Skip to main content

Temporal Bone Imaging

  • Chapter
  • First Online:
Textbook of Clinical Otolaryngology
  • 1850 Accesses

Abstract

A good knowledge of the normal anatomy of the temporal bone is key to the accurate interpretation of temporal bone imaging. Correlation with clinical history and physical examination is essential to provide a correct diagnosis or appropriate differential.

Computed tomography is the method of choice for imaging of middle ear disease, conductive hearing loss, and temporal bone fractures, although MRI can add important information for cholesteatomatous disease. Patients with suspected lesions of the cerebellopontine angle or internal auditory canal are best examined with MRI. In cases of inner ear congenital malformations and petrous apex lesions, MRI and computed tomography are complementary. The value of both modalities is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CBCT:

Cone-beam CT

CPA:

Cerebellopontine angle

CSF:

Cerebrospinal fluid

CSOM:

Chronic suppurative otits media

CT:

Computed Tomography

EAC:

External auditory canal

IAC:

Inner auditory canal

IAC:

Internal auditory canal

LSCC:

Lateral semicircular canal

LVA:

Large vestibular aqueduct

MDCT:

Multidetector-CT

ME:

Middle Ear

MRI:

Magnetic Resonance Imaging

OW:

Oval window

PSCC:

Posterior semicircular canal

RW:

Round window

SSCC:

Superior semicircular canal

TB:

Temporal Bone

TM:

Tympanic membrane

References

  1. Gentric JC, Rousset JR, Garetier M, Ben Salem D, Meriot P. High-resolution computed tomography of isolated congenital anomalies of the stapes: a pictural review using oblique multiplanar reformation in the “axial stapes” plane. J Neuroradiol. 2012;39(1):58–64.

    Article  Google Scholar 

  2. Lemmerling M, de Foer B. Temporal bone imaging. New York: Springer; 2014.

    Book  Google Scholar 

  3. Daly MJ, Siewerdsen JH, Moseley DJ, et al. Intraoperative cone-beam CT for guidance of head and neck surgery: assessment of dose and image quality using a C-arm prototype. Med Phys. 2006;33:3767–80.

    Article  CAS  PubMed  Google Scholar 

  4. Loubele M, Bogaerts R, Van Dijck E, et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol. 2009;71:461Y8.

    Article  Google Scholar 

  5. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, Part 1: Physical principles. AJNR Am J Neuroradiol. 2009;30(6):1088–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mori S, Endo M, Nishizawa K, et al. Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry. Med Phys. 2005;32:1061–9.

    Article  PubMed  Google Scholar 

  7. Kyriakou Y, Deak P, Langner O, et al. Concepts for dose determination in flat-detector CT. Phys Med Biol. 2008;53:3551–66. Epub 2008 Jun 13.

    Article  PubMed  Google Scholar 

  8. Gupta R, Bartling SH, Basu SK, et al. Experimental flat-panel high-spatial resolution volume CT of the temporal bone. AJNR Am J Neuroradiol. 2004;25:1417–24.

    PubMed  Google Scholar 

  9. Dahmani-Caussea M, Marxa M, Deguinea O, Frayssea B, Lepageb B, Escudé B. Morphologic examination of the temporal bone by cone beam computed tomography: comparison with multislice helical computed tomography. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(5):230–5.

    Article  Google Scholar 

  10. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, Part 2: Clinical applications. AJNR Am J Neuroradiol. 2009;30:1285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aschendorff A, Kubalek R, Hochmuth A, et al. Imaging procedures in cochlear implant patients: evaluation of different radiological techniques. Acta Otolaryngol Suppl. 2004;552:46–9.

    Article  Google Scholar 

  12. Ruivo J, Mermuys K, Bacher K, Kuhweide R, Offeciers E, Casselman JW. Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation. Otol Neurotol. 2009;30(3):299–303. https://doi.org/10.1097/mao.0b013e31819679f9.

    Article  PubMed  Google Scholar 

  13. Révész P, Liktor B, Liktor B, Sziklai I, Gerlinger I, Karosi T. Comparative analysis of preoperative diagnostic values of HRCT and CBCT in patients with histologically diagnosed otosclerotic stapes footplates. Eur Arch Oto-Rhino-Laryngol. 2016;273(1):63–72. 10p.

    Article  Google Scholar 

  14. Redfors YD, Gröndahl HG, Hellgren J, Lindfors N, Nilsson I, Möller C. Otosclerosis: anatomy and pathology in the temporal bone assessed by multi-slice and cone-beam CT. Otol Neurotol. 2012;33:922–7.

    Article  PubMed  Google Scholar 

  15. Mangrum W, Christianson K, Duncan S, et al. Duke review of MRI principles. Philadelphia, PA: Mosby; 2012.

    Google Scholar 

  16. Dremmen MH, Hofman PA, Hof JR, Stokroos RJ, Postma AA. The diagnostic accuracy of non-echo-planar diffusion weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone. AJNR Am J Neuroradiol. 2012;33:439–44.

    Article  CAS  PubMed  Google Scholar 

  17. Dudau C, Draper A, Gkagkanasiou M, Charles-Edwards G, Pai I, Connor S. Cholesteatoma: multishot echo-planar vs non echo-planar diffusion-weighted MRI for the prediction of middle ear and mastoid cholesteatoma. BJR Open. 2019;1:20180015.

    PubMed  PubMed Central  Google Scholar 

  18. Naganawa S, Satake H, Iwano S, Fukatsu H, Sone M, Nakashima T. Imaging endolymphatic hydrops at 3 tesla using 3DFLAIR with intratympanic Gd-DTPA administration. Magn Reson Med Sci. 2008;7(2):85–91.

    Article  PubMed  Google Scholar 

  19. Venkatasamy A, Veillon F, Fleury A, Eliezer M, Abu Eid M, Romain B, Vuong H, Rohmer D, Charpiot A, Sick H, Riehm S. Imaging of the saccule for the diagnosis of endolymphatic hydrops in Meniere disease, using a three-dimensional T2-weighted steady state free precession sequence: accurate, fast, and without contrast material intravenous injection. Eur Radiol Exp. 2017;1:14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bernaerts B, Vanspauwen R, Blaivie C, van Dinther J, Zarowski A, Wuyts F, Vanden Bossche S, Offeciers E, Casselman JW, De Foer B. The value of four stage vestibular hydrops grading and asymmetric perilymphatic enhancement in the diagnosis of Menière’s disease on MRI. Neuroradiology. 2019;61:421–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fritsch M. MRI scanners and stapes prosthesis. Otol Neurotol. 2007;28:733–8.

    Article  PubMed  Google Scholar 

  22. Syms MJ. Safety of magnetic resonance imaging of stapes prostheses. Laryngoscope. 2005;115:381–90.

    Article  PubMed  Google Scholar 

  23. Mansour S, Magnan J, Nicolas K, Haidar H. Middle ear diseases. New York: Springer; 2018. p. 471–73.

    Google Scholar 

  24. Patil AR, Bhalla A, Gupta P, et al. HRCT evaluation of microtia: a retrospective study. Indian J Radiol Imaging. 2012;22(3):188–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gassner EM, Mallouhi A, Jaschke WR. Preoperative evaluation of external auditory canal atresia on high-resolution CT. AJR Am J Roentgenol. 2004;182(5):1305–12.

    Article  PubMed  Google Scholar 

  26. Mansour S, Magnan J, Haidar H, Nicolas K. Tympanic membrane retraction pocket, overview and advances in diagnosis and management. New York: Springer; 2015.

    Google Scholar 

  27. Mansour S, Magnan J, Haidar H, Nicolas K, Louryan S. Comprehensive and clinical anatomy of the middle ear. 2nd ed. New York: Springer; 2019. p 44.

    Google Scholar 

  28. Li P, Linos E, Gurgel R, Fischbein N, Blevins N. Evaluating the utility of non–echo-planar diffusion-weighted imaging in the preoperative evaluation of cholesteatoma: a meta-analysis. Laryngoscope. 2013;123:1247–50.

    Article  PubMed  Google Scholar 

  29. Lingam R, Bassett P. A meta-analysis on the diagnostic performance of non-echoplanar diffusion-weighted imaging in detecting middle ear cholesteatoma: 10 years on. Otol Neurotol. 2017;38:521–8.

    Article  PubMed  Google Scholar 

  30. Jindal M, Riskalla A, Jiang D, Connor S, O’Connor AF. A systematic review of diffusion-weighted magnetic resonance imaging in the assessment of postoperative cholesteatoma. Otol Neurotol. 2011;32:1243–49.

    Google Scholar 

  31. Mansour S, Magnan J, Nicolas K, Haidar H. Middle ear diseases. New York: Springer; 2018 chapter tympanosclerosis pages 169-181 and/or chapter otosclerosis pages 1-33.

    Google Scholar 

  32. Lagleyre S, Sorrentino T, Calmels MN, Shin YJ, Escudé B, Deguine O, Fraysse B. Reliability of high-resolution CT scan in diagnosis of otosclerosis. Otol Neurotol. 2009;30(8):1152–9.

    Article  PubMed  Google Scholar 

  33. Veillon F, Stierle JL, Dussaix J, et al. Otosclerosis imaging: matching clinical and imaging data. J Radiol. 2006;87:1756–64.

    Google Scholar 

  34. Marshall AH, Fanning N, Symons S, Shipp D, Chen JM, Nedzelski JM. Cochlear implantation in cochlear otosclerosis. Laryngoscope. 2005;115:1728–33.

    Article  CAS  PubMed  Google Scholar 

  35. Mansour S, Nicolas K, Ahmad HH. Round window otosclerosis: radiologic classification and clinical correlations. Otol Neurotol. 2011;32(3):384–92.

    Article  PubMed  Google Scholar 

  36. Sennaroglu L, Bajin MD, Pamuk E, Tahir E. Cochlear hypoplasia type four with anteriorly displaced facial nerve canal. Otol Neurotol. 2016;37:407–9.

    Article  Google Scholar 

  37. Gupta S, Mends F, Hagiwara M, Fatterpekar G, Roehm PC. Imaging the facial nerve: a contemporary review. Radiol Res Pract. 2013;2013:248039. 14 pages.

    PubMed  PubMed Central  Google Scholar 

  38. Mansour S, Magnan J, Nicolas K, Haidar H. Middle ear diseases. New York: Springer; 2018. p. 296–300.

    Google Scholar 

  39. Razek AA, Huang BY, et al. Lesions of the petrous apex: classification and findings at CT and MR imaging. Radio Graphics. 2012;32:151–73.

    Google Scholar 

  40. Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope. 1987;97:2–14.

    Article  CAS  PubMed  Google Scholar 

  41. Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope. 2002;112:230–41.

    Article  Google Scholar 

  42. Sennaroglu L. Cochlear implantation in inner ear malformations – a review article. Cochlear Implants Int. 2009;11(1):4–41.

    Google Scholar 

  43. Joshi V, Navlekar SK, Kishore G, Reddy K, Kumar E. CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. Radiographics. 2012;32:683–98.

    Article  PubMed  Google Scholar 

  44. Sennaroğlu L, Bajin M. Classification and current management of inner ear malformations. Balkan Med J. 2017;34:397–411.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mukherji SK, Baggett HC, Alley J, Carrasco VH. Enlarged cochlear aqueduct. AJNR Am J Neuroradiol. 1998;19:330–2.

    CAS  PubMed  Google Scholar 

  46. Vijayasekaran S, Halsted MJ, Boston M, Meinzen-Derr J, Bardo DME, Greinwald J, Benton C. When is the vestibular aqueduct enlarged? A statistical analysis of the normative distribution of vestibular aqueduct size. Am J Neuroradiol. 2007;28(6):1133–8.

    Article  CAS  PubMed  Google Scholar 

  47. Morimoto AK, Wiggins RH III, Hudgins PA, Hedlund GL, Hamilton B, Mukherji SK, Telian SA, Harnsberger HR. Absent semicircular canals in CHARGE syndrome: radiologic spectrum of findings. AJNR Am J Neuroradiol. 2006;27(8):1663–71.

    CAS  PubMed  Google Scholar 

  48. Wu WJ, He XB, Tan LH, Hu P, Peng AO, Xiao ZA, Yang S, Wang T, Qing J, Chen X, Li JK, Peng T, Dong YP, Liu XZ, Xie DH. Imaging assessment of profound sensorineural deafness with inner ear anatomical abnormalities. J Otol. 2015;10:29–38.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Purcell D, Fischbein N, Patel A, Johnson J, Lalwani A. Two temporal bone computed tomography measurements increase recognition of malformations and predict sensorineural hearing loss. Laryngoscope. 2006;116:1439–46.

    Article  PubMed  Google Scholar 

  50. Lemmerling M, Vanzieleghem B, Dhooge I, Van Cauwenberge P, Kunnen M. CT and MRI of the semicircular canals in the normal and diseased temporal bone. Eur Radiol. 2001;11:1210–9.

    Article  CAS  PubMed  Google Scholar 

  51. Minor LB, Solomon D, Zinreich JS, Zee DS. Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch Otolaryngol Head Neck Surg. 1998;124:249–58.

    Article  CAS  PubMed  Google Scholar 

  52. Marques S, Ajzen S, D’Ippolito G, Alonso L, Isotani S, Lederman H. Morphometric analysis of the internal auditory canal by computed tomography imaging. Iran J Radiol. 2012;9(2):71–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mani N, Sudhoff H, Rajagopal S, Moffat D, Axon P. Cranial nerve involvement in malignant external otitis: implications for clinical outcome. Laryngoscope. 2007;117:907–10.

    Article  PubMed  Google Scholar 

  54. van Kroonenburgh A, van der Meer WL, Bothof RJP, van Tilburg M, van Tongeren J, Postma AA. Advanced imaging techniques in skull base osteomyelitis due to malignant otitis externa. Curr Radiol Rep. 2018;6:3.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kumar M, Ramakrishnaiah R, Muhhamad Y, Van Hemert R, Angtuaco E. Endolymphatic sac tumor. Radiol Case Rep. 2011;6(3).

    Google Scholar 

  56. Sun YH, Wen W, Wu JH, Song JM, Guan H, Wang KX, Xu MQ. Endolymphatic sac tumor: case report and review of the literature. Diagn Pathol. 2012;7:36.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Casselman J, Lu CH, De Foer B, Delanote J. Schwannomas of the cochleo-vestibular nerve (Schwannomes du nerf vestibulo-cochléaire). In: Veillon F, editor. Imagerie de l’oreille et de l’os temporal. Tome 4, chapitre 26. Paris: Lavoisier; 2013. p. 921–57.

    Google Scholar 

  58. Bonfort G, Veillon F, Debry C, Kehrli P, Chibbaro S. VIIIth nerve cavernous hemangioma mimicking a stage 1 acoustic schwannoma. Neurochirurgie. 2015;61:352–5.

    Article  CAS  PubMed  Google Scholar 

  59. Mulkens TH, Parizel PM, Martin JJ, et al. Acoustic schwannoma: MR findings in 84 tumors. AJR Am J Roentgenol. 1993;160(2):395–8.

    Article  CAS  PubMed  Google Scholar 

  60. Schubiger O, Valvanis A, Stuckmann G, Antonuccci F. Temporal bone fractures and their complications: examination with high resolution CT. Neuroradiology. 1986;28:93–9.

    Article  CAS  PubMed  Google Scholar 

  61. Mravic M, LaChaud G, Nguyen A, Scott M, Dry S, James A. Clinical and histopathological diagnosis of glomus tumor: an institutional experience of 138 cases. Int J Surg Pathol. 2015;23(3):181–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Komori M, Yanagihara N, Hyodo J, Miuchi S. Position of TORP on the stapes footplate assessed with cone beam computed tomography. Otol Neurotol. 2012;33:1353–6.

    Article  PubMed  Google Scholar 

  63. Warren FM, Riggs S, Wiggins RH III. Computed tomographic imaging of stapes implants. Otol Neurotol. 2008;29:586–92.

    Article  PubMed  Google Scholar 

  64. Ali HI, Khater NH. Otosclerosis and complications of stapedectomy: CT and MRI correlation Alexandria. J Med. 2018;54:197–201.

    Google Scholar 

  65. Kösling K, Plontke SK, Bartel S. Imaging of otosclerosis. Fortschr Röntgenstr. 2020; https://doi.org/10.1055/a-1131-7980.

  66. Ziade G, Barake R, El Natout T, El Natout M-A. Late pneumolabyrinth after stapedectomy. Eur Ann Otorhinolaryngol Head Neck Dis. 2016;133(5):361–3.

    Article  CAS  PubMed  Google Scholar 

  67. Rangheard AS, Marsot-Dupuch K, Mark A, Meyer B, Tubiana JM. Postoperative complications in otospongiosis: usefulness of MR imaging. AJNR Am J Neuroradiol. 2001;22:1171–8.

    CAS  PubMed  Google Scholar 

  68. Barath K, Huber AM, Stämpfli P, Varga Z, Kollias S. Neuroradiology of cholesteatomas. AJNR Am J Neuroradiol. 2010;32:221–9.

    Article  PubMed  Google Scholar 

  69. Keeler JA, Kaylie DM. Cholesteatoma: is a second stage necessary? Laryngoscope. 2016;126:1499–500.

    Article  PubMed  Google Scholar 

  70. Steens S, Venderink W, Kunst D, Meijer A, Mylanus E. Repeated postoperative follow-up diffusion-weighted magnetic resonance imaging to detect residual or recurrent cholesteatoma. Otol Neurotol. 2016;37:356–61.

    Article  PubMed  Google Scholar 

  71. Juliano AF, Ginat DT, Moonis G. Imaging review of the temporal bone: Part II. Traumatic, postoperative, and noninflammatory nonneoplastic conditions. Radiology. 2015;276:655–72.

    Article  PubMed  Google Scholar 

  72. Ginat DT, Martuza RL. Postoperative imaging of vestibular schwannomas. Neurosurg Focus. 2012;33:E18.

    Article  PubMed  Google Scholar 

  73. Carlson ML, Van Abel KM, Driscoll CL, et al. Magnetic resonance imaging surveillance following vestibular schwannoma resection. Laryngoscope. 2012;122:378–88.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nicolas, K., Elsotouhy, A. (2021). Temporal Bone Imaging. In: Al-Qahtani, A., Haidar, H., Larem, A. (eds) Textbook of Clinical Otolaryngology. Springer, Cham. https://doi.org/10.1007/978-3-030-54088-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54088-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54087-6

  • Online ISBN: 978-3-030-54088-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics