Skip to main content

Advertisement

Log in

Effect of Intravitreal Anti-VEGF Therapy on the Severity of Diabetic Retinopathy

  • Diabetic Retinopathy: Medical and Surgical Therapies (Jorge Fortun, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is the most common complication of diabetes and a significant cause of preventable blindness throughout the world. It is characterized by increased vascular permeability, retinal ischemia, and the formation of neovascularization, which can lead to complications such as vitreous hemorrhage, retinal detachment, and macular edema. The current standard of care for treating diabetic retinopathy is pan-retinal photocoagulation (PRP). While highly effective, PRP is associated with several inherent disadvantages, including delayed onset of treatment effects. Within the past decade, anti-vascular endothelial growth factor (VEGF) agents have revolutionized the treatment of several retinal diseases, including diabetic macular edema, for which anti-VEGF agents are now accepted as first-line treatment. In contrast, the effects of anti-VEGF therapy on the severity of diabetic retinopathy alone are still largely unexplored. This review aims to summarize our current understanding of the effects and uses of intravitreal anti-VEGF agents in diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Congdon NG, Friedman DS, Lietman T. Important causes of visual impairment in the world today. JAMA. 2003;290(15):2057–60.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010;304(6):649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21(9):1414–31.

    Article  CAS  PubMed  Google Scholar 

  4. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology, 1991;98(5 Suppl):786–806.

  5. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol, 1985;103(12): 1796–806.

  6. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. The Diabetic Retinopathy Study Research Group. Ophthalmology, 1981;88(7):583–600.

  7. Royle P, et al. Pan-retinal photocoagulation and other forms of laser treatment and drug therapies for non-proliferative diabetic retinopathy: systematic review and economic evaluation. Health Technol Assess. 2015;19(51):1–248.

    Article  Google Scholar 

  8. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86.

  9. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. Ophthalmology. 1995;102(4):647–61.

  10. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.

  11. Michaelson IC. The mode of development of the vascular system of the retina with some observations on its significance for certain retinal disorders. Trans Ophthalmol Soc UK. 1948;68:137–80.

    Google Scholar 

  12. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  13. Folkman J, et al. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 1971;133(2):275–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Senger DR, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161(2):851–8.

    Article  CAS  PubMed  Google Scholar 

  16. Keck PJ, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246(4935):1309–12.

    Article  CAS  PubMed  Google Scholar 

  17. Leung DW, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.

    Article  CAS  PubMed  Google Scholar 

  18. Miller JW, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol. 1994;145(3):574–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shweiki D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–5.

    Article  CAS  PubMed  Google Scholar 

  20. Aiello LP, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.

    Article  CAS  PubMed  Google Scholar 

  21. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25(4):581–611.

    Article  CAS  PubMed  Google Scholar 

  22. Nishijima K, et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol. 2007;171(1):53–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bai Y, et al. Muller cell-derived VEGF is a significant contributor to retinal neovascularization. J Pathol. 2009;219(4):446–54.

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, et al. Muller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes. 2010;59(9):2297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Virgili G, et al. Anti-vascular endothelial growth factor for diabetic macular oedema. Cochrane Database Syst Rev. 2014;10:CD007419.

    PubMed  Google Scholar 

  26. Sultan MB, et al. A phase 2/3, multicenter, randomized, double-masked, 2-year trial of pegaptanib sodium for the treatment of diabetic macular edema. Ophthalmology. 2011;118(6):1107–18.

    Article  PubMed  Google Scholar 

  27. Diabetic Retinopathy Clinical Research Network, et al. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology. 2007;114(10):1860–7.

    Article  PubMed Central  Google Scholar 

  28. Michaelides M, et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2. Ophthalmology. 2010;117(6):1078–1086e2.

    Article  PubMed  Google Scholar 

  29. Nguyen QD, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119(4):789–801.

    Article  PubMed  Google Scholar 

  30. Massin P, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care. 2010;33(11):2399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen QD, et al. Primary end point (six months) results of the Ranibizumab for Edema of the mAcula in Diabetes (READ-2) study. Ophthalmology. 2009;116(11):2175–81 e1.

  32. Nguyen QD, et al. Two-year outcomes of the Ranibizumab for Edema of the mAcula in Diabetes (READ-2) study. Ophthalmology. 2010;117(11):2146–51.

    Article  PubMed  Google Scholar 

  33. Nguyen DH, et al. Current therapeutic approaches in neovascular age-related macular degeneration. Discov Med. 2013;15(85):343–8.

    PubMed  Google Scholar 

  34. Stewart MW, et al. Pharmacokinetic rationale for dosing every 2 weeks versus 4 weeks with intravitreal ranibizumab, bevacizumab, and aflibercept (vascular endothelial growth factor Trap-eye). Retina. 2012;32(3):434–57.

    CAS  PubMed  Google Scholar 

  35. Group P-DS. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy: initial results of the Protein Kinase C beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) multicenter randomized clinical trial. Diabetes. 2005;54(7):2188–97.

    Article  Google Scholar 

  36. Group P-DS, et al. Effect of ruboxistaurin on visual loss in patients with diabetic retinopathy. Ophthalmology. 2006;113(12):2221–30.

    Article  Google Scholar 

  37. Group, P.-D.S. Effect of ruboxistaurin in patients with diabetic macular edema: thirty-month results of the randomized PKC-DMES clinical trial. Arch Ophthalmol. 2007;125(3):318–24.

    Article  Google Scholar 

  38. Tonello M, et al. Panretinal photocoagulation versus PRP plus intravitreal bevacizumab for high-risk proliferative diabetic retinopathy (IBeHi study). Acta Ophthalmol. 2008;86(4):385–9.

    Article  CAS  PubMed  Google Scholar 

  39. Shin YW, et al. Effects of an intravitreal bevacizumab injection combined with panretinal photocoagulation on high-risk proliferative diabetic retinopathy. Korean J Ophthalmol. 2009;23(4):266–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. • Yang CS, et al. Intravitreal bevacizumab (Avastin) and panretinal photocoagulation in the treatment of high-risk proliferative diabetic retinopathy. J Ocul Pharmacol Ther. 2013;29(6):550–5. Small prospective, interventional case series conducted in 20 eyes with high-risk PDR, who were treated with intravitreal bevacizumab (2.5 mg) followed by PRP. Study provides the average time for clearance of vitreous hemorrhages and neovascularization after a single bevacizumab injection.

  41. Ahmad M, Jan S. Comparison between panretinal photocoagulation and panretinal photocoagulation plus intravitreal bevacizumab in proliferative diabetic retinopathy. J Ayub Med Coll Abbottabad. 2012;24(3–4):10–3.

    PubMed  Google Scholar 

  42. Arevalo JF, et al. Intravitreal bevacizumab (Avastin) for proliferative diabetic retinopathy: 6-months follow-up. Eye (Lond). 2009;23(1):117–23.

    Article  CAS  Google Scholar 

  43. Filho JA, et al. Panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab for high-risk proliferative diabetic retinopathy. Acta Ophthalmol. 2011;89(7):e567–72.

    Article  CAS  PubMed  Google Scholar 

  44. Preti RC, et al. Structural and functional assessment of macula in patients with high-risk proliferative diabetic retinopathy submitted to panretinal photocoagulation and associated intravitreal bevacizumab injections: a comparative, randomised, controlled trial. Ophthalmologica. 2013;230(1):1–8.

    CAS  PubMed  Google Scholar 

  45. •• Korobelnik JF, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014;121(11):2247–54. Large-scale, multi-center, randomized controlled trial of patients with DME treated either with intravitreal aflibercept or laser photocoagulation over 52 weeks follow-up. Study shows comparison data on changes in best-corrected visual acuity, letters gained, and central subfield thickness on OCT compared with baseline.

  46. •• Brown DM, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology. 2015;122(10):2044–52. Large-scale, multi-center, randomized controlled trial of patients with DME treated either with intravitreal aflibercept or laser photocoagulation over 100 weeks follow-up. Study shows long-term comparison data on changes in visual acuity, DRSS score, central subfield thickness on OCT, and visual function questionnaire compared with baseline.

  47. •• Ip MS, et al. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol. 2012;130(9):1145–52. Large-scale, multi-center, randomized controlled trial of patients with DME treated either with intravitreal ranibizumab or sham injections over 24-months follow-up. Study reports proportion of eyes with ≥2- or ≥3-step changes in ETDRS DRSS scores and clinical progression of diabetic retinopathy in treated versus control eyes.

  48. •• Ip MS, et al. Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmology. 2015;122(2):367–74. Large-scale, multi-center, randomized controlled trial of patients with DME treated either with intravitreal ranibizumab or sham injections over 36-months follow-up. Study reports proportion of eyes with ≥2- or ≥3-step changes in ETDRS DRSS scores and clinical progression of diabetic retinopathy in treated versus control eyes.

  49. Prompt Panretinal Photocoagulation Versus Ranibizumab + Deferred Panretinal Photocoagulation for Proliferative Diabetic Retinopathy (Protocol S). [cited 2015 Aug 21].

  50. Schmidinger G, et al. Repeated intravitreal bevacizumab (Avastin((R))) treatment of persistent new vessels in proliferative diabetic retinopathy after complete panretinal photocoagulation. Acta Ophthalmol. 2011;89(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  51. Erdol H, et al. The results of intravitreal bevacizumab injections for persistent neovascularizations in proliferative diabetic retinopathy after photocoagulation therapy. Retina. 2010;30(4):570–7.

    Article  PubMed  Google Scholar 

  52. Thew M. Rapid resolution of severe retinal neovascularisation in proliferative diabetic retinopathy following adjunctive intravitreal bevacizumab (Avastin). Clin Exp Optom. 2009;92(1):34–7.

    Article  PubMed  Google Scholar 

  53. Spaide RF, Fisher YL. Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina. 2006;26(3):275–8.

    Article  PubMed  Google Scholar 

  54. Minnella AM, et al. Intravitreal bevacizumab (Avastin) in proliferative diabetic retinopathy. Acta Ophthalmol. 2008;86(6):683–7.

    Article  PubMed  Google Scholar 

  55. Mendrinos E, Donati G, Pournaras CJ. Rapid and persistent regression of severe new vessels on the disc in proliferative diabetic retinopathy after a single intravitreal injection of pegaptanib. Acta Ophthalmol. 2009;87(6):683–4.

    Article  PubMed  Google Scholar 

  56. Mirshahi A, et al. Bevacizumab-augmented retinal laser photocoagulation in proliferative diabetic retinopathy: a randomized double-masked clinical trial. Eur J Ophthalmol. 2008;18(2):263–9.

    CAS  PubMed  Google Scholar 

  57. Yazdani S, et al. Intravitreal bevacizumab for neovascular glaucoma: a randomized controlled trial. J Glaucoma. 2009;18(8):632–7.

    Article  PubMed  Google Scholar 

  58. Wakabayashi T, et al. Intravitreal bevacizumab to treat iris neovascularization and neovascular glaucoma secondary to ischemic retinal diseases in 41 consecutive cases. Ophthalmology. 2008;115(9):1571–80, 1580 e1-3.

  59. Ma KT, et al. Surgical results of Ahmed valve implantation with intraoperative bevacizumab injection in patients with neovascular glaucoma. J Glaucoma. 2012;21(5):331–6.

    Article  PubMed  Google Scholar 

  60. Sevim MS, et al. Effect of intravitreal bevacizumab injection before Ahmed glaucoma valve implantation in neovascular glaucoma. Ophthalmologica. 2013;229(2):94–100.

    Article  CAS  PubMed  Google Scholar 

  61. Kang JY, et al. The effect of intravitreal bevacizumab injection before Ahmed valve implantation in patients with neovascular glaucoma. Int Ophthalmol. 2014;34(4):793–9.

    Article  PubMed  Google Scholar 

  62. Sahyoun M, et al. Long-term results of Ahmed glaucoma valve in association with intravitreal bevacizumab in neovascular glaucoma. J Glaucoma. 2015;24(5):383–8.

    Article  PubMed  Google Scholar 

  63. Eid TM, et al. Intravitreal bevacizumab and aqueous shunting surgery for neovascular glaucoma: safety and efficacy. Can J Ophthalmol. 2009;44(4):451–6.

    Article  PubMed  Google Scholar 

  64. Ciftci S, et al. Intravitreal bevacizumab combined with panretinal photocoagulation in the treatment of open angle neovascular glaucoma. Eur J Ophthalmol. 2009;19(6):1028–33.

    PubMed  Google Scholar 

  65. Jonas JB, et al. Intravitreal bevacizumab for vitreous haemorrhage. Acta Ophthalmol. 2008;86(5):585–6.

    Article  PubMed  Google Scholar 

  66. Huang YH, et al. Intravitreal bevacizumab and panretinal photocoagulation for proliferative diabetic retinopathy associated with vitreous hemorrhage. Retina. 2009;29(8):1134–40.

    Article  PubMed  Google Scholar 

  67. Diabetic Retinopathy Clinical Research Network. Randomized clinical trial evaluating intravitreal ranibizumab or saline for vitreous hemorrhage from proliferative diabetic retinopathy. JAMA Ophthalmol. 2013;131(3):283–93.

    Article  PubMed Central  Google Scholar 

  68. Do DV, et al. One-year outcomes of the da Vinci Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology. 2012;119(8):1658–65.

    Article  PubMed  Google Scholar 

  69. Brown DM, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology. 2013;120(10):2013–22.

    Article  PubMed  Google Scholar 

  70. Rajendram R, et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol. 2012;130(8):972–9.

    Article  CAS  PubMed  Google Scholar 

  71. Elman MJ, et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results. Ophthalmology. 2015;122(2):375–81.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Arevalo JF, et al. Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br J Ophthalmol. 2008;92(2):213–6.

    Article  CAS  PubMed  Google Scholar 

  73. Moradian S, et al. Intravitreal bevacizumab in active progressive proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2008;246(12):1699–705.

    Article  CAS  PubMed  Google Scholar 

  74. Smith JM, Steel DH. Anti-vascular endothelial growth factor for prevention of postoperative vitreous cavity haemorrhage after vitrectomy for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2015;8:CD008214.

    PubMed  Google Scholar 

  75. Pakzad-Vaezi K, et al. A randomized study comparing the efficacy of bevacizumab and ranibizumab as pre-treatment for pars plana vitrectomy in proliferative diabetic retinopathy. Ophthalmic Surg Lasers Imaging Retina. 2014;45(6):521–4.

    Article  PubMed  Google Scholar 

  76. di Lauro R, et al. Intravitreal bevacizumab for surgical treatment of severe proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2010;248(6):785–91.

    Article  CAS  PubMed  Google Scholar 

  77. Rizzo S, et al. Injection of intravitreal bevacizumab (Avastin) as a preoperative adjunct before vitrectomy surgery in the treatment of severe proliferative diabetic retinopathy (PDR). Graefes Arch Clin Exp Ophthalmol. 2008;246(6):837–42.

    Article  CAS  PubMed  Google Scholar 

  78. Romano MR, et al. Can a preoperative bevacizumab injection prevent recurrent postvitrectomy diabetic vitreous haemorrhage? Eye (Lond). 2009;23(8):1698–701.

    Article  CAS  Google Scholar 

  79. Modarres M, et al. Intravitreal injection of bevacizumab before vitrectomy for proliferative diabetic retinopathy. Eur J Ophthalmol. 2009;19(5):848–52.

    PubMed  Google Scholar 

  80. Yeh PT, et al. Bevacizumab pretreatment in vitrectomy with silicone oil for severe diabetic retinopathy. Retina. 2009;29(6):768–74.

    Article  PubMed  Google Scholar 

  81. Mitamura Y, et al. Retinal detachment with macular hole following intravitreal bevacizumab in patient with severe proliferative diabetic retinopathy. Br J Ophthalmol. 2008;92(5):717–8.

    Article  PubMed  Google Scholar 

  82. Oshima Y, et al. Full thickness macular hole case after intravitreal aflibercept treatment. BMC Ophthalmol. 2015;15:30.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wu L, et al. Twelve-month safety of intravitreal injections of bevacizumab (Avastin): results of the Pan-American Collaborative Retina Study Group (PACORES). Graefes Arch Clin Exp Ophthalmol. 2008;246(1):81–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by an unrestricted grant from Research to Prevent Blindness, New York, NY 10022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Moshfeghi.

Ethics declarations

Disclosures

Andrew Moshfeghi has been a consultant for Genentech, Inc., Alexion, Inc., Allergan, Inc., Alimera, Inc., Optos, Inc., Regeneron, Inc., and Visunex, Inc. He is a consultant for and has an equity position in OptiSTENT, Inc., and Visunex, Inc. He declares personal fees from Regeneron, grants and personal fees from Genentech, personal fees from Allergan, and personal fees from Alimera outside the submitted work. Dr. Esther Kim declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Diabetic Retinopathy: Medical and Surgical Therapies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.L., Moshfeghi, A.A. Effect of Intravitreal Anti-VEGF Therapy on the Severity of Diabetic Retinopathy. Curr Ophthalmol Rep 4, 61–70 (2016). https://doi.org/10.1007/s40135-016-0094-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-016-0094-z

Keywords

Navigation