Skip to main content

Advertisement

Log in

Role of Cardiac Imaging in Cardiovascular Diseases in Females

  • Cardiovascular Imaging (K Ordovas, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we discuss the role of using different cardiac imaging modalities in diagnosing cardiovascular disease in women.

Recent Findings

We discuss the different disease processes with a focus on coronary artery disease (including both stable ischemic heart disease and acute coronary syndrome), cardiomyopathy, heart disease during pregnancy, cardio-oncology, and connective tissue diseases.

Summary

We appraise the advantages and disadvantages of various imaging methods as it pertains to these disease entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance and •• Of major importance

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322. doi:10.1161/CIR.0000000000000152.

    Article  PubMed  Google Scholar 

  2. Paynter NP, Chasman DI, Paré G, et al. Association between a literature-based genetic risk score and cardiovascular events in women. JAMA. 2010;303(7):631–7. doi:10.1001/jama.2010.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary. J Am Coll Cardiol. 2012;60(24):2564–603. doi:10.1016/j.jacc.2012.07.012.

    Article  Google Scholar 

  4. Gulati M, Black HR, Shaw LJ, Arnsdorf MF, Merz CNB, Lauer MS, et al. The prognostic value of a nomogram for exercise capacity in women. N Engl J Med. 2005;353(5):468–75. doi:10.1056/NEJMoa044154.

    Article  CAS  PubMed  Google Scholar 

  5. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801. doi:10.1056/NEJMoa011858.

    Article  PubMed  Google Scholar 

  6. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003.

    Article  PubMed  Google Scholar 

  7. Pepine CJ, Balaban RS, Bonow RO, Diamond GA, Johnson BD, Johnson PA, et al. Women’s ischemic syndrome evaluation. Circulation. 2004;109(6):e44 LP–e46. http://circ.ahajournals.org/content/109/6/e44.abstract.

  8. Sanders GD, Patel MR, Chatterjee R, Ross AK, Bastian LA, Coeytaux RR, Heidenfelder BL, Musty MD, Dolor RJ. Noninvasive technologies for the diagnosis of coronary artery disease in women: future research needs: Identification of future research needs from comparative effectiveness review No. 58. Rockville, MD: Agency for Healthcare Research and Quality (US); 2013.

    Google Scholar 

  9. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease. J Am Coll Cardiol. 2012;59(19):1719–28.

    Article  PubMed  Google Scholar 

  10. Mieres JH, Gulati M, Bairey Merz N, Berman DS, Gerber TC, Hayes SN, et al. Role of noninvasive testing in the clinical evaluation of women with suspected ischemic heart disease: a consensus statement from the American Heart Association. Circulation. 2014;130(4):350–79.

    Article  PubMed  Google Scholar 

  11. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease. J Am Coll Cardiol. 2007;50(14):1343–53.

    Article  PubMed  Google Scholar 

  12. de Jong MC, Genders TSS, van Geuns R-J, Moelker A, Hunink MGM. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2012;22(9):1881–95.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Min JK, Shaw LJ. Noninvasive diagnostic and prognostic assessment of individuals with suspected coronary artery disease: coronary computed tomographic angiography perspective. Circ Cardiovasc Imaging. 2008;1(3):270–81 discussion 281.

    Article  PubMed  Google Scholar 

  15. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coro). J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  16. Jiang B, Wang J, Lv X, Cai W. Prognostic value of cardiac computed tomography angiography in patients with suspected coronary artery disease: a meta-analysis. Cardiology. 2014;128(4):304–12.

    Article  PubMed  Google Scholar 

  17. Ponte M, Bettencourt N, Pereira E, Ferreira ND, Chiribiri A, Schuster A, et al. Anatomical versus functional assessment of coronary artery disease: direct comparison of computed tomography coronary angiography and magnetic resonance myocardial perfusion imaging in patients with intermediate pre-test probability. Int J Cardiovasc Imaging. 2014;30(8):1589–97.

    Article  PubMed  Google Scholar 

  18. Osborn EA, Jaffer FA. Imaging atherosclerosis and risk of plaque rupture. Curr Atheroscler Rep. 2013;15(10):359.

    Article  PubMed  Google Scholar 

  19. Shmilovich H, Cheng VY, Tamarappoo BK, Dey D, Nakazato R, Gransar H, et al. Vulnerable plaque features on coronary CT angiography as markers of inducible regional myocardial hypoperfusion from severe coronary artery stenoses. Atherosclerosis. 2011;219(2):588–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadehara F, Shokawa T, et al. Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging. 2009;2(2):153–60. http://www.sciencedirect.com/science/article/pii/S1936878X08005111.

  21. •• Nakazato R, Shalev A, Doh J-H, Koo B-K, Dey D, Berman DS, et al. Quantification and characterisation of coronary artery plaque volume and adverse plaque features by coronary computed tomographic angiography: a direct comparison to intravascular ultrasound. Eur Radiol. 2013;23(8):2109–17. This article explains plaque characteristics which increase the risk factor for ischemia and characteristics to be identified on imaging.

  22. Park HB, Heo R, ó Hartaigh B, Cho I, Gransar H, Nakazato R, et al. Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia. JACC Cardiovasc Imaging. 2015;8(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rozanski A, Gransar H, Hayes SW, Min J, Friedman JD, Thomson LEJ, et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol. 2013;61(10):1054–65.

    Article  PubMed  Google Scholar 

  24. Shaw LJ, Mieres JH, Hendel RH, Boden WE, Gulati M, Veledar E, et al. Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease: results from the what is the optimal method for ischemia evaluation. Circulation. 2011;124(11):1239–49.

    Article  PubMed  Google Scholar 

  25. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. J Am Coll Cardiol. 2012;60(24):e44–164.

    Article  PubMed  Google Scholar 

  26. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2010;56(25):e50–103.

    Article  PubMed  Google Scholar 

  27. Choi E-K, Il Choi S, Rivera JJ, Nasir K, Chang S-A, Chun EJ, et al. Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol. 2008;52(5):357–65.

    Article  PubMed  Google Scholar 

  28. Myerburg RJ, Interian A, Mitrani RM, Kessler KM, Castellanos A. Frequency of sudden cardiac death and profiles of risk. Am J Cardiol. 1997;80(5):10F–9F.

    Article  CAS  PubMed  Google Scholar 

  29. Church TS, Levine BD, McGuire DK, LaMonte MJ, FitzGerald SJ, Cheng YJ, et al. Coronary artery calcium score, risk factors, and incident coronary heart disease events. Atherosclerosis. 2007;190(1):224–31.

    Article  CAS  PubMed  Google Scholar 

  30. Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Cl. J Am Coll Cardiol. 2007;49(3):378–402.

    Article  PubMed  Google Scholar 

  31. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  32. Anderson RD, Pepine CJ. Gender differences in the treatment for acute myocardial infarction: bias or Biology? Circulation. 2007;115(7):823–6.

    Article  PubMed  Google Scholar 

  33. Pepine CJ, Ferdinand KC, Shaw LJ, Light-McGroary KA, Shah RU, Gulati M, et al. Emergence of nonobstructive coronary artery disease. J Am Coll Cardiol. 2015;66(17):1918–33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.

    Article  CAS  PubMed  Google Scholar 

  35. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res. 2001;50(1):151–61.

    Article  CAS  PubMed  Google Scholar 

  36. • Motwani M, Kidambi A, Uddin A, Sourbron S, Greenwood JP, Plein S. Quantification of myocardial blood flow with cardiovascular magnetic resonance throughout the cardiac cycle. J Cardiovasc Magn Reson. 2015;17(1):4. doi:10.1186/s12968-015-0107-3. This article mentions the role of PET and CMR in measuring and quantifying myocardial blood flow.

  37. Mann DL, Zipes DP, Libby P, Bonow RO, Braunwald E. Braunwald’s heart disease. 10th ed. Philadelphia: Elsevier Saunders; 2015.

    Google Scholar 

  38. Bratis K, Mahmoud I, Chiribiri A, Nagel E. Quantitative myocardial perfusion imaging by cardiovascular magnetic resonance and positron emission tomography. J Nucl Cardiol. 2013;20(5):860–70. doi:10.1007/s12350-013-9762-7.

    Article  CAS  PubMed  Google Scholar 

  39. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54(2):150–6.

    Article  PubMed  Google Scholar 

  40. Panting JR, Gatehouse PD, Yang G-Z, Grothues F, Firmin DN, Collins P, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002;346(25):1948–53.

    Article  PubMed  Google Scholar 

  41. Galassi AR, Crea F, Araujo LI, Lammertsma AA, Pupita G, Yamamoto Y, et al. Comparison of regional myocardial blood flow in syndrome X and one-vessel coronary artery disease. Am J Cardiol. 1993;72(2):134–9.

    Article  CAS  PubMed  Google Scholar 

  42. • Shah RV, Heydari B, Coelho-Filho O, Abbasi SA, Feng JH, Neilan TG, et al. Vasodilator stress perfusion CMR imaging is feasible and prognostic in obese patients. JACC Cardiovasc Imaging. 2014;7(5):462–72. This article mentions the role of CMR in obese patients and it’s negative prognostic value.

  43. Andreotti F, Marchese N. Women and coronary disease. Heart. 2008;94(1):108–16.

    Article  PubMed  Google Scholar 

  44. • Rybicki FJ, Udelson JE, Peacock WF, Goldhaber SZ, Isselbacher EM, Kazerooni E, et al. 2015 ACR/ACC/AHA/AATS/ACEP/ASNC/NASCI/SAEM/SCCT/SCMR/SCPC/SNMMI/STR/STS appropriate utilization of cardiovascular imaging in emergency department patients with chest pain. J Am Coll Cardiol. 2016;67(7):853 LP–879. http://www.onlinejacc.org/content/67/7/853.abstract. This article mentions the benefits of using cardiac imaging to triage patients during critical events such as ACS.

  45. Shaw LJ, Bugiardini R, Merz CNB. Women and ischemic heart disease. J Am Coll Cardiol. 2009;54(17):1561–75.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang I-K, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401–15.

    Article  PubMed  Google Scholar 

  47. Lansky AJ, Ng VG, Maehara A, Weisz G, Lerman A, Mintz GS, et al. Gender and the extent of coronary atherosclerosis, plaque composition, and clinical outcomes in acute coronary syndromes. JACC Cardiovasc Imaging. 2012;5(3 Suppl):62–72.

    Article  Google Scholar 

  48. Bocksch W, Schartl M, Beckmann S, Dreysse S, Fleck E. Safety of intracoronary ultrasound imaging in patients with acute myocardial infarction. Am J Cardiol. 1998;81(5):641–3.

    Article  CAS  PubMed  Google Scholar 

  49. • Bavishi C, Sardar P, Chatterjee S, Khan AR, Shah A, Ather S, et al. Intravascular ultrasound–guided vs angiography-guided drug-eluting stent implantation in complex coronary lesions: meta-analysis of randomized trials. Am Heart J. 2017;185:26–34. This article is important because it shows the role of a new interventional technique using IVUS for DES and how it has better outcomes compared to angiography-guided PCI.

  50. Iannaccone M, D’Ascenzo F, Frangieh AH, Niccoli G, Ugo F, Boccuzzi G, et al. Impact of an optical coherence tomography guided approach in acute coronary syndromes: a propensity matched analysis from the international FORMIDABLE-CARDIOGROUP IV and USZ registry. Catheter Cardiovasc Interv. 2016. doi:10.1002/ccd.26880.

    Google Scholar 

  51. Crea F, Battipaglia I, Andreotti F. Sex differences in mechanisms, presentation and management of ischaemic heart disease. Atherosclerosis. 2015;241(1):157–68.

    Article  CAS  PubMed  Google Scholar 

  52. •• Yip A, Saw J. Spontaneous coronary artery dissection-a review. Cardiovasc Diagn Ther. 2015;5(1):37–48. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4329168&tool=pmcentrez&rendertype=abstract. SCAD is a mechanism of ACS that is more common in women with little research. This paper provides more diagnostic techniques including coronary CTA for identifying such lesions in women.

  53. Saw J, Mancini GBJ, Humphries KH. Contemporary review on spontaneous coronary artery dissection. J Am Coll Cardiol. 2016;68(3):297–312.

    Article  PubMed  Google Scholar 

  54. Russo V, Marrozzini C, Zompatori M. Spontaneous coronary artery dissection: role of coronary CT angiography. Heart. 2012. http://heart.bmj.com/content/early/2012/11/28/heartjnl-2012-303215.abstract.

  55. Torres-Ayala SC, Maldonado J, Scott Bolton J, Bhalla S. coronary computed tomography angiography of spontaneous coronary artery dissection: a case report and review of the literature. Am J Case Rep. 2015;16:130–35. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351773/.

  56. Saw J, Mancini GBJ, Humphries K, Fung A, Boone R, Starovoytov A, et al. Angiographic appearance of spontaneous coronary artery dissection with intramural hematoma proven on intracoronary imaging. Catheter Cardiovasc Interv. 2016;87(2):E54–61.

    Article  PubMed  Google Scholar 

  57. Hurst RT, Prasad A, Askew JW, Sengupta PP, Tajik AJ. Takotsubo cardiomyopathy: a unique cardiomyopathy with variable ventricular morphology. JACC Cardiovasc Imaging. 2010;3(6):641–9. doi:10.1016/j.jcmg.2010.01.009.

    Article  PubMed  Google Scholar 

  58. •• Bossone E, Lyon A, Citro R, Athanasiadis A, Meimoun P, Parodi G, et al. Takotsubo cardiomyopathy: An integrated multi-imaging approach. Eur Heart J Cardiovasc Imaging. 2014;15(4):366–7. This article mentions the criteria for diagnosing takotsubo cardiomyopathy and the diagnostic role of echocardiogram.

  59. Schneider B, Athanasiadis A, Sechtem U. Gender-related differences in takotsubo cardiomyopathy. Heart Fail Clin. 2013;9(2):137–46. doi:10.1016/j.hfc.2012.12.005.

    Article  PubMed  Google Scholar 

  60. Citro R, Piscione F, Parodi G, Salerno-Uriarte J, Bossone E. Role of echocardiography in takotsubo cardiomyopathy. Heart Fail Clin. 2013;9(2):157–66. doi:10.1016/j.hfc.2012.12.014.

    Article  PubMed  Google Scholar 

  61. Mansencal N, Abbou N, Pilliere R, El Mahmoud R, Farcot J-C, Dubourg O. Usefulness of two-dimensional speckle tracking echocardiography for assessment of Tako-Tsubo cardiomyopathy. Am J Cardiol. 2009;103(7):1020–4.

    Article  PubMed  Google Scholar 

  62. Heggemann F, Hamm K, Kaelsch T, Sueselbeck T, Papavassiliu T, Borggrefe M, et al. Global and regional myocardial function quantification in Takotsubo cardiomyopathy in comparison to acute anterior myocardial infarction using two-dimensional (2D) strain echocardiography. Echocardiography. 2011;28(7):715–9.

    Article  PubMed  Google Scholar 

  63. Kohan AA, Levy Yeyati E, De Stefano L, Dragonetti L, Pietrani M, Perez de Arenaza D, et al. Usefulness of MRI in takotsubo cardiomyopathy: a review of the literature. Cardiovasc Diagn Ther. 2014;4(2):138–46. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996242/.

  64. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA. 2011;306(3):277–86.

    Article  CAS  PubMed  Google Scholar 

  65. Athanasiadis A, Schneider B, Sechtem U. Role of cardiovascular magnetic resonance in takotsubo cardiomyopathy. Heart Fail Clin. 2013;9(2):167–76.

    Article  PubMed  Google Scholar 

  66. Demakis JG, Rahimtoola SH. Peripartum cardiomyopathy. Circulation. 1971;44(5):964–8.

    Article  CAS  PubMed  Google Scholar 

  67. Pearson GD, Veille JC, Rahimtoola S, Hsia J, Oakley CM, Hosenpud JD, et al. Peripartum cardiomyopathy: national heart, lung, and blood institute and office of rare diseases (National Institutes of Health) workshop recommendations and review. JAMA. 2000;283(9):1183–8.

    Article  CAS  PubMed  Google Scholar 

  68. Biteker M, Kayataa K, Duman D, Turkmen M, Bozkurt B. Peripartum cardiomyopathy: current state of knowledge, new developments and future directions. Curr Cardiol Rev. 2014;10:317–26.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Elkayam U. Clinical characteristics of peripartum cardiomyopathy in the United States: diagnosis, prognosis, and management. J Am Coll Cardiol. 2011;58(7):659–70. doi:10.1016/j.jacc.2011.03.047.

    Article  PubMed  Google Scholar 

  70. Arora NP, Mohamad T, Mahajan N, Danrad R, Kottam A, Li T, et al. Cardiac magnetic resonance imaging in peripartum cardiomyopathy. Am J Med Sci. 2014;347(2):112–7.

    Article  PubMed  Google Scholar 

  71. Mouquet F, Lions C, de Groote P, Bouabdallaoui N, Willoteaux S, Dagorn J, et al. Characterisation of peripartum cardiomyopathy by cardiac magnetic resonance imaging. Eur Radiol. 2008;18(12):2765–9.

    Article  PubMed  Google Scholar 

  72. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. EER cancer statistics review, 1975–2012, National Cancer Institute. 2014.

  73. Von Hoff DD, Layard MW, Basa P, Davis HLJ, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.

    Article  Google Scholar 

  74. Yu AF, Jones LW. Breast cancer treatment-associated cardiovascular toxicity and effects of exercise countermeasures. Cardio-Oncology. 2016;2(1):1. doi:10.1186/s40959-016-0011-5.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tan T, Scherrer-Crosbie M. Cardiac complications of chemotherapy: role of imaging. Curr Treat Options Cardiovasc Med. 2014;16(4):296.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Friedman MA, Bozdech MJ, Billingham ME, Rider AK. Doxorubicin cardiotoxicity. Serial endomyocardial biopsies and systolic time intervals. JAMA. 1978;240(15):1603–6.

    Article  CAS  PubMed  Google Scholar 

  77. Ewer MS, Ali MK, Mackay B, Wallace S, Valdivieso M, Legha SS, et al. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J Clin Oncol. 1984;2(2):112–7.

    Article  CAS  PubMed  Google Scholar 

  78. Moja L, Tagliabue L, Balduzzi S, Parmelli E, Pistotti V, Guarneri V, et al. Trastuzumab containing regimens for early breast cancer. Cochrane database Syst Rev. 2012;(4):CD006243.

  79. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Greenwood JP, Motwani M, Maredia N, Brown JM, Everett CC, Nixon J, et al. Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the clinical evaluation of magnetic resonance imaging in coronary heart disease (CE-MARC) trial. Circulation. 2014;129(10):1129–38.

    Article  PubMed  Google Scholar 

  81. Naik MM, Diamond GA, Pai T, Soffer A, Siegel RJ. Correspondence of left ventricular ejection fraction determinations from two-dimensional echocardiography, radionuclide angiography and contrast cineangiography. J Am Coll Cardiol. 1995;25(4):937 LP–942. http://www.onlinejacc.org/content/25/4/937.abstract.

  82. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with a. J Am Coll Cardiol. 2011;57(22):2263–70.

    Article  CAS  PubMed  Google Scholar 

  83. Waksmonski CA. Cardiac imaging and functional assessment in pregnancy. Semin Perinatol. 2014;38(5):240–4.

    Article  PubMed  Google Scholar 

  84. Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, Cifkova R, Ferreira R, Foidart J-M, et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy: the task force on the management of cardiovascular diseases during pregnancy of the european society of cardiology (ESC). Eur Heart J. 2011;32(24):3147–97.

    Article  PubMed  Google Scholar 

  85. Gilson GJ, Samaan S, Crawford MH, Quails CR, Curet LB. Changes in hemodynamics, ventricular remodeling, and ventricular contractility during normal pregnancy: a longitudinal study. Obstet Gynecol. 1997;89(6):957–62. http://www.sciencedirect.com/science/article/pii/S0029784497857651.

  86. Desai DK, Moodley J, Naidoo DP. Echocardiographic assessment of cardiovascular hemodynamics in normal pregnancy. Obstet Gynecol. 2004;104(1):20–9.

    Article  PubMed  Google Scholar 

  87. Carlin A, Alfirevic Z. Physiological changes of pregnancy and monitoring. Best Pract Res Clin Obstet Gynaecol. 2008;22(5):801–23.

    Article  PubMed  Google Scholar 

  88. Crapo RO, Casaburi R, Coates AL, Enright PL, MacIntyre NR, McKay RT, et al. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7.

    Article  Google Scholar 

  89. Wang PI, Chong ST, Kielar AZ, Kelly AM, Knoepp UD, Mazza MB, et al. Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations. Am J Roentgenol. 2012;198(4):785–92.

    Article  Google Scholar 

  90. Ridge CA, McDermott S, Freyne BJ, Brennan DJ, Collins CD, Skehan SJ. Pulmonary embolism in pregnancy: comparison of pulmonary CT angiography and lung scintigraphy. AJR Am J Roentgenol. 2009;193(5):1223–7.

    Article  PubMed  Google Scholar 

  91. Cook JV, Kyriou J. Radiation from CT and perfusion scanning in pregnancy. BMJ Br Med J. 2005;331(7512):350. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1183143/.

  92. Hurwitz LM, Yoshizumi T, Reiman RE, Goodman PC, Paulson EK, Frush DP, et al. Radiation dose to the fetus from body MDCT during early gestation. AJR Am J Roentgenol. 2006;186(3):871–6.

    Article  PubMed  Google Scholar 

  93. Winer-Muram HT, Boone JM, Brown HL, Jennings SG, Mabie WC, Lombardo GT. Pulmonary embolism in pregnant patients: fetal radiation dose with helical CT. Radiology. 2002;224(2):487–92.

    Article  PubMed  Google Scholar 

  94. Roth A, Elkayam U. A Cute myocardial infarction associated with pregnancy. Ann Intern Med. 1996;125(9):751–62. doi:10.7326/0003-4819-125-9-199611010-00009.

    Article  CAS  PubMed  Google Scholar 

  95. James AH, Jamison MG, Biswas MS, Brancazio LR, Swamy GK, Myers ER. Acute myocardial infarction in pregnancy: a United States population-based study. Circulation. 2006;113(12):1564–71.

    Article  PubMed  Google Scholar 

  96. Leurent G, Langella B, Fougerou C, Lentz P-A, Larralde A, Bedossa M, et al. Diagnostic contributions of cardiac magnetic resonance imaging in patients presenting with elevated troponin, acute chest pain syndrome and unobstructed coronary arteries. Arch Cardiovasc Dis. 2011;104(3):161–70.

    Article  PubMed  Google Scholar 

  97. Reynolds HR, Srichai MB, Iqbal SN, Slater JN, Mancini GBJ, Feit F, et al. Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation. 2011;124(13):1414–25.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tweet MS, Gulati R, Williamson EE, Vrtiska TJ, Hayes SN. Multimodality imaging for spontaneous coronary artery dissection in women. JACC Cardiovasc Imaging. 2016;9(4):436–50.

    Article  PubMed  Google Scholar 

  99. Stout K. Pregnancy in women with congenital heart disease: the importance of evaluation and counselling. Heart. 2005;91(6):713–14. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1768916/.

  100. Hayward RM, Foster E, Tseng ZH. Maternal and fetal outcomes of admission for delivery in women with congenital heart disease. JAMA Cardiol. 2017;2(6):664–71. doi:10.1001/jamacardio.2017.0283.

    Article  PubMed  Google Scholar 

  101. Canobbio MM, Warnes CA, Aboulhosn J, Connolly HM, Khanna A, Koos BJ, et al. Management of pregnancy in patients with complex congenital heart disease: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2017. CIR.0000000000000458. http://circ.ahajournals.org/lookup/doi/10.1161/CIR.0000000000000458.

  102. Douglas PS, Garcia MJ, Haines DE, Lai WW, Manning WJ, Patel AR, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. A report of the American College of Cardiology Foundation appropriate use criteria task force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance Endorsed by the American College of Chest Physicians. J Am Coll Cardiol. 2011;57(9):1126–66.

    Article  PubMed  Google Scholar 

  103. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation 2010;122:e525–55. doi:10.1161/CIR.0b013e3181fcae66.

    Article  PubMed  Google Scholar 

  104. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(23):e143–263.

    Article  PubMed  Google Scholar 

  105. Al Husain A, Bruce IN. Risk Factors for coronary heart disease in connective tissue diseases. Ther Adv Musculoskelet Dis. 2010;2(3):145–53. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382674/.

  106. Avina-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum. 2008;59(12):1690–7.

    Article  PubMed  Google Scholar 

  107. Zegkos T, Kitas G, Dimitroulas T. Cardiovascular risk in rheumatoid arthritis: assessment, management and next steps. Ther Adv Musculoskelet Dis. 2016;8(3):86–101. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872174/.

  108. Mavrogeni S, Dimitroulas T, Gabriel S, Sfikakis PP, Pohost GM, Kitas GD. Why currently used diagnostic techniques for heart failure in rheumatoid arthritis are not enough: the challenge of cardiovascular magnetic resonance imaging. Rev Cardiovasc Med. 2014;15(4):320–31.

    PubMed  Google Scholar 

  109. Emami H, Vijayakumar J, Subramanian S, Vucic E, Singh P, MacNabb MH, et al. Arterial 18F-FDG uptake in rheumatoid arthritis correlates with synovial activity. JACC Cardiovasc Imaging. 2014;7(9):959–60. doi:10.1016/j.jcmg.2014.03.018.

    Article  PubMed  Google Scholar 

  110. Champion HC. The heart in scleroderma. Rheum Dis Clin N Am. 2008;34(1):181–90. doi:10.1016/j.rdc.2007.12.002.

    Article  Google Scholar 

  111. Smith JW, Clements PJ, Levisman J, Furst D, Ross M. Echocardiographic features of progressive systemic sclerosis (PSS). Correlation with hemodynamic and postmortem studies. Am J Med. 1979;66(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  112. Tzelepis GE, Kelekis NL, Plastiras SC, Mitseas P, Economopoulos N, Kampolis C, et al. Pattern and distribution of myocardial fibrosis in systemic sclerosis: a delayed enhanced magnetic resonance imaging study. Arthritis Rheum. 2007;56(11):3827–36.

    Article  PubMed  Google Scholar 

  113. Di Cesare E, Battisti S, Di Sibio A, Cipriani P, Giacomelli R, Liakouli V, et al. Early assessment of sub-clinical cardiac involvement in systemic sclerosis (SSc) using delayed enhancement cardiac magnetic resonance (CE-MRI). Eur J Radiol. 2013;82(6):e268–73.

    Article  PubMed  Google Scholar 

  114. Zeller CB, Appenzeller S. Cardiovascular disease in systemic lupus erythematosus: the role of traditional and lupus related risk factors. Curr Cardiol Rev. 200821;4(2):116–22. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779351/.

  115. Sun SS, Shiau YC, Tsai SC, Lin CC, Kao A, Lee CC. The role of technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography (SPECT) in the detection of cardiovascular involvement in systemic lupus erythematosus patients with non-specific chest complaints. Rheumatology (Oxford). 2001;40(10):1106–11.

    Article  CAS  Google Scholar 

  116. Yiu K-H, Wang S, Mok M-Y, Ooi GC, Khong P-L, Mak K-FH, et al. Pattern of arterial calcification in patients with systemic lupus erythematosus. J Rheumatol. 2009;36(10):2212–7.

    Article  CAS  PubMed  Google Scholar 

  117. Romero-Diaz J, Vargas-Vorackova F, Kimura-Hayama E, Cortazar-Benitez LF, Gijon-Mitre R, Criales S, et al. Systemic lupus erythematosus risk factors for coronary artery calcifications. Rheumatology (Oxford). 2012;51(1):110–9.

    Article  Google Scholar 

  118. He Y, Zhang Z, Dai Q, Zhou Y, Yang Y, Yu W, et al. Accuracy of MRI to identify the coronary artery plaque: a comparative study with intravascular ultrasound. J Magn Reson Imaging. 2012;35(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  119. Nagata M, Kato S, Kitagawa K, Ishida N, Nakajima H, Nakamori S, et al. Diagnostic accuracy of 1.5-T unenhanced whole-heart coronary MR angiography performed with 32-channel cardiac coils: initial single-center experience. Radiology. 2011;259(2):384–92.

    Article  PubMed  Google Scholar 

  120. Varma N, Hinojar R, D’Cruz D, Arroyo Ucar E, Indermuehle A, Peel S, et al. Coronary vessel wall contrast enhancement imaging as a potential direct marker of coronary involvement: integration of findings from CAD and SLE patients. JACC Cardiovasc Imaging. 2014;7(8):762–70.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Lodhi.

Ethics declarations

Conflict of interest

Wunan Zhou, Fahad Lodhi, and Monvadi B. Srichai each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Cardiovascular Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Lodhi, F. & Srichai, M.B. Role of Cardiac Imaging in Cardiovascular Diseases in Females. Curr Radiol Rep 5, 47 (2017). https://doi.org/10.1007/s40134-017-0242-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-017-0242-8

Keywords

Navigation