Skip to main content
Log in

CT and MR Imaging of the Pediatric Temporal Bone: Normal Variants and Pitfalls

  • Neuroimaging (B Soares and S Dehkharghani, Section Editors)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article will discuss high-resolution CT (HRCT) and MRI of the pediatric temporal bone with a focus on variant anatomy that can mimic pathology or affect surgical planning, as well as some potential pitfalls in image interpretation.

Recent Findings

The latest research shows that with improving imaging technology, there is better visualization of temporal bone structure, both normal and abnormal, on HRCT and MRI. Examples include earlier detection of cochlear obstruction in labyrinthitis ossificans with MRI, the ability to better define ossicular chain abnormalities, and the identification of pericochlear lucency in children without hearing loss.

Summary

Advances in temporal bone imaging have contributed to a greater understanding of normal anatomy as well as temporal bone pathology and its implications for treatment and surgical planning. It is clear that correlation of imaging findings with clinical and surgical findings will be an essential part of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: ∙ Of importance

  1. Sauvaget E, Paris J, Kici S, Kania R, Guichard J, Chapot R, et al. Aberrant internal carotid artery in the temporal bone. Arch Otolaryngol-Head Neck Surg. 2006;132:86.

    Article  PubMed  Google Scholar 

  2. Hasebe S, Sando I, Orita Y. Proximity of carotid canal wall to tympanic membrane: a human temporal bone study. Laryngoscope. 2003;113:802–7.

    Article  PubMed  Google Scholar 

  3. Young R, Shatzkes D, Babb J, Lalwani A. The carotid-cochlear interval: anatomic variation and potential clinical implications. Am J Neuroradiol. 2006;27:1486–90.

    CAS  PubMed  Google Scholar 

  4. Wysocki J, Skarzyñski H. Distances between the cochlea and adjacent structures related to cochlear implant surgery. Surg Radiol Anat. 1998;20:267–71.

    Article  CAS  PubMed  Google Scholar 

  5. Lo W, Solti-Bohman L, McElveen J. Aberrant carotid artery: radiologic diagnosis with emphasis on high-resolution computed tomography. RadioGraphics. 1985;5:985–93.

    Article  CAS  PubMed  Google Scholar 

  6. Lasjaunias P, Moret J, Manelfe C, Theron J, Hasso T, Seeger J. Arterial anomalies at the base of the skull. Neuroradiology. 1977;13:267–72.

    Article  CAS  PubMed  Google Scholar 

  7. Glasscock M, Dickins J, Jackson C, Wiet R. Vascular anomalies of the middle ear. Laryngoscope. 1980;90:77–88.

    Article  PubMed  Google Scholar 

  8. Koesling S, Kunkel P, Schul T. Vascular anomalies, sutures, and small canals of the temporal bone on axial CT. Clin Imaging. 2005;29:444–5.

    Article  Google Scholar 

  9. Thiers F, Sakai O, Poe D, Curtin H. Persistent stapedial artery: CT findings. Am J Neuroradiol. 2001;21:1551–4.

    Google Scholar 

  10. Atmaca S, Elmali M, Kucuk H. High and dehiscent jugular bulb: clear and present danger during middle ear surgery. Surg Radiol Anat. 2013;36:369–74.

    Article  PubMed  Google Scholar 

  11. Ball M, Elloy M, Vaidhyanath R, Pau H. Beware the silent presentation of a high and dehiscent jugular bulb in the external ear canal. J Laryngol Otol. 2009;124:790–2.

    Article  PubMed  Google Scholar 

  12. Moore P. The high jugular bulb in ear surgery: three case reports and a review of the literature. J Laryngol Otol. 1994;108.

  13. Tomura N, Sashi R, Kobayashi M, Hirano H, Hashimoto M, Watarai J. Normal variations of the temporal bone on high-resolution CT: Their incidence and clinical significance. Clin Radiol. 1995;50:144–8.

    Article  CAS  PubMed  Google Scholar 

  14. Haginomori S, Sando I, Miura M, Orita Y, Hirsch B. Medial high jugular bulb. Otol Neurotol. 2001;22:423–5.

    Article  CAS  PubMed  Google Scholar 

  15. Overton S, Ritter F. A high placed jugular bulb in the middle ear: a clinical and temporal bone study. Laryngoscope. 1973;83:1986–91.

    Article  CAS  PubMed  Google Scholar 

  16. Towbin R, Ball W, Benton C, Han B. Pediatric case of the day. I. Dehiscent jugular bulb. II. Mondini malformation.III. Aural atresia. RadioGraphics. 1988;8:1221–6.

    Article  CAS  PubMed  Google Scholar 

  17. Atilla S, Akpek S, Uslu S, Ilgit E, Işik S. Computed tomographic evaluation of surgically significant vascular variations related with the temporal bone. Eur J Radiol. 1995;20:52–6.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao P, Lv H, Dong C, Niu Y, Xian J, Wang Z. CT evaluation of sigmoid plate dehiscence causing pulsatile tinnitus. Eur Radiol. 2016;26:9–14.

    Article  PubMed  Google Scholar 

  19. Visvanathan V, Morrissey M. Anatomical variations of the temporal bone on high-resolution computed tomography imaging: how common are they? J Laryngol Otol. 2015;129:634–7.

    Article  CAS  PubMed  Google Scholar 

  20. Marsot-Dupuch K, Gayet-Delacroix M, Elmaleh-Berges M, Bonneville F, Lasjaunias P. The petrosquamosal sinus: CT and MR findings of a rare emissary vein. Am J Neuroradiol. 2001;22:1186–93.

    CAS  PubMed  Google Scholar 

  21. Hoffmann O, Klingebiel R, Braun J, Katchanov J, Valdueza J. Diagnostic pitfall: atypical cerebral venous drainage via the vertebral venous system. Am J Neuroradiol. 2002;23:408–11.

    PubMed  Google Scholar 

  22. Reis C, Deshmukh V, Zabramski J, Crusius M, Desmukh P, Spetzler R, et al. Anatomy of the mastoid emissary vein and venous system of the posterior neck region: neurosurgical implications. Oper Neurosurg. 2007;61:193–201.

    Article  Google Scholar 

  23. Rivet D, Goddard J, Rich K, Derdeyn C. Percutaneous transvenous embolization of a dural arteriovenous fistula through a mastoid emissary vein. J Neurosurg. 2006;105:636–9.

    Article  PubMed  Google Scholar 

  24. Hoshi M, Yoshida K, Ogawa K, Kawase T. Hypoglossal neurinoma. Two case reports. Neurol Med Chir. 2000;40:489–93.

    Article  CAS  Google Scholar 

  25. San Millan Ruiz D, Gailloud P, Rufenacht D, Delavelle J, Henry F, Fasel J. The craniocervical venous system in relation to cerebral venous drainage. Am J Neuroradiol. 2002;23:1500–8.

    PubMed  Google Scholar 

  26. Shelling F. The emissaries of the human skull. Anat Anz. 1978;143:340–82.

    Google Scholar 

  27. Louis R, Loukas M, Wartmann C, Tubbs R, Apaydin N, Gupta A, et al. Clinical anatomy of the mastoid and occipital emissary veins in a large series. Surg Radiol Anat. 2008;31:139–44.

    Article  PubMed  Google Scholar 

  28. Giesemann A, Goetz G, Neuburger J, Lenarz T, Lanfermann H. Persistent petrosquamosal sinus: high incidence in cases of complete aplasia of the semicircular canals. Radiology. 2011;259:825–33.

    Article  PubMed  Google Scholar 

  29. Lemmerling M, Dhooge I, Mollet P, Mortier G, Van Cauwenberge P, Kunnen M. CT of the temporal bone in the CHARGE association. Neuroradiology. 1998;40:462–5.

    Article  CAS  PubMed  Google Scholar 

  30. Morimoto A, Wiggins R III, Hudgins P, Hedlund G, Hamilton B, Mukherji H, et al. Absent semicircular canals in CHARGE syndrome: radiologic spectrum of findings. Am J Neuroradiol. 2006;27:1663–71.

    CAS  PubMed  Google Scholar 

  31. Saito R, Igarashi M, Alford B, Guilford F. Anatomical measurement of the sinus tympani. Arch Otolaryngol Head Neck Surg. 1971;94:418–25.

    Article  CAS  Google Scholar 

  32. Ebenius B. The results of examination of the petrous bone in auditory nerve tumors. Acta Radiol. 1934;15:284–90.

    Article  Google Scholar 

  33. Olivares F, Schuknecht H. Width of the internal auditory canal. Ann Otol Rhinol Laryngol. 1979;88:316–23.

    Article  CAS  PubMed  Google Scholar 

  34. Valvassori C. The radiological diagnosis of acoustic neuromas. Arch Otolaryngol Head Neck Surg. 1966;83:582–7.

    Article  CAS  Google Scholar 

  35. Purohit B, Hermans R, Op De Beeck K. Imaging in otosclerosis: a pictorial review. Insights Imaging. 2014;5:245–52.

    Article  PubMed  PubMed Central  Google Scholar 

  36. ∙ Sanverdi S, Ozgen B, Dolgun A, Sarac S. Incomplete endochondral ossification of the otic capsule, a variation in children: evaluation of its prevalence and extent in children with and without sensorineural hearing loss. Am J Neuroradiol. 2014;36:171–175. This study showed no correlation between degree of endochondral ossification of the otic capsule and sensorineural hearing loss in children. Pericochlear lucency may be seen as a normal finding in children, especially in the very young.

  37. Pekkola J, Pitkäranta A, Jappel A, Czerny C, Baumgartner W, Heliövaara M, et al. Localized pericochlear hypoattenuating foci at temporal-bone thin-section ct in pediatric patients: nonpathologic differential diagnostic entity? Radiology. 2004;230:88–92.

    Article  PubMed  Google Scholar 

  38. Kroeker A, Nelson M, Thorne M. Pediatric hearing loss and radiographic pericochlear hypoattenuation. Otol Neurotol. 2013;34:726–8.

    Article  PubMed  Google Scholar 

  39. Moser T, Veillon F, Sick H, Riehm S. The hypodense focus in the petrous apex: a potential pitfall on multidetector ct imaging of the temporal bone. Am J Neuroradiol. 2008;29:35–9.

    Article  CAS  PubMed  Google Scholar 

  40. Valvassori G, Clemis J. The large vestibular aqueduct syndrome. Laryngoscope. 1978;88:723–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ho M, Moonis G, Halpin C, Curtin H. Spectrum of third window abnormalities: semicircular canal dehiscence and beyond. Am J Neuroradiol. 2016;38:2–9.

    Article  PubMed  Google Scholar 

  42. Tong K, Harnsberger H, Dahlen R, Carey J, Ward K. Large vestibular aqueduct syndrome: a genetic disease? Am J Roentgenol. 1997;168:1097–101.

    Article  CAS  Google Scholar 

  43. Nordström C, Laurell G, Rask-Andersen H. The human vestibular aqueduct: anatomical characteristics and enlargement criteria. Otol Neurotol. 2016;37:1637–45.

    Article  PubMed  Google Scholar 

  44. Reardon W. Enlarged vestibular aqueduct: a radiological marker of pendred syndrome, and mutation of the PDS gene. QJM. 2000;93:99–104.

    Article  CAS  PubMed  Google Scholar 

  45. Boston M, Halsted M, Meinzen-Derr J, Bean J, Vijayasekaran S, Arjmand E, et al. The large vestibular aqueduct: a new definition based on audiologic and computed tomography correlation. Otolaryngol-Head Neck Surg. 2007;136:972–7.

    Article  PubMed  Google Scholar 

  46. Vijayasekaran S, Halsted M, Boston M, Meinzen-Derr J, Bardo D, Greinwald J, et al. When is the vestibular aqueduct enlarged? A statistical analysis of the normative distribution of vestibular aqueduct size. Am J Neuroradiol. 2007;28:1133–8.

    Article  CAS  PubMed  Google Scholar 

  47. Juliano A, Ting E, Mingkwansook V, Hamberg L, Curtin H. Vestibular aqueduct measurements in the 45 oblique (Pöschl) plane. Am J Neuroradiol. 2016;37:1331–7.

    Article  CAS  PubMed  Google Scholar 

  48. Esteves S, Silva A, Coutinho M, Abrunhosa J, Sousa C. Congenital defects of the middle ear—uncommon cause of pediatric hearing loss. Braz J Otorhinolaryngol. 2014;80:251–6.

    Article  PubMed  Google Scholar 

  49. Park K, Choung Y. Isolated congenital ossicular anomalies. Acta Otolaryngol. 2009;129:419–22.

    Article  PubMed  Google Scholar 

  50. Swartz J, Faerber E. Congenital malformations of the external and middle ear: high-resolution CT findings of surgical import. Am J Roentgenol. 1985;144:501–6.

    Article  CAS  Google Scholar 

  51. Pappas D, Pappas D, Hedlin G. Round window atresia in association with congenital stapes fixation. Laryngoscope. 1998;108:1115–8.

    Article  PubMed  Google Scholar 

  52. Booth T, Vezina L, Karcher G, Dubovsky E. Imaging and clinical evaluation of isolated atresia of the oval window. Am J Neuroradiol. 2000;21:171–4.

    CAS  PubMed  Google Scholar 

  53. Herman H, Kimmelman C. Congenital anomalies limited to the middle ear. Otolaryngol-Head Neck Surg. 1992;106:285–7.

    Article  CAS  PubMed  Google Scholar 

  54. Huang T. Anomalously coursing facial nerves above and below the oval window: three case reports. Otolaryngol Head Neck Surg. 1997;116:438–41.

    Article  CAS  PubMed  Google Scholar 

  55. Jacob R, Gupta S, Isaacson B, Kutz J, Roland P, Xi Y, et al. High-resolution CT findings in children with a normal pinna or grade I microtia and unilateral mild stenosis of the external auditory canal. Am J Neuroradiol. 2014;36:176–80.

    Article  PubMed  Google Scholar 

  56. Hagiwara M, Shaikh J, Fang Y, Fatterpekar G, Roehm P. Prevalence of radiographic semicircular canal dehiscence in very young children: an evaluation using high-resolution computed tomography of the temporal bones. Pediatr Radiol. 2012;42:1456–64.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Minor L. Clinical manifestations of superior semicircular canal dehiscence. Laryngoscope. 2005;115:1717–27.

    Article  PubMed  Google Scholar 

  58. Belden C, Weg N, Minor L, Zinreich S. CT evaluation of bone dehiscence of the superior semicircular canal as a cause of sound- and/or pressure-induced vertigo. Radiology. 2003;226:337–43.

    Article  PubMed  Google Scholar 

  59. Chien W, Carey J, Minor L. Canal dehiscence. Curr Opin Neurol. 2011;24:25–31.

    Article  PubMed  Google Scholar 

  60. Cloutier J, Bélair M, Saliba I. Superior semicircular canal dehiscence: positive predictive value of high-resolution CT scanning. Eur Arch Otorhinolaryngol. 2008;265:1455–60.

    Article  PubMed  Google Scholar 

  61. Sequeira S, Whiting B, Shimony J, Vo K, Hullar T. Accuracy of computed tomography detection of superior canal dehiscence. Otol Neurotol. 2011;32:1500–5.

    Article  PubMed  Google Scholar 

  62. Carey J, Minor L, Nager G. Dehiscence or thinning of bone overlying the superior semicircular canal in a temporal bone survey. Arch Otolaryngol-Head Neck Surg. 2000;126:137–47.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou G, Ohlms L, Liberman J, Amin M. Superior semicircular canal dehiscence in a young child: Implication of developmental defect. Int J Pediatr Otorhinolaryngol. 2007;71:1925–8.

    Article  PubMed  Google Scholar 

  64. Prisman E, Ramsden J, Blaser S, Papsin B. Traumatic perilymphatic fistula with pneumolabyrinth: diagnosis and management. Laryngoscope. 2011;121:856–9.

    Article  PubMed  Google Scholar 

  65. Ehmer D, Booth T, Kutz J, Roland P. Radiographic diagnosis of trans-stapedial cerebrospinal fluid fistula. Otolaryngol-Head Neck Surg. 2010;142:694–8.

    Article  PubMed  Google Scholar 

  66. Merchant S, Rosowski J. Conductive hearing loss caused by third-window lesions of the inner ear. Otol Neurotol. 2008;29(3):282–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Emmett J. Cerebrospinal fluid gusher during stapedectomy. Oper Tech Otolaryngol-Head Neck Surg. 2003;14(4):300–2.

    Article  Google Scholar 

  68. Micco A. Post-cochlear implant gusher and CSF leak. Oper Tech Otolaryngol-Head Neck Surg. 2003;14:297–9.

    Article  Google Scholar 

  69. Wahba H, Youssef T. Stapedectomy gusher: a clinical experience. Int Adv Otol. 2010;6:149–54.

    Google Scholar 

  70. Nance W, Setleff R, McLead A, Sweeney D, Cooper C, McConnell F. X-linked mixed deafness with congenital fixation of the stapedial footplate and perilymphatic gusher. Birth Defects. 1971;7:64–9.

    CAS  Google Scholar 

  71. Gupta S, Maheshwari S, Kirtane M, Shrivastav N. Pictorial review of MRI/CT Scan in congenital temporal bone anomalies, in patients for cochlear implant. Indian J Radiol Imaging. 2009;19:99–106.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Phelps P, Reardon W, Pembrey M, Bellman S, Luxom L. X-linked deafness, stapes gushers and a distinctive defect of the inner ear. Neuroradiology. 1991;33:326–30.

    Article  CAS  PubMed  Google Scholar 

  73. Talbot J, Wilson D. Computed tomographic diagnosis of X-linked congenital mixed deafness, fixation of the stapedial footplate, and perilymphatic gusher. Am J Otol. 1994;15:177–82.

    CAS  PubMed  Google Scholar 

  74. Tang A, Parnes L. X-linked progressive mixed hearing loss: computed tomography findings. Ann Otol Rhinol Laryngol. 1994;103:655–7.

    Article  CAS  PubMed  Google Scholar 

  75. Papadaki E, Prassopoulos P, Bizakis J, Karampekios S, Papadakis H, Gourtsoyiannis N. X-linked deafness with stapes gusher in females. Eur J Radiol. 1998;29:71–5.

    Article  CAS  PubMed  Google Scholar 

  76. Cremers C, Hombergen G, Scaf J, Huygen P, Volkers W, Pinckers A. X-linked progressive mixed deafness with perilymphatic gusher during stapes surgery. Arch Otolaryngol Head Neck Surg. 1985;111:249–54.

    Article  CAS  Google Scholar 

  77. Glasscock M. The stapes gusher. Arch Otolaryngol Head Neck Surg. 1973;98:82–91.

    Article  Google Scholar 

  78. Clarós P, Guirado C, Clarós A, Clarós A, Clavería A, Wienberg P. Association of spontaneous anterior fossa CSF rhinorrhea and congenital perilymphatic fistula in a patient with recurrent meningitis. Int J Pediatr Otorhinolaryngol. 1993;27:65–71.

    Article  PubMed  Google Scholar 

  79. Parry D, Booth T, Roland P. Advantages of magnetic resonance imaging over computed tomography in preoperative evaluation of pediatric cochlear implant candidates. Otol Neurotol. 2005;26:976–82.

    Article  PubMed  Google Scholar 

  80. Lemmerling M, Mancuso A, Antonelli P, Kubilis P. Normal modiolus: CT appearance in patients with a large vestibular aqueduct. Radiology. 1997;204:213–9.

    Article  CAS  PubMed  Google Scholar 

  81. Aschendorff A, Marangos N, Laszig R. Large vestibular aqueduct syndrome and its implication for cochlear implant surgery. Am J Otol. 1997;18(6 Suppl):S57.

    CAS  PubMed  Google Scholar 

  82. ∙ Booth T, Roland P, Kutz J, Lee K, Isaacson B. High-resolution 3-D T2-weighted imaging in the diagnosis of labyrinthitis ossificans: emphasis on subtle cochlear involvement. Pediatr Radiol. 2013;43:1584–1590. High resolution MRI was shown to have greater sensitivity for the early stages of cochlear obstruction and better able to show the full extent of involvement.

  83. Isaacson B, Booth T, Kutz J, Lee K, Roland P. Labyrinthitis ossificans: How accurate is MRI in predicting cochlear obstruction? Otolaryngol-Head Neck Surg. 2009;140:692–6.

    Article  PubMed  Google Scholar 

  84. Swartz J, Mandell D, Faerber E, Popky G, Ardito J, Steinberg S, et al. Labyrinthine ossification: etiologies and CT findings. Radiology. 1985;157:395–8.

    Article  CAS  PubMed  Google Scholar 

  85. Tinling S, Colton J, Brodie H. Location and timing of initial osteoid deposition in postmeningitic labyrinthitis ossificans determined by multiple fluorescent labels. Laryngoscope. 2004;114:675–80.

    Article  PubMed  Google Scholar 

  86. Young N, Hughes C, Byrd S, Darling C. Postmeningitic ossification in pediatric cochlear implantation. Otolaryngol Head Neck Surg. 2000;122:183–8.

    Article  CAS  PubMed  Google Scholar 

  87. Phelps P, Proops D. Imaging for cochlear implants. J Laryngol Otol. 1999;113:21–3.

    Article  Google Scholar 

  88. Kopelovich J, Germiller J, Laury A, Shah S, Pollock A. Early prediction of postmeningitic hearing loss in children using magnetic resonance imaging. Arch Otolaryngol-Head Neck Surg. 2011;137:441–7.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Swartz J. The facial nerve canal: CT analysis of the protruding tympanic segment. Radiology. 1984;153:443–7.

    Article  CAS  PubMed  Google Scholar 

  90. Takahashi H, Sando I. Facial canal dehiscence: histologic study and computer reconstruction. Ann Otol Rhinol Laryngol. 1992;101:925–30.

    Article  CAS  PubMed  Google Scholar 

  91. Moreano E, Paparella M, Zelterman D, Goycoolea M. Prevalence of facial canal dehiscence and of persistent stapedial artery in the human middle ear. Laryngoscope. 1994;104:309–20.

    CAS  PubMed  Google Scholar 

  92. Baxter A. Dehiscence of the fallopian canal: an anatomical study. J Laryngol Otol. 1971;85:587–94.

    Article  CAS  PubMed  Google Scholar 

  93. Ho M, Juliano A, Eisenberg R, Moonis G. Anatomy and pathology of the facial nerve. Am J Roentgenol. 2015;204:W612–9.

    Article  Google Scholar 

  94. Johnsson L, Kingsley T. Herniation of the facial nerve in the middle ear. Arch Otolaryngol Head Neck Surg. 1970;91:598–602.

    Article  CAS  Google Scholar 

  95. Nager G, Proctor B. II: Anatomical variations and anomalies involving the facial nerve canal. Ann Otorhinolaryngol. 1978;88(Suppl 1):45–61.

    Google Scholar 

  96. Fuse T, Tada Y, Aoyagi M, Sugai Y. CT detection of facial canal dehiscence and semicircular canal fistula: comparison with surgical findings. J Comput Assist Tomogr. 1996;20:221–4.

    Article  CAS  PubMed  Google Scholar 

  97. Goldsztein H, Roberson J. Anatomical facial nerve findings in 209 consecutive atresia cases. Otolaryngol-Head Neck Surg. 2013;148:648–52.

    Article  PubMed  Google Scholar 

  98. Yu Z, Han D, Gong S, Wang Z, Dai H, Zhao S, et al. Facial nerve course in congenital aural atresia—identified by preoperative CT scanning and surgical findings. Acta Otolaryngol. 2008;128:1375–80.

    Article  PubMed  Google Scholar 

  99. Dedhia K, Yellon R, Branstetter B, Egloff A. Anatomic variants on computed tomography in congenital aural atresia. Otolaryngol-Head Neck Surg. 2012;147:323–8.

    Article  PubMed  Google Scholar 

  100. Yellon R, Branstetter B. Prospective blinded study of computed tomography in congenital aural atresia. Int J Pediatr Otorhinolaryngol. 2010;74:1286–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah Clarke.

Ethics declarations

Conflict of interest

Rebekah Clarke and Timothy Booth each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Neuroimaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clarke, R., Booth, T. CT and MR Imaging of the Pediatric Temporal Bone: Normal Variants and Pitfalls. Curr Radiol Rep 5, 34 (2017). https://doi.org/10.1007/s40134-017-0225-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-017-0225-9

Keywords

Navigation