Skip to main content
Log in

State-of-the-Art Review on the Geotechnical and Geoenvironmental Feasibility of Select Biochars

  • State of the Art/Practice Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

Biochar, a carbon-rich material derived from biomass through controlled or oxygen-limited pyrolysis, possesses remarkable resistance to biodegradation. Its versatile physicochemical properties have led to its widespread use in soil remediation, wastewater treatment, carbon sequestration, energy generation, and environmental mitigation. This critical review on select biochars highlights biochar production, considering factors such as temperature, residence time, heating rate, and feedstock type, which influence its properties. It is observed that for biochar production, utilizing abundant biomass resources is cost-effective and environmentally friendly. Furthermore, any biochar sourced from various materials like agricultural, industrial, and crop waste, wood, animal manure, and sewage sludge exhibits high porosity, specific surface area, and surface functional groups, facilitating its efficacy in addressing various challenges for diversified applications. The physicochemical properties of biochar, dependent on pyrolysis conditions and feedstock, necessitate a complex comprehension for targeted application. Moreover, the influence of biochar amendment on soil physicochemical characteristics is discussed. The efficacy of biochar and engineered biochar, in remediating soil contaminated with heavy metals, is compared. The role of biochar in geotechnical contexts is outlined. The current review appraises biochar's diverse applications, emphasizing its complex potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Chen X, Li L, Li X et al (2023) Effect of biochar on soil-water characteristics of soils: a pore-scale study. Water 15:1909. https://doi.org/10.3390/w15101909

    Article  Google Scholar 

  2. Li Y, Hu S, Chen J et al (2018) Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J Soils Sedim 18:546–563. https://doi.org/10.1007/s11368-017-1906-y

    Article  Google Scholar 

  3. Patel HK, Joshi MP, Kalaria RK (2021) Biochar: a futuristic tool to remove heavy metals from contaminated soils. In: Thapar Kapoor R, Treichel H, Shah MP (eds) Biochar and its application in bioremediation. Springer Nature Singapore, Singapore, pp 231–258

    Chapter  Google Scholar 

  4. Feng Q, Wang B, Chen M et al (2021) Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: a review. Resour Conserv Recycl 164:105204. https://doi.org/10.1016/j.resconrec.2020.105204

    Article  Google Scholar 

  5. Cheng N, Wang B, Wu P et al (2021) Adsorption of emerging contaminants from water and wastewater by modified biochar: a review. Environ Pollut 273:116448. https://doi.org/10.1016/j.envpol.2021.116448

    Article  Google Scholar 

  6. Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227:1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282

    Article  Google Scholar 

  7. Lu Y, Gu K, Shen Z et al (2023) Biochar implications for the engineering properties of soils: a review. Sci Total Environ 888:164185. https://doi.org/10.1016/j.scitotenv.2023.164185

    Article  Google Scholar 

  8. Cheng S, Chen T, Xu W et al (2020) Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules 25:3167. https://doi.org/10.3390/molecules25143167

    Article  Google Scholar 

  9. Lahori AH, Guo Z, Zhang Z et al (2017) Use of biochar as an amendment for remediation of heavy metal-contaminated soils: prospects and challenges. Pedosphere 27:991–1014. https://doi.org/10.1016/S1002-0160(17)60490-9

    Article  Google Scholar 

  10. Li H, Dong X, Da Silva EB et al (2017) Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072

    Article  Google Scholar 

  11. Wang H, Wang L, Zhang J et al (2020) Effects of pyrolysis temperature and reaction time on the performance of swine-manure-derived bio-binder. Transp Res Part Transp Environ 89:102608. https://doi.org/10.1016/j.trd.2020.102608

    Article  Google Scholar 

  12. Gao Y, Wu P, Jeyakumar P et al (2022) Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. J Environ Manage 313:114973. https://doi.org/10.1016/j.jenvman.2022.114973

    Article  Google Scholar 

  13. Shen Z, McMillan O, Jin F, Al-Tabbaa A (2016) Salisbury biochar did not affect the mobility or speciation of lead in kaolin in a short-term laboratory study. J Hazard Mater 316:214–220. https://doi.org/10.1016/j.jhazmat.2016.05.042

    Article  Google Scholar 

  14. Guo M, Song W, Tian J (2020) Biochar-facilitated soil remediation: mechanisms and efficacy variations. Front Environ Sci 8:521512. https://doi.org/10.3389/fenvs.2020.521512

    Article  Google Scholar 

  15. Moghal AAB, Reddy KR, Abu Sayeed Mohammed S et al (2017) Sorptive response of chromium (Cr +6) and mercury (Hg +2) from aqueous solutions using chemically modified soils. J Test Eval 45:20160066. https://doi.org/10.1520/JTE20160066

    Article  Google Scholar 

  16. Arunakumara KKIU, Walpola BC, Yoon M-H (2013) Current status of heavy metal contamination in Asia’s rice lands. Rev Environ Sci Biotechnol 12:355–377. https://doi.org/10.1007/s11157-013-9323-1

    Article  Google Scholar 

  17. Cachada A, Rocha-Santos T, Duarte AC (2018) Soil and pollution. Soil pollution. Elsevier, Amsterdam, pp 1–28

    Google Scholar 

  18. Moghal AAB, Rasheed RM, Mohammed SAS (2023) Sorptive and desorptive response of divalent heavy metal ions from EICP-treated plastic fines. Indian Geotech J 53:315–333. https://doi.org/10.1007/s40098-022-00638-8

    Article  Google Scholar 

  19. Bhagure GR, Mirgane SR (2011) Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India. Environ Monit Assess 173:643–652. https://doi.org/10.1007/s10661-010-1412-9

    Article  Google Scholar 

  20. Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013:1–11. https://doi.org/10.1155/2013/158764

    Article  Google Scholar 

  21. Proshad R, Kormoker T, Mursheed N et al (2018) Heavy metal toxicity in agricultural soil due to rapid industrialization in Bangladesh: a review. Int J Adv Geosci 6:83. https://doi.org/10.14419/ijag.v6i1.9174

    Article  Google Scholar 

  22. Kicińska A, Wikar J (2021) Ecological risk associated with agricultural production in soils contaminated by the activities of the metal ore mining and processing industry - example from southern Poland. Soil Tillage Res 205:104817. https://doi.org/10.1016/j.still.2020.104817

    Article  Google Scholar 

  23. Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099–1103. https://doi.org/10.1289/ehp.6751

    Article  Google Scholar 

  24. Tembo BD, Sichilongo K, Cernak J (2006) Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere 63:497–501. https://doi.org/10.1016/j.chemosphere.2005.08.002

    Article  Google Scholar 

  25. Gandhi M, Moghal AAB, Rasheed RM, Almajed A (2022) State-of-the-art review on geoenvironmental benign applicability of biopiles. Innov Infrastruct Solut 7:166. https://doi.org/10.1007/s41062-022-00774-3

    Article  Google Scholar 

  26. Moghal AAB, Mohammed SAS, Almajed A, Al-Shamrani MA (2020) Desorption of heavy metals from lime-stabilized arid-soils using different extractants. Int J Civ Eng 18:449–461. https://doi.org/10.1007/s40999-019-00453-y

    Article  Google Scholar 

  27. Moghal AA, Lateef MA, Abu Sayeed Mohammed S et al (2020) Heavy metal immobilization studies and enhancement in geotechnical properties of cohesive soils by EICP technique. Appl Sci. https://doi.org/10.3390/app10217568

    Article  Google Scholar 

  28. Moghal AAB, Lateef MA, Mohammed SAS et al (2020) Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions. Sustainability 12:7019. https://doi.org/10.3390/su12177019

    Article  Google Scholar 

  29. Ippolito JA, Cui L, Kammann C et al (2020) Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2:421–438. https://doi.org/10.1007/s42773-020-00067-x

    Article  Google Scholar 

  30. Chai Y, Currie RJ, Davis JW et al (2012) Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ Sci Technol 46:1035–1043. https://doi.org/10.1021/es2029697

    Article  Google Scholar 

  31. Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  Google Scholar 

  32. Chaudhari ST, Dalai AK, Bakhshi NN (2003) Production of hydrogen and/or syngas (H 2 + CO) via steam gasification of biomass-derived chars. Energy Fuels 17:1062–1067. https://doi.org/10.1021/ef030017d

    Article  Google Scholar 

  33. Varma AK, Shankar R, Mondal P (2018) A review on pyrolysis of biomass and the impacts of operating conditions on product yield, quality, and upgradation. In: Sarangi PK, Nanda S, Mohanty P (eds) Recent advancements in biofuels and bioenergy utilization. Springer Singapore, Singapore, pp 227–259

    Chapter  Google Scholar 

  34. Qiu M, Liu L, Ling Q et al (2022) Biochar for the removal of contaminants from soil and water: a review. Biochar 4:19. https://doi.org/10.1007/s42773-022-00146-1

    Article  Google Scholar 

  35. Panwar NL, Pawar A, Salvi BL (2019) Comprehensive review on production and utilization of biochar. SN Appl Sci 1:168. https://doi.org/10.1007/s42452-019-0172-6

    Article  Google Scholar 

  36. Meng F, Wang D, Zhang M (2021) Effects of different pretreatment methods on biochar properties from pyrolysis of corn stover. J Energy Inst 98:294–302. https://doi.org/10.1016/j.joei.2021.07.008

    Article  Google Scholar 

  37. Basu P (2013) Pyrolysis. Biomass gasification, pyrolysis and torrefaction. Elsevier, Amsterdam, pp 147–176

    Chapter  Google Scholar 

  38. Ezz H, Ibrahim MG, Fujii M, Nasr M (2023) Dual biogas and biochar production from rice straw biomass: a techno-economic and sustainable development approach. Biomass Convers Biorefinery 13:10807–10821. https://doi.org/10.1007/s13399-021-01879-y

    Article  Google Scholar 

  39. Suliman W, Harsh JB, Abu-Lail NI et al (2017) The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci Total Environ 574:139–147. https://doi.org/10.1016/j.scitotenv.2016.09.025

    Article  Google Scholar 

  40. Zhang Z, Chen L, Wang J et al (2018) Biochar preparation from Solidago canadensis and its alleviation of the inhibition of tomato seed germination by allelochemicals. RSC Adv 8:22370–22375. https://doi.org/10.1039/C8RA03284J

    Article  Google Scholar 

  41. Chen Y, Zhang X, Chen W et al (2017) The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour Technol 246:101–109. https://doi.org/10.1016/j.biortech.2017.08.138

    Article  Google Scholar 

  42. Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145. https://doi.org/10.1016/j.jaap.2011.11.018

    Article  Google Scholar 

  43. Wani I, Ramola S, Garg A, Kushvaha V (2021) Critical review of biochar applications in geoengineering infrastructure: moving beyond agricultural and environmental perspectives. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01346-8

    Article  Google Scholar 

  44. Oni BA, Oziegbe O, Olawole OO (2019) Significance of biochar application to the environment and economy. Ann Agric Sci 64:222–236. https://doi.org/10.1016/j.aoas.2019.12.006

    Article  Google Scholar 

  45. Ahmad M, Rajapaksha AU, Lim JE et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  46. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Advances in agronomy. Elsevier, Amsterdam, pp 47–82

    Google Scholar 

  47. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481. https://doi.org/10.1016/j.rser.2015.10.122

    Article  Google Scholar 

  48. Titiladunayo IF, McDonald AG, Fapetu OP (2012) Effect of Temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valoriz 3:311–318. https://doi.org/10.1007/s12649-012-9118-6

    Article  Google Scholar 

  49. Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133. https://doi.org/10.1016/j.chemosphere.2009.02.004

    Article  Google Scholar 

  50. Azadi N, Raiesi F (2021) Sugarcane bagasse biochar modulates metal and salinity stresses on microbial functions and enzyme activities in saline co-contaminated soils. Appl Soil Ecol 167:104043. https://doi.org/10.1016/j.apsoil.2021.104043

    Article  Google Scholar 

  51. Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143. https://doi.org/10.1021/es8002684

    Article  Google Scholar 

  52. Shaheen SM, Niazi NK, Hassan NEE et al (2019) Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev 64:216–247. https://doi.org/10.1080/09506608.2018.1473096

    Article  Google Scholar 

  53. Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London, Sterling

    Google Scholar 

  54. Zhao B, O’Connor D, Zhang J et al (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987. https://doi.org/10.1016/j.jclepro.2017.11.013

    Article  Google Scholar 

  55. Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291. https://doi.org/10.1021/es803092k

    Article  Google Scholar 

  56. Karaosmanoǧlu F, Işıḡıgür-Ergüdenler A, Sever A (2000) Biochar from the straw-stalk of rapeseed plant. Energy Fuels 14:336–339. https://doi.org/10.1021/ef9901138

    Article  Google Scholar 

  57. Shabir R, Li Y, Zhang L, Chen C (2023) Biochar surface properties and chemical composition determine the rhizobial survival rate. J Environ Manage 326:116594. https://doi.org/10.1016/j.jenvman.2022.116594

    Article  Google Scholar 

  58. Murtaza G, Ahmed Z, Eldin SM et al (2023) Biochar as a green sorbent for remediation of polluted soils and associated toxicity risks: a critical review. Separations 10:197. https://doi.org/10.3390/separations10030197

    Article  Google Scholar 

  59. Nie C, Yang X, Niazi NK et al (2018) Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere 200:274–282. https://doi.org/10.1016/j.chemosphere.2018.02.134

    Article  Google Scholar 

  60. Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. https://doi.org/10.1016/j.biortech.2012.10.150

    Article  Google Scholar 

  61. Yao Y, Gao B, Inyang M et al (2011) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102:6273–6278. https://doi.org/10.1016/j.biortech.2011.03.006

    Article  Google Scholar 

  62. Wei S, Zhu M, Fan X et al (2019) Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere 218:624–631. https://doi.org/10.1016/j.chemosphere.2018.11.177

    Article  Google Scholar 

  63. Jiang J, Peng Y, Yuan M et al (2015) Rice straw-derived biochar properties and functions as Cu(II) and cyromazine sorbents as influenced by pyrolysis temperature. Pedosphere 25:781–789. https://doi.org/10.1016/S1002-0160(15)30059-X

    Article  Google Scholar 

  64. Gamboa-Herrera JA, Ríos-Reyes CA, Vargas-Fiallo LY (2021) Mercury speciation in mine tailings amended with biochar: effects on mercury bioavailability, methylation potential and mobility. Sci Total Environ 760:143959. https://doi.org/10.1016/j.scitotenv.2020.143959

    Article  Google Scholar 

  65. Ajala EO, Olonade YO, Ajala MA, Akinpelu GS (2020) Lactic acid production from lignocellulose – a review of major challenges and selected solutions. ChemBioEng Rev 7:38–49. https://doi.org/10.1002/cben.201900018

    Article  Google Scholar 

  66. Yang X, Liu J, McGrouther K et al (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23:974–984. https://doi.org/10.1007/s11356-015-4233-0

    Article  Google Scholar 

  67. Liu P, Ptacek CJ, Blowes DW, Gould WD (2018) Control of mercury and methylmercury in contaminated sediments using biochars: a long-term microcosm study. Appl Geochem 92:30–44. https://doi.org/10.1016/j.apgeochem.2018.02.004

    Article  Google Scholar 

  68. Haghighatjou M, Shirvani M (2020) Sugarcane bagasse biochar: preparation, characterization, and its effects on soil properties and zinc sorption-desorption. Commun Soil Sci Plant Anal 51:1391–1405. https://doi.org/10.1080/00103624.2020.1763383

    Article  Google Scholar 

  69. Khadem A, Raiesi F (2017) Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Appl Soil Ecol 114:16–27. https://doi.org/10.1016/j.apsoil.2017.02.018

    Article  Google Scholar 

  70. Jośko I, Oleszczuk P, Pranagal J et al (2013) Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol Eng 60:50–59. https://doi.org/10.1016/j.ecoleng.2013.07.064

    Article  Google Scholar 

  71. Liu Z, Niu W, Chu H et al (2018) Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 13:3429–3446. https://doi.org/10.15376/biores.13.2.3429-3446

    Article  Google Scholar 

  72. Chi J, Liu H (2016) Effects of biochars derived from different pyrolysis temperatures on growth of Vallisneria spiralis and dissipation of polycyclic aromatic hydrocarbons in sediments. Ecol Eng 93:199–206. https://doi.org/10.1016/j.ecoleng.2016.05.036

    Article  Google Scholar 

  73. Gholami L, Rahimi G (2021) Chemical fractionation of copper and zinc after addition of carrot pulp biochar and thiourea–modified biochar to a contaminated soil. Environ Technol 42:3523–3532. https://doi.org/10.1080/09593330.2020.1733101

    Article  Google Scholar 

  74. Chen B, Yuan M (2011) Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sedim 11:62–71. https://doi.org/10.1007/s11368-010-0266-7

    Article  Google Scholar 

  75. Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33:1093–1109. https://doi.org/10.1016/S0146-6380(02)00062-1

    Article  Google Scholar 

  76. Ahmad M, Soo Lee S, Yang JE et al (2012) Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol Environ Saf 79:225–231. https://doi.org/10.1016/j.ecoenv.2012.01.003

    Article  Google Scholar 

  77. Lu L, Chen B (2018) Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: Combined with batch sorption and fixed-bed column studies. Environ Pollut 243:1539–1549. https://doi.org/10.1016/j.envpol.2018.09.097

    Article  Google Scholar 

  78. Zhang Y, Wang J, Feng Y (2021) The effects of biochar addition on soil physicochemical properties: a review. CATENA 202:105284. https://doi.org/10.1016/j.catena.2021.105284

    Article  Google Scholar 

  79. Ambaye TG, Vaccari M, Van Hullebusch ED et al (2021) Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol 18:3273–3294. https://doi.org/10.1007/s13762-020-03060-w

    Article  Google Scholar 

  80. Gholizadeh M, Hu X (2021) Removal of heavy metals from soil with biochar composite: a critical review of the mechanism. J Environ Chem Eng 9:105830. https://doi.org/10.1016/j.jece.2021.105830

    Article  Google Scholar 

  81. Möllers KB, Cannella D, Jørgensen H, Frigaard N-U (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7:64. https://doi.org/10.1186/1754-6834-7-64

    Article  Google Scholar 

  82. Higashikawa FS, Conz RF, Colzato M et al (2016) Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water. J Clean Prod 137:965–972. https://doi.org/10.1016/j.jclepro.2016.07.205

    Article  Google Scholar 

  83. Ronsse F, Van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115. https://doi.org/10.1111/gcbb.12018

    Article  Google Scholar 

  84. Nguyen TTN, Xu C-Y, Tahmasbian I et al (2017) Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288:79–96. https://doi.org/10.1016/j.geoderma.2016.11.004

    Article  Google Scholar 

  85. Ramola S, Belwal T, Srivastava RK (2020) Thermochemical conversion of biomass waste-based biochar for environment remediation. In: Kharissova OV, Martínez LMT, Kharisov BI (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer International Publishing, Cham, pp 1–16

    Google Scholar 

  86. Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523. https://doi.org/10.1111/gcbb.12266

    Article  Google Scholar 

  87. Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81:687–711. https://doi.org/10.2136/sssaj2017.01.0017

    Article  Google Scholar 

  88. Alkharabsheh HM, Seleiman MF, Battaglia ML et al (2021) Biochar and Its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: a review. Agronomy 11:993. https://doi.org/10.3390/agronomy11050993

    Article  Google Scholar 

  89. Feng Z, Zhu L (2018) Sorption of phenanthrene to biochar modified by base. Front Environ Sci Eng 12:1. https://doi.org/10.1007/s11783-017-0978-7

    Article  Google Scholar 

  90. Yang T, Xu Y, Huang Q et al (2021) An efficient biochar synthesized by iron-zinc modified corn straw for simultaneously immobilization Cd in acidic and alkaline soils. Environ Pollut 291:118129. https://doi.org/10.1016/j.envpol.2021.118129

    Article  Google Scholar 

  91. Sizmur T, Fresno T, Akgül G et al (2017) Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246:34–47. https://doi.org/10.1016/j.biortech.2017.07.082

    Article  Google Scholar 

  92. Lin L, Song Z, Khan ZH et al (2019) Enhanced As(III) removal from aqueous solution by Fe–Mn–La-impregnated biochar composites. Sci Total Environ 686:1185–1193. https://doi.org/10.1016/j.scitotenv.2019.05.480

    Article  Google Scholar 

  93. Li X, Qin Y, Jia Y et al (2021) Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: a review. Chemosphere 274:129766. https://doi.org/10.1016/j.chemosphere.2021.129766

    Article  Google Scholar 

  94. Van Vinh N, Zafar M, Behera SK, Park H-S (2015) Arsenic(III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies. Int J Environ Sci Technol 12:1283–1294. https://doi.org/10.1007/s13762-014-0507-1

    Article  Google Scholar 

  95. Yu Y, An Q, Jin L et al (2020) Unraveling sorption of Cr (VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: Implicit mechanism and application. Bioresour Technol 297:122466. https://doi.org/10.1016/j.biortech.2019.122466

    Article  Google Scholar 

  96. Yang T, Xu Y, Huang Q et al (2021) Adsorption characteristics and the removal mechanism of two novel Fe–Zn composite modified biochar for Cd(II) in water. Bioresour Technol 333:125078. https://doi.org/10.1016/j.biortech.2021.125078

    Article  Google Scholar 

  97. Sun Y, Wang T, Bai L et al (2022) Application of biochar-based materials for remediation of arsenic contaminated soil and water: preparation, modification, and mechanisms. J Environ Chem Eng 10:108292. https://doi.org/10.1016/j.jece.2022.108292

    Article  Google Scholar 

  98. O’Connor D, Peng T, Li G et al (2018) Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil. Sci Total Environ 621:819–826. https://doi.org/10.1016/j.scitotenv.2017.11.213

    Article  Google Scholar 

  99. Moradi N, Karimi A (2021) Fe-modified common reed biochar reduced cadmium (Cd) Mobility and enhanced microbial activity in a contaminated calcareous soil. J Soil Sci Plant Nutr 21:329–340. https://doi.org/10.1007/s42729-020-00363-2

    Article  Google Scholar 

  100. Wen E, Yang X, Chen H et al (2021) Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. J Hazard Mater 407:124344. https://doi.org/10.1016/j.jhazmat.2020.124344

    Article  Google Scholar 

  101. Wu L, Wei C, Zhang S et al (2019) MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. J Clean Prod 235:901–909. https://doi.org/10.1016/j.jclepro.2019.07.043

    Article  Google Scholar 

  102. Zhang Y, Chen Z, Chen C et al (2021) Effects of UV-modified biochar derived from phytoremediation residue on Cd bioavailability and uptake in Coriandrum sativum L. in a Cd-contaminated soil. Environ Sci Pollut Res 28:17395–17404. https://doi.org/10.1007/s11356-020-11931-5

    Article  Google Scholar 

  103. Zhang G, Liu X, Gao M, Song Z (2020) Effect of Fe–Mn–Ce modified biochar composite on microbial diversity and properties of arsenic-contaminated paddy soils. Chemosphere 250:126249. https://doi.org/10.1016/j.chemosphere.2020.126249

    Article  Google Scholar 

  104. Rutherford DW, Wershaw RL, Rostad CE, Kelly CN (2012) Effect of formation conditions on biochars: compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenergy 46:693–701. https://doi.org/10.1016/j.biombioe.2012.06.026

    Article  Google Scholar 

  105. Martinsen V, Alling V, Nurida N et al (2015) pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Sci Plant Nutr 61:821–834. https://doi.org/10.1080/00380768.2015.1052985

    Article  Google Scholar 

  106. DeLuca TH, Gundale MJ, MacKenzie MD (2015) Jones DL Biochar effects on soil nutrient transformations. Biochar Environ Manage Sci Technol Implement 2:421–454

    Google Scholar 

  107. Brewer CE, Unger R, Schmidt-Rohr K, Brown RC (2011) Criteria to select biochars for field studies based on biochar chemical properties. BioEnergy Res 4:312–323. https://doi.org/10.1007/s12155-011-9133-7

    Article  Google Scholar 

  108. Cao CTN, Farrell C, Kristiansen PE, Rayner JP (2014) Biochar makes green roof substrates lighter and improves water supply to plants. Ecol Eng 71:368–374. https://doi.org/10.1016/j.ecoleng.2014.06.017

    Article  Google Scholar 

  109. Adekiya AO, Agbede TM, Olayanju A et al (2020) Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam alfisol. Sci World J 2020:1–9. https://doi.org/10.1155/2020/9391630

    Article  Google Scholar 

  110. Kätterer T, Roobroeck D, Andrén O et al (2019) Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Res 235:18–26. https://doi.org/10.1016/j.fcr.2019.02.015

    Article  Google Scholar 

  111. Rubin RL, Anderson TR, Ballantine KA (2020) Biochar simultaneously reduces nutrient leaching and greenhouse gas emissions in restored wetland soils. Wetlands 40:1981–1991. https://doi.org/10.1007/s13157-020-01380-8

    Article  Google Scholar 

  112. Yu O-Y, Raichle B, Sink S (2013) Impact of biochar on the water holding capacity of loamy sand soil. Int J Energy Environ Eng 4:44. https://doi.org/10.1186/2251-6832-4-44

    Article  Google Scholar 

  113. Gul S, Whalen JK, Thomas BW et al (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59. https://doi.org/10.1016/j.agee.2015.03.015

    Article  Google Scholar 

  114. Nelissen V, Ruysschaert G, Manka’Abusi D, et al (2015) Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Eur J Agron 62:65–78. https://doi.org/10.1016/j.eja.2014.09.006

    Article  Google Scholar 

  115. Liu Z, Dugan B, Masiello CA, Gonnermann HM (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 12:e0179079. https://doi.org/10.1371/journal.pone.0179079

    Article  Google Scholar 

  116. Głąb T, Palmowska J, Zaleski T, Gondek K (2016) Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281:11–20. https://doi.org/10.1016/j.geoderma.2016.06.028

    Article  Google Scholar 

  117. Herath HMSK, Camps-Arbestain M, Hedley M (2013) Effect of biochar on soil physical properties in two contrasting soils: an alfisol and an andisol. Geoderma 209–210:188–197. https://doi.org/10.1016/j.geoderma.2013.06.016

    Article  Google Scholar 

  118. Cui J, Jin Q, Li Y, Li F (2019) Oxidation and removal of As( iii ) from soil using novel magnetic nanocomposite derived from biomass waste. Environ Sci Nano 6:478–488. https://doi.org/10.1039/C8EN01257A

    Article  Google Scholar 

  119. Bolan N, Kunhikrishnan A, Thangarajan R et al (2014) Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J Hazard Mater 266:141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018

    Article  Google Scholar 

  120. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL et al (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023

    Article  Google Scholar 

  121. Meier S, Curaqueo G, Khan N et al (2017) Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. J Soils Sediments 17:741–750. https://doi.org/10.1007/s11368-015-1256-6

    Article  Google Scholar 

  122. Gonzaga MIS, Mackowiak C, Quintão De Almeida A et al (2018) Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil. Chemosphere 201:278–285. https://doi.org/10.1016/j.chemosphere.2018.03.038

    Article  Google Scholar 

  123. Sontakke AD, Tiwari S, Bhattacharjee A, et al (2022) Recent Advances in Biochar Production and Its Applications toward Textile Industry Effluent Treatment. Des Biochar Assist Bioremediation Ind Effl 1–21

  124. Xu R, Zhao A (2013) Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China. Environ Sci Pollut Res 20:8491–8501. https://doi.org/10.1007/s11356-013-1769-8

    Article  Google Scholar 

  125. Choppala G, Bolan N, Kunhikrishnan A, Bush R (2016) Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere 144:374–381. https://doi.org/10.1016/j.chemosphere.2015.08.043

    Article  Google Scholar 

  126. Zong Y, Xiao Q, Malik Z et al (2021) Crop straw-derived biochar alleviated cadmium and copper phytotoxicity by reducing bioavailability and accumulation in a field experiment of rice-rape-corn rotation system. Chemosphere 280:130830. https://doi.org/10.1016/j.chemosphere.2021.130830

    Article  Google Scholar 

  127. Kameyama K, Miyamoto T, Shiono T, Shinogi Y (2012) Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J Environ Qual 41:1131–1137. https://doi.org/10.2134/jeq2010.0453

    Article  Google Scholar 

  128. Slavich PG, Sinclair K, Morris SG et al (2013) Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant Soil 366:213–227. https://doi.org/10.1007/s11104-012-1412-3

    Article  Google Scholar 

  129. Song P, Xu H, Sun S et al (2022) Remediation of arsenic-spiked soil by biochar-loaded nanoscale zero-valent iron: performance, mechanism, and microbial response. J Clean Prod 380:134985. https://doi.org/10.1016/j.jclepro.2022.134985

    Article  Google Scholar 

  130. Hafeez A, Pan T, Tian J, Cai K (2022) Modified biochars and their effects on soil quality: a review. Environments 9:60. https://doi.org/10.3390/environments9050060

    Article  Google Scholar 

  131. Wang B, Gao B, Fang J (2017) Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol 47:2158–2207. https://doi.org/10.1080/10643389.2017.1418580

    Article  Google Scholar 

  132. Zhou Y, Gao B, Zimmerman AR et al (2013) Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem Eng J 231:512–518. https://doi.org/10.1016/j.cej.2013.07.036

    Article  Google Scholar 

  133. Shaker AA, Al-Shamrani MA, Moghal AA, Vydehi KV (2021) Effect of confining conditions on the hydraulic conductivity behavior of fiber-reinforced lime blended semiarid soil. Materials. https://doi.org/10.3390/ma14113120

    Article  Google Scholar 

  134. Baig MAA, Venkata V, Baig MM et al (2020) Effect of calcium-based derivatives on consolidation, strength, and lime-leachability behavior of expansive soil. J Mater Civ Eng 32:04020048. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003088

    Article  Google Scholar 

  135. Moghal AAB (2017) State-of-the-art review on the role of fly ashes in geotechnical and geoenvironmental applications. J Mater Civ Eng 29:04017072. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001897

    Article  Google Scholar 

  136. Moghal AAB (2013) Geotechnical and physico-chemical characterization of low lime fly ashes. Adv Mater Sci Eng 2013:1–11. https://doi.org/10.1155/2013/674306

    Article  Google Scholar 

  137. Kumar MA, Moghal AAB, Vydehi KV, Almajed A (2023) Embodied energy in the production of guar and xanthan biopolymers and their cross-linking effect in enhancing the geotechnical properties of cohesive soil. Buildings 13:2304. https://doi.org/10.3390/buildings13092304

    Article  Google Scholar 

  138. Rasheed RM, Moghal AAB, Rambabu S, Almajed A (2023) Sustainable assessment and carbon footprint analysis of polysaccharide biopolymer-amended soft soil as an alternate material to canal lining. Front Environ Sci 11:1214988. https://doi.org/10.3389/fenvs.2023.1214988

    Article  Google Scholar 

  139. Rasheed RM, Moghal AAB, Jannepally SSR et al (2023) Shrinkage and consolidation characteristics of chitosan-amended soft soil—a sustainable alternate landfill liner material. Buildings 13:2230. https://doi.org/10.3390/buildings13092230

    Article  Google Scholar 

  140. Pradeep PS, Mayakrishnan M (2023) Understanding the engineering behaviour of expansive soil amended with bagasse ash and lime using microstructural analysis. Int J Geosynth Ground Eng 9:26. https://doi.org/10.1007/s40891-023-00445-y

    Article  Google Scholar 

  141. Rogovska N, Laird DA, Karlen DL (2016) Corn and soil response to biochar application and stover harvest. Field Crops Res 187:96–106. https://doi.org/10.1016/j.fcr.2015.12.013

    Article  Google Scholar 

  142. Reddy KR, Yaghoubi P, Yukselen-Aksoy Y (2015) Effects of biochar amendment on geotechnical properties of landfill cover soil. Waste Manag Res J Sustain Circ Econ 33:524–532. https://doi.org/10.1177/0734242X15580192

    Article  Google Scholar 

  143. Pardo GS, Sarmah AK, Orense RP (2019) Mechanism of improvement of biochar on shear strength and liquefaction resistance of sand. Géotechnique 69:471–480. https://doi.org/10.1680/jgeot.17.P.040

    Article  Google Scholar 

  144. GuhaRay A, Guoxiong M, Sarkar A et al (2019) Geotechnical and chemical characterization of expansive clayey soil amended by biochar derived from invasive weed species Prosopis juliflora. Innov Infrastruct Solut 4:44. https://doi.org/10.1007/s41062-019-0231-2

    Article  Google Scholar 

  145. Kamdar BA, Solanki CH, Reddy KR (2023) Moringa seed cake biochar: a novel binder for sustainable remediation of lead-contaminated soil. J Environ Eng 149:04023059. https://doi.org/10.1061/JOEEDU.EEENG-7332

    Article  Google Scholar 

  146. Sadasivam BY, Reddy KR (2015) Engineering properties of waste wood-derived biochars and biochar-amended soils. Int J Geotech Eng 9:521–535. https://doi.org/10.1179/1939787915Y.0000000004

    Article  Google Scholar 

  147. Wang H, She D, Fei Y, Tang S (2019) Synergic effects of biochar and polyacrylamide amendments on the mechanical properties of silt loam soil under coastal reclamation in China. CATENA 182:104152. https://doi.org/10.1016/j.catena.2019.104152

    Article  Google Scholar 

  148. Liu S, Su Z, Li M, Shao L (2020) Slope stability analysis using elastic finite element stress fields. Eng Geol 273:105673. https://doi.org/10.1016/j.enggeo.2020.105673

    Article  Google Scholar 

  149. Petersen CT, Hansen E, Larsen HH et al (2016) Pore-size distribution and compressibility of coarse sandy subsoil with added biochar: Physical properties of sand with added biochar. Eur J Soil Sci 67:726–736. https://doi.org/10.1111/ejss.12383

    Article  Google Scholar 

  150. Williams JM, Vahedifard F, Latifi N (2020) Mechanical, chemical, hydraulic, and microstructural properties of buckshot clay amended with gasification biochar. J Environ Eng 146:04020123. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001809

    Article  Google Scholar 

  151. Cai W, Bordoloi S, Ng CWW, Sarmah AK (2022) Influence of pore fluid salinity on shrinkage and water retention characteristics of biochar amended kaolin for landfill liner application. Sci Total Environ 838:156493. https://doi.org/10.1016/j.scitotenv.2022.156493

    Article  Google Scholar 

  152. Kong YX, Zhou AN (2020) Swelling behaviour and microstructure of biochar bentonite. Géotechnique Lett 10:320–326. https://doi.org/10.1680/jgele.19.00251

    Article  Google Scholar 

  153. Soinne H, Hovi J, Tammeorg P, Turtola E (2014) Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 219–220:162–167. https://doi.org/10.1016/j.geoderma.2013.12.022

    Article  Google Scholar 

  154. Ren X, Kang J, Ren J et al (2020) A method for estimating soil water characteristic curve with limited experimental data. Geoderma 360:114013. https://doi.org/10.1016/j.geoderma.2019.114013

    Article  Google Scholar 

  155. Garg A, Wani I, Kushvaha V (2022) Application of artificial intelligence for predicting erosion of biochar amended soils. Sustainability. https://doi.org/10.3390/su14020684

    Article  Google Scholar 

  156. Unuofin JO, Aladekoyi OJ, Odeniyi OA (2021) Food wastes: perceptions, impacts and management. In: Haq I, Kalamdhad AS (eds) Emerging treatment technologies for waste management. Springer Singapore, Singapore, pp 175–196

    Chapter  Google Scholar 

  157. Lehmann J, Lan Z, Hyland C et al (2005) Long-term dynamics of phosphorus forms and retention in manure-amended soils. Environ Sci Technol 39:6672–6680. https://doi.org/10.1021/es047997g

    Article  Google Scholar 

  158. Anyanwu IN, Alo MN, Onyekwere AM et al (2018) Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants. Ecotoxicol Environ Saf 153:116–126. https://doi.org/10.1016/j.ecoenv.2018.02.005

    Article  Google Scholar 

  159. Liu Y, Lonappan L, Brar SK, Yang S (2018) Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Sci Total Environ 645:60–70. https://doi.org/10.1016/j.scitotenv.2018.07.099

    Article  Google Scholar 

  160. Liu Y, Weng Z, Han B et al (2023) Recent studies on the comprehensive application of biochar in multiple environmental fields. J Clean Prod 421:138495. https://doi.org/10.1016/j.jclepro.2023.138495

    Article  Google Scholar 

Download references

Funding

This project was financially supported by the National Institute of Technology Warangal, Warangal, India, under “Research Seed Grant No.: NITW/AC-7/RSM-Bdgt/2018-2019/P1015” and the Ministry of Education (formerly known as Ministry of Human Resource and Development), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

MN did writing original draft and editing. AABM done writing original draft editing, and supervision.

Corresponding author

Correspondence to Arif Ali Baig Moghal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

This article does not contain any studies with humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuruddin, M., Moghal, A.A.B. State-of-the-Art Review on the Geotechnical and Geoenvironmental Feasibility of Select Biochars. Indian Geotech J (2023). https://doi.org/10.1007/s40098-023-00788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40098-023-00788-3

Keywords

Navigation