Skip to main content

Advertisement

Log in

Geoenvironmental Considerations for Bulk Reuse of MSW Residues from Old Dumps and WTE Plants in Geotechnical Applications

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

For achieving sustainability in management of municipal solid waste (MSW), it is important to ensure that residues, remaining after processing of waste in various plants (composting, waste to energy (WTE), landfilling), are reutilised in a safe and useful manner. Such residues constitute more than 25–35% of the total MSW generated in urban areas. This paper examines the feasibility of using soil-sized residues from landfill mining operations as well as from WTE plants in large quantities (bulk) in geotechnical applications relating to earthworks and structural fills. The geotechnical properties of the residues as well as the contaminants of concern in these residues from two waste dumps and three waste-to-energy plants of Delhi have been evaluated and the critical parameters inhibiting their un-restricted bulk reuse have been identified. The role of high soluble solids, high organic content, elevated heavy metals, release of colour and variable pH has been brought out. The design measures and treatment methods that need to be adopted when using these residues in surface fills, shallow fills, deep fills and structural fills have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ministry of Environment F and CC (2016) Solid waste management rules. New Delhi

  2. Paras Singh (2019) Indore treated 15 lakh metric tonnes in just 3 years. Times of India

  3. NGT (2019) Order dated 17th July 2019 on OA 519/2019 and 386/2019 regarding “Below Mountains of Trash Lie Poison Lakes”

  4. Gupta G, Datta M, Ramana G V, Alappat BJ (2017) Feasibility of using MSW incinerator ash in geotechnical applications. In: Indian geotechnical conference GeoNEst. Guwahati, India

  5. Chandler AJ, Eighmy TT, Hjelmar O et al (1997) Municipal solid waste incinerator residues. Elsevier, Amsterdam

    Google Scholar 

  6. Lam CHK, Ip AWM, Barford JP, McKay G (2010) Use of incineration MSW ash: a review. Sustainability 2:1943–1968. https://doi.org/10.3390/su2071943

    Article  Google Scholar 

  7. Margallo M, Taddei MBM, Hernández-Pellón A et al (2015) Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation. Clean Technol Environ Policy 17:1333–1353. https://doi.org/10.1007/s10098-015-0961-6

    Article  Google Scholar 

  8. Li M, Xiang J, Hu S et al (2004) Characterization of solid residues from municipal solid waste incinerator. Fuel 83:1397–1405. https://doi.org/10.1016/j.fuel.2004.01.005

    Article  Google Scholar 

  9. Chang F-Y, Wey M-Y (2006) Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. J Hazard Mater 138:594–603. https://doi.org/10.1016/j.jhazmat.2006.05.099

    Article  Google Scholar 

  10. Yu J, Sun L, Xiang J et al (2013) Physical and chemical characterization of ashes from a municipal solid waste incinerator in China. Waste Manag Res 31:663–673. https://doi.org/10.1177/0734242X13485793

    Article  Google Scholar 

  11. Somani M, Datta M, Ramana GV (2017) Critical aspects relating to re-use of aged municipal solid waste for geotechnical purposes. In: Indian geotechnical conference 2017 GeoNEst. Guwahati, India, pp 14–17

  12. Somani M, Datta M, Ramana GV, Sreekrishnan TR (2018) Investigations on fine fraction of aged municipal solid waste recovered through landfill mining: case study of three dumpsites from India. Waste Manag Res 36:744–755. https://doi.org/10.1177/0734242X18782393

    Article  Google Scholar 

  13. Somani M, Datta M, Gupta SKK et al (2019) Comprehensive assessment of the leachate quality and its pollution potential from six municipal waste dumpsites of India. Bioresour Technol Reports 6:198–206. https://doi.org/10.1016/j.biteb.2019.03.003

    Article  Google Scholar 

  14. Somani M, Datta M, Ramana GVV, Sreekrishnan TR (2020) Contaminants in soil-like material recovered by landfill mining from five old dumps in India. Process Saf Environ Prot 137:82–92. https://doi.org/10.1016/j.psep.2020.02.010

    Article  Google Scholar 

  15. Somani M, Datta M, Ramana GV, Sreekrishnan TR (2020) Release of dark-colored leachate from mined aged municipal solid waste from landfills. In: Latha Gali M, Raghuveer Rao P (eds) Geotechnical characterization and modelling. Lecture notes in civil engineering. Springer, Singapore, pp 378–386

    Google Scholar 

  16. Gupta G, Datta M, Ramana GV et al (2019) Feasibility of reuse of bottom ash from MSW waste-to-energy plants in India. In: Zhan L, Chen Y (ed) Proceedings of the 8th international congress on environmental geotechnics Volume 1. ICEG 2018. Environmental Science and Engineering. Springer, Singapore, pp 344–350

  17. Gupta G, Datta M, Ramana GV, et al (2021) Contaminants of concern (CoCs) pivotal in assessing the fate of MSW incineration bottom ash (MIBA): First results from India and analogy between several countries. Waste Manag (paper communicated)

  18. Gupta G, Datta M, Ramana GV, Alappat BJ (2019) Estimation of total soluble solids in MSW incineration bottom ash by higher dilution method: assessment for geotechnical reuse. In: Indian geotechnical conference, IGC-2019, Surat, India

  19. Gupta G, Gupta D, Datta M et al (2021) Laboratory investigations on geotechnical properties of screened bottom ash from two MSW incineration plants in Delhi. In: Latha Gali M, Raghuveer Rao P (eds) Problematic soils and geoenvironmental concerns,Lecture notes in civil engineering. Springer, Singapore, pp 1–9

    Google Scholar 

  20. ASTM D5231–92 (2016) Standard test method for determination of the composition of unprocessed municipal solid waste. American Society for Testing and Materials, New York

    Google Scholar 

  21. SP 36-1 (1987) Compendium of Indian standards on soil engineering: part-1 Laboratory testing of soils for civil engineering purposes. Bureau of Indian Standards, India

    Google Scholar 

  22. Funari V, Braga R, Bokhari SNH et al (2015) Solid residues from Italian municipal solid waste incinerators: a source for “critical” raw materials. Waste Manag 45:206–216. https://doi.org/10.1016/j.wasman.2014.11.005

    Article  Google Scholar 

  23. Mönkäre TJ, Palmroth MRT, Rintala JA (2017) Screening biological methods for laboratory scale stabilization of fine fraction from landfill mining. Waste Manag 60:739–747. https://doi.org/10.1016/j.wasman.2016.11.015

    Article  Google Scholar 

  24. American Public Health Association (APHA) AWWA (AWWA) and WEF (WEF) (2012) Standard methods for the examination of water and wastewater. Washington, D.C., USA

  25. EN 12457-2 (2002) Characterisation of waste—leaching—compliance test for leaching of granular waste materials and sludges—part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). European Committee for Standarization

  26. USEPA (1992) Method 1311 (SW-846) -Toxicity characteristic leaching procedure

  27. USEPA (2014) Method 6020B (SW-846)—Inductively coupled plasma mass spectrometry

  28. USEPA (1996) Method 3050B (SW-846)—acid digestion of sediments, sludges and soils. Environmental Protection Agengy, New York

    Google Scholar 

  29. Kaartinen T, Sormunen K, Rintala J (2013) Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. J Clean Prod 55:56–66. https://doi.org/10.1016/j.jclepro.2013.02.036

    Article  Google Scholar 

  30. Central Road Research Instit (2016) Utilization of municipal solid waste in road embankment. New Delhi

  31. Song Y-S, Yun J-M, Hong W-P, Kim T-H (2003) Investigation of solid waste soil as road construction material. Environ Geol 44:203–209. https://doi.org/10.1007/s00254-002-0746-1

    Article  Google Scholar 

  32. Kemeklytė R, Bučinskas A, Denafas G (2019) Investigation of metals content in the fine fraction of municipal waste from Alytus Regional Landfill. Chemija 30:176–183. https://doi.org/10.6001/chemija.v30i3.4052

    Article  Google Scholar 

  33. Vollprecht D, Hernández Parrodi JC, Lucas HI, Pomberger R (2020) Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Mechanical processing, physico-chemical and mineralogical characterization of fine fractions < 4.5 mm. Detritus. https://doi.org/10.31025/2611-4135/2020.13940

  34. INDOT (2020) Standard Specifications. Indiana Department of Transportation

  35. FDOT (2020) Standard Specifications for Road and Bridge Construction. Florida Department of Transportation

  36. Berg R, Christopher B, Samtani N (2009) Design and construction of mechanically stabilized earth walls and reinforced soil slopes. US Department of Transportation, Federal Highway Administration, Washington, D.C.

    Google Scholar 

  37. COWI (2015) Screening and response levels: an overview in final report “Inventory and mapping of probably contaminated sites in India: Task 2—approaches for identification and assessment of contaminated sites in India”. Appendix E

  38. Forteza R, Far M, Seguί, Cerdá V (2004) Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Manag 24:899–909. https://doi.org/10.1016/j.wasman.2004.07.004

    Article  Google Scholar 

  39. Lin CF, Wu CH, Ho HM (2006) Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials. Waste Manag 26:970–978. https://doi.org/10.1016/j.wasman.2005.09.014

    Article  Google Scholar 

  40. Tang P, Florea MVA, Spiesz P, Brouwers HJH (2016) Application of thermally activated municipal solid waste incineration (MSWI) bottom ash fines as binder substitute. Cem Concr Compos 70:194–205. https://doi.org/10.1016/j.cemconcomp.2016.03.015

    Article  Google Scholar 

  41. Santos RM, Mertens G, Salman M et al (2013) Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. J Environ Manage 128:807–821. https://doi.org/10.1016/j.jenvman.2013.06.033

    Article  Google Scholar 

  42. Datta M, Somani M, Ramana GV, Sreekrishnan TR (2021) Feasibility of re-using soil-like material obtained from mining of old MSW dumps as an earth-fill and as compost. Process Saf Environ Prot 147:477–487. https://doi.org/10.1016/j.psep.2020.09.051

    Article  Google Scholar 

  43. Oettle NK, Matasovic N, Kavazanjian E, Rad N (2010) Characterization and placement of municipal solid waste as engineered fill. In: Researchgate.NetGlobal Waste Management Symposium. San Antonio, Texas

  44. Nelson H (1995) Landfill reclamation projects on the rise. Biocycle 36:83–84

    Google Scholar 

  45. Joseph K, Nagendran R, Thanasekaran K et al (2008) Dumpsite rehabilitation manual. Chennai

  46. IWCS (2009) Landfill reclamation demonstration project. Perdido

  47. Dhar A (2015) Landfill mining—a comprehensive review. University of Texas at Arlington

  48. Lentz D, Demars KR, Long RP, Garrick NW (1994) Performance and analysis of incinerator bottom ash as structural fill

  49. Wiles C, Shepherd P (1999) Beneficial use and recycling of municipal waste combustion residues—a comprehensive resource document (NREL/BK-570-25841). Colorado, USA

  50. IEA Bioenergy (2001) The management of residues from thermal processes. Internet

  51. Rogbeck J, Hartlén J (1996) Ash gravel—a material for recycling. Waste Manag 16:109–112. https://doi.org/10.1016/S0956-053X(96)00032-3

    Article  Google Scholar 

  52. Olsson S, Kärrman E, Gustafsson JP (2006) Environmental systems analysis of the use of bottom ash from incineration of municipal waste for road construction. Resour Conserv Recycl 48:26–40. https://doi.org/10.1016/j.resconrec.2005.11.004

    Article  Google Scholar 

  53. Arm M, Suer P, Arvidsson H, Lindqvist J-E (2011) Technical and environmental long-term properties of industrial residues—summary of field and laboratory investigations. Waste Manag 31:101–107. https://doi.org/10.1016/j.wasman.2010.09.004

    Article  Google Scholar 

  54. Kurian J, Esakku S, Palanivelu K, Selvam A (2003) Studies on landfill mining at solid waste dumpsites in India. In: Proceedings Sardinia’03, Ninth International Landfill Symposium, Cagliari, Italy

  55. Hogland W, Marques M, Nimmermark S (2004) Landfill mining and waste characterization: a strategy for remediation of contaminated areas. J Mater Cycles Waste Manag 6:119–124. https://doi.org/10.1007/s10163-003-0110-x

    Article  Google Scholar 

  56. Rong L, Zhang C, Jin D, Dai Z (2017) Assessment of the potential utilization of municipal solid waste from a closed irregular landfill. J Clean Prod 142:413–419. https://doi.org/10.1016/j.jclepro.2015.10.050

    Article  Google Scholar 

  57. Singh A, Chandel MK (2020) Effect of ageing on waste characteristics excavated from an Indian dumpsite and its potential valorisation. Process Saf Environ Prot 134:24–35. https://doi.org/10.1016/j.psep.2019.11.025

    Article  Google Scholar 

  58. Somani M, Datta M, Ramana GV, Sreekrishnan TR (2019) Leachate characteristics of aged soil-like material from MSW dumps: sustainability of landfill mining. J Hazardous Toxic Radioact Waste 23:04019014. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000452

    Article  Google Scholar 

  59. Wanka S, Münnich K, Fricke K (2017) Landfill mining—wet mechanical treatment of fine MSW with a wet jigger. Waste Manag 59:316–323. https://doi.org/10.1016/j.wasman.2016.10.050

    Article  Google Scholar 

  60. López CG, Küppers B, Clausen A, Pretz T (2018) Landfill mining: a case study regarding sampling, processing and characterization of excavated waste from an Austrian landfill. Detritus 2:29. https://doi.org/10.31025/2611-4135/2018.13664

    Article  Google Scholar 

  61. Esakku S, Palanivelu K, Joseph K (2003) Assessment of heavy metals in a municipal solid waste dumpsite. In: Workshop on sustainable landfill management, Chennai, pp 139–145

  62. Prechthai T, Padmasri M, Visvanathan C (2008) Quality assessment of mined MSW from an open dumpsite for recycling potential. Resour Conserv Recycl 53:70–78. https://doi.org/10.1016/j.resconrec.2008.09.002

    Article  Google Scholar 

  63. Masi S, Caniani D, Grieco E et al (2014) Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Manag 34:702–710. https://doi.org/10.1016/j.wasman.2013.12.013

    Article  Google Scholar 

  64. USEPA (2011) 40 CFR 261.24—toxicity characteristic. Environmental Protection Agency, USA

  65. Burlakovs J, Kaczala F, Vincevica-Gaile Z et al (2016) Mobility of metals and valorization of sorted fine fraction of waste after landfill excavation. Waste Biomass Valorization 7:593–602. https://doi.org/10.1007/s12649-016-9478-4

    Article  Google Scholar 

  66. Soil Quality Decree (2007) Regeling Bodemkwaliteit. VROM, Ruimte en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordeling en Milieubeheer, Den Haag

  67. Arm M (2004) Variation in deformation properties of processed MSWI bottom ash: results from triaxial tests. Waste Manag 24:1035–1042. https://doi.org/10.1016/j.wasman.2004.07.013

    Article  Google Scholar 

  68. Inkaew K, Saffarzadeh A, Shimaoka T (2014) Characterization of grate sifting deposition ash, unquenched bottom ash and water-quenched bottom ash from mass-burn moving grate waste to energy plant. J Jpn Soc Civ Eng Ser G. https://doi.org/10.2208/jscejer.70.III_469

    Article  Google Scholar 

  69. Šyc M, Krausová A, Kameníková P et al (2018) Material analysis of bottom ash from waste-to-energy plants. Waste Manag 73:360–366. https://doi.org/10.1016/j.wasman.2017.10.045

    Article  Google Scholar 

  70. Zhu Y, Zhao Y, Zhao C, Gupta R (2020) Physicochemical characterization and heavy metals leaching potential of municipal solid waste incinerated bottom ash (MSWI-BA) when utilised in road construction. Environ Sci Pollut Res 27:14184–14197. https://doi.org/10.1007/s11356-020-08007-9

    Article  Google Scholar 

  71. Hjelmar O, Holm J, Crillesen K (2007) Utilisation of MSWI bottom ash as sub-base in road construction: first results from a large-scale test site. J Hazard Mater 139:471–480. https://doi.org/10.1016/j.jhazmat.2006.02.059

    Article  Google Scholar 

  72. Lin C-L, Weng M-C, Chang C-H (2012) Effect of incinerator bottom-ash composition on the mechanical behavior of backfill material. J Environ Manage 113:377–382. https://doi.org/10.1016/j.jenvman.2012.09.013

    Article  Google Scholar 

  73. Puma S, Marchese F, Dominijanni A, Manassero M (2013) Reuse of MSWI bottom ash mixed with natural sodium bentonite as landfill cover material. Waste Manag Res 31:577–584. https://doi.org/10.1177/0734242X13477722

    Article  Google Scholar 

  74. Nikravan M, Ramezanianpour AA, Maknoon R (2020) Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant. J Environ Manage 260:110042. https://doi.org/10.1016/j.jenvman.2019.110042

    Article  Google Scholar 

  75. Tay J, Goh ATC (1991) Engineering properties of incinerator residue. J Environ Eng 117:224–235. https://doi.org/10.1061/(ASCE)0733-9372(1991)117:2(224)

    Article  Google Scholar 

  76. Pandeline DA, Cosentino PJ, Kalajian EH, Chavez MF (1997) Shear and deformation characteristics of municipal waste combustor bottom ash for highway applications. Transp Res Rec J Transp Res Board 1577:101–108. https://doi.org/10.3141/1577-13

    Article  Google Scholar 

  77. Muhunthan B, Taha R, Said J (2004) Geotechnical engineering properties of incinerator ash mixes. J Air Waste Manage Assoc 54:985–991. https://doi.org/10.1080/10473289.2004.10470959

    Article  Google Scholar 

  78. Le NH, Razakamanantsoa A, Nguyen M-L et al (2018) Evaluation of physicochemical and hydromechanical properties of MSWI bottom ash for road construction. Waste Manag 80:168–174. https://doi.org/10.1016/j.wasman.2018.09.007

    Article  Google Scholar 

  79. Gori M, Bergfeldt B, Pfrang-Stotz G et al (2011) Effect of short-term natural weathering on MSWI and wood waste bottom ash leaching behaviour. J Hazard Mater 189:435–443. https://doi.org/10.1016/j.jhazmat.2011.02.045

    Article  Google Scholar 

  80. Yang S, Saffarzadeh A, Shimaoka T, Kawano T (2014) Existence of Cl in municipal solid waste incineration bottom ash and dechlorination effect of thermal treatment. J Hazard Mater 267:214–220. https://doi.org/10.1016/j.jhazmat.2013.12.045

    Article  Google Scholar 

  81. Wang Y, Huang L, Lau R (2016) Conversion of municipal solid waste incineration bottom ash to sorbent material: effect of ash particle size. J Taiwan Inst Chem Eng 68:351–359. https://doi.org/10.1016/j.jtice.2016.09.026

    Article  Google Scholar 

  82. Loginova E, Volkov DS, van de Wouw PMF et al (2019) Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash. J Clean Prod 207:866–874. https://doi.org/10.1016/j.jclepro.2018.10.022

    Article  Google Scholar 

  83. Alam Q, Lazaro A, Schollbach K, Brouwers HJH (2020) Chemical speciation, distribution and leaching behavior of chlorides from municipal solid waste incineration bottom ash. Chemosphere 241:124985. https://doi.org/10.1016/j.chemosphere.2019.124985

    Article  Google Scholar 

  84. Yang Z, Tian S, Liu L et al (2018) Recycling ground MSWI bottom ash in cement composites: long-term environmental impacts. Waste Manag 78:841–848. https://doi.org/10.1016/j.wasman.2018.07.002

    Article  Google Scholar 

  85. Qiao XC, Tyrer M, Poon CS, Cheeseman CR (2008) Characterization of alkali-activated thermally treated incinerator bottom ash. Waste Manag 28:1955–1962. https://doi.org/10.1016/j.wasman.2007.09.007

    Article  Google Scholar 

  86. Lin KL, Chang CT (2006) Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash. J Hazard Mater 135:296–302. https://doi.org/10.1016/j.jhazmat.2005.11.064

    Article  Google Scholar 

  87. Ten Kuo W, Liu CC, Su DS (2013) Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cem Concr Compos 37:328–335. https://doi.org/10.1016/j.cemconcomp.2013.01.001

    Article  Google Scholar 

  88. Abbas Z, Moghaddam AP, Steenari B-M (2003) Release of salts from municipal solid waste combustion residues. Waste Manag 23:291–305. https://doi.org/10.1016/S0956-053X(02)00154-X

    Article  Google Scholar 

  89. Yang S, Saffarzadeh A, Shimaoka T et al (2016) The impact of thermal treatment and cooling methods on municipal solid waste incineration bottom ash with an emphasis on Cl. Environ Technol (United Kingdom). https://doi.org/10.1080/09593330.2016.1155651

    Article  Google Scholar 

  90. BMNT (2017) Bundesabfallwirtschaftsplan 2017—Teil 1 (Federal Waste Management Plan—Part 1). Bundesministerium für Nachhaltigkeit und Tourismus, Republic of Austria

  91. Sorlini S, Abbà A, Collivignarelli C (2011) Recovery of MSWI and soil washing residues as concrete aggregates. Waste Manag 31:289–297. https://doi.org/10.1016/j.wasman.2010.04.019

    Article  Google Scholar 

  92. Alam Q, Schollbach K, Rijnders M et al (2019) The immobilization of potentially toxic elements due to incineration and weathering of bottom ash fines. J Hazard Mater 379:120798. https://doi.org/10.1016/j.jhazmat.2019.120798

    Article  Google Scholar 

  93. Polettini A, Pomi R (2004) The leaching behavior of incinerator bottom ash as affected by accelerated ageing. J Hazard Mater 113:209–215. https://doi.org/10.1016/j.jhazmat.2004.06.009

    Article  Google Scholar 

  94. Hyks J, Nesterov I, Mogensen E et al (2011) Leaching from waste incineration bottom ashes treated in a rotary kiln. Waste Manag Res 29:995–1007. https://doi.org/10.1177/0734242X11417490

    Article  Google Scholar 

  95. Cioffi R, Colangelo F, Montagnaro F, Santoro L (2011) Manufacture of artificial aggregate using MSWI bottom ash. Waste Manag 31:281–288. https://doi.org/10.1016/j.wasman.2010.05.020

    Article  Google Scholar 

  96. Chen J-S, Chu P-Y, Chang J-E et al (2008) Engineering and environmental characterization of municipal solid waste bottom ash as an aggregate substitute utilised for asphalt concrete. J Mater Civ Eng 20:432–439. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:6(432)

    Article  Google Scholar 

  97. Sharma M, Satyam N, Reddy KR (2020) Strength enhancement and lead immobilization of sand using consortia of bacteria and blue-green algae. J Hazard Toxic Radioact Waste 24:04020049. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000548

    Article  Google Scholar 

Download references

Acknowledgements

Several organizations provided help in obtaining field samples. The assistance extended by officials of South Delhi Municipal Corporation, North Delhi Municipal Corporation, East Delhi Municipal Corporation, Delhi MSW Solutions Ltd. (DMSWSL), Timarpur Okhla Waste Management Company Limited (TOWMCL), IL&FS Environmental Infrastructure & Services Ltd. (IEISL), and BEIL Research and Consultancy Private Ltd. (BRCPL) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Datta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, M., Gupta, G. & Somani, M. Geoenvironmental Considerations for Bulk Reuse of MSW Residues from Old Dumps and WTE Plants in Geotechnical Applications. Indian Geotech J 51, 63–83 (2021). https://doi.org/10.1007/s40098-020-00491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-020-00491-7

Keywords

Navigation