrestricted Grant to the Department of Ophthalmology from Research to Prevent Blindness, New York, New York.

Conflict of Interest

Joon-Bom Kim and Rajinger Nirwan declare no conflict of interest.

Ajay Kuriyan reports personal fees from Allergan outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Therapies in Aged-Related Macular Degeneration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JB., Nirwan, R.S. & Kuriyan, A.E. Polypoidal Choroidal Vasculopathy. Curr Ophthalmol Rep 5, 176–186 (2017). https://doi.org/10.1007/s40135-017-0137-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-017-0137-0

Keywords

Navigation