Skip to main content
Log in

A discussion concerning approximate controllability results for Hilfer fractional evolution equations with time delay

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

The existence and approximate controllability outcomes for Hilfer fractional differential equations are investigated in this study. We study the existence results from fractional operations and Banach’s fixed point approach. Using the sequential approach, we can show that fractional control systems with time delays are approximately controllable. An interesting example has also been given to prove the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer-Verlag, New York (1995)

    Google Scholar 

  2. Diethelm, K.: The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics. Springer-Verlag, Berlin (2010)

    Google Scholar 

  3. Ji, S.: Approximate controllability of semilinear nonlocal fractional differential systems via an approximating method. Appl. Math. Comput. 236, 43–53 (2014)

    MathSciNet  Google Scholar 

  4. Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    Google Scholar 

  5. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci., vol. 44. Springer, New York (1983)

    Google Scholar 

  6. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. Asian J. Control (2021). https://doi.org/10.1002/asjc.2650

    Article  Google Scholar 

  7. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order \(r\in (1,2)\) with delay. Chaos Solitons Fractals 153(1), 111565 (2021)

    Google Scholar 

  8. Singh, A., Shukla, A., Vijayakumar, V., Udhayakumar, R.: Asymptotic stability of fractional order \((1,2]\) stochastic delay differential equations in Banach spaces. Chaos Solitons Fractals 150, 1–9 (2021)

    MathSciNet  Google Scholar 

  9. Vijayakumar, V., Ravichandran, C., Murugesu, R.: Nonlocal controllability of mixed Volterra–Fredholm type fractional semilinear integro-differential inclusions in Banach spaces. Dyn. Contin. Discrete Impuls. Syst. B Appl. Algorithms 20(4–5b), 485–502 (2013)

    MathSciNet  Google Scholar 

  10. Vijayakumar, V., Murugesu, R.: Controllability for a class of second order evolution differential inclusions without compactness. Appl. Anal. 98(7), 1367–1385 (2019)

    MathSciNet  Google Scholar 

  11. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  12. Mahmudov, N.I.: Approximate controllability of evolution systems with nonlocal conditions. Nonlinear Anal. 68, 536–546 (2008)

    MathSciNet  Google Scholar 

  13. Jothimani, K., Valliammal, N., Ravichandran, C.: Existence result for a neutral fractional integro-differential equation with state dependent delay. J. Appl. Nonlinear Dyn. 7(4), 371–381 (2018)

    MathSciNet  Google Scholar 

  14. Vijayakumar, V., Udhayakumar, R., Panda, S.K., Nisar, K.S.: Results on approximate controllability of Sobolev type fractional stochastic evolution hemivariational inequalities. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22690

    Article  Google Scholar 

  15. Vijayakumar, V.: Approximate controllability for a class of second-order stochastic evolution inclusions of Clarke’s subdifferential type. Results Math. 73(1), 1–23 (2017)

    MathSciNet  Google Scholar 

  16. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Google Scholar 

  17. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, New York (2015)

    Google Scholar 

  18. Mohan Raja, M., Vijayakumar, V., Udhayakumar, R.: Results on the existence and controllability of fractional integro-differential system of order \(1<r<2\) via measure of noncompactness. Chaos Solitons Fractals 139, 110299 (2020)

    MathSciNet  Google Scholar 

  19. Sakthivel, R., Ganesh, R., Anthoni, S.M.: Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 225, 708–717 (2013)

    MathSciNet  Google Scholar 

  20. Li, X., Liu, Z., Tisdell, C.: Approximate controllability of fractional control systems with time delay using the sequence method. Electron. J. Differ. Equ. 272, 1–11 (2017)

    MathSciNet  Google Scholar 

  21. Kavitha, K., Vijayakumar, V., Udhayakumar, R.: Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness. Chaos Solitons Fractals 139, 110035 (2020)

    MathSciNet  Google Scholar 

  22. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 44(2), 1438–1455 (2021)

    MathSciNet  Google Scholar 

  23. Kavitha, K., Nisar, K.S., Shukla, A., Vijayakumar, V., Rezapour, S.: A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems. Adv. Differ. Equ. 467, 1–18 (2021)

    MathSciNet  Google Scholar 

  24. Mahmudov, N.I., Vijayakumar, V., Murugesu, R.: Approximate controllability of second-order evolution differential inclusions in Hilbert spaces. Mediterr. J. Math. 13(5), 3433–3454 (2016)

    MathSciNet  Google Scholar 

  25. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)

    MathSciNet  Google Scholar 

  26. Byszewski, L., Akca, H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stoch. Anal. 10(3), 265–271 (1997)

    MathSciNet  Google Scholar 

  27. Wang, J.R., Zhang, Y.R.: Nonlocal initial value problems for differential equation with Hilfer fractional derivative. Appl. Math. Comput. 266, 850–859 (2015)

    MathSciNet  Google Scholar 

  28. Ge, F.D., Zhou, H.C., Kou, C.H.: Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique. Appl. Math. Comput. 275, 107–120 (2016)

    MathSciNet  Google Scholar 

  29. Valliammal, N., Ravichandran, C.: Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces. Nonlinear Stud. 25(1), 159–171 (2018)

    MathSciNet  Google Scholar 

  30. Li, X., Liu, Z., Tisdell, C.C.: Approximate controllability of fractional control systems with time delay using the sequence method. Electron. J. Differ. Equ. 272, 1–11 (2017)

    MathSciNet  Google Scholar 

  31. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear system with state delay using sequence method. J. Frankl. Inst. 352, 5380–5392 (2015)

    MathSciNet  Google Scholar 

  32. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order \(s \in (1,2]\) with infinite delay. Mediterr. J. Math. 13, 2539–2550 (2016)

    MathSciNet  Google Scholar 

  33. Vijayakumar, V., Nisar, K.S., Chalishajar, D.N., Shukla, A., Malik, M., Alsaadi, A., Aldosary, S.F.: A note on approximate controllability of fractional semilinear integro-differential control systems via resolvent operators. Fractal Fract. 6(2), 1–15 (2022)

    Google Scholar 

  34. Williams, W.K., Vijayakumar, V.: Discussion on the controllability results for fractional neutral impulsive Atangana–Baleanu delay integro-differential systems. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7754

    Article  Google Scholar 

  35. Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolution equations. J. Integral Equ. Appl. 25, 557–585 (2013)

    MathSciNet  Google Scholar 

  36. Vijayakumar, V., Ravichandran, C., Nisar, K.S., Kucche, K.D.: New discussion on approximate controllability results for fractional Sobolev type Volterra–Fredholm integro-differential systems of order \(1<r<2\). Numer. Methods Partial Differ. Equ. (2021). https://doi.org/10.1002/num.22772

    Article  Google Scholar 

  37. Belmor, S., Ravichandran, C., Jarad, F.: Nonlinear generalized fractional differential equations with generalized fractional integral conditions. J. Taibah Univ. Sci. 14(1), 114–123 (2019)

    Google Scholar 

  38. Ravichandran, C., Jothimani, K., Nisar, K.S., Mahmoud Ibrahim, E., Yahia, S.: An interpretation on controllability of Hilfer fractional derivative with nondense domain. Alex. Eng. J 61(12), 9941–9948 (2022)

    Google Scholar 

  39. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control 24(3), 1406–1415 (2022)

    MathSciNet  Google Scholar 

  40. Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 641, 616–626 (2012)

    MathSciNet  Google Scholar 

  41. Debbouche, A., Antonov, V.: Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Hilbert spaces. Chaos Solitons Fractals 102, 140–148 (2017)

    MathSciNet  Google Scholar 

  42. Gu, H., Trujillo, J.J.: Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  Google Scholar 

  43. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nisar, K.S.: A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 44(6), 4428–4447 (2021)

    MathSciNet  Google Scholar 

  44. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear stochastic control system with nonlocal conditions. Nonlinear Dyn. Syst. Theory 15(3), 321–333 (2015)

    MathSciNet  Google Scholar 

  45. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semilinear stochastic systems with delay in both state and control. Math. Rep. (Bucuresti) 18, 247–259 (2016)

    MathSciNet  Google Scholar 

  46. Subashini, R., Ravichandran, C., Jothimani, K., Baskonus, H.M.: Existence results of Hilfer integro-differential equations with fractional order. Discrete Contin. Dyn. Syst. 13(3), 911–923 (2020)

    MathSciNet  Google Scholar 

  47. Mohan Raja, M., Vijayakumar, V.: New results concerning to approximate controllability of fractional integrodifferential evolution equations of order \(1<r<2\). Numer. Methods Partial Differ. Equ. 38(3), 509–524 (2022)

    Google Scholar 

  48. Singh, V.: Controllability of Hilfer fractional differential systems with non-dense domain. Numer. Funct. Anal. Optim. 40(13), 1572–1592 (2019)

    MathSciNet  Google Scholar 

  49. Xianlong, F., Xingbo, L.: Controllability of non-densely defined neutral functional differential systems in abstract space. Chin. Ann. Math. 28, 243–252 (2007)

    MathSciNet  Google Scholar 

  50. He, J.W., Liang, Y., Ahmad, B., Zhou, Y.: Nonlocal fractional evolution inclusions of order \(\alpha \in (1,2)\). Mathematics 209(7), 1–17 (2019)

    Google Scholar 

  51. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  52. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  53. Nikan, O., Avazzadeh, Z.: Numerical simulation of fractional evolution model arising in viscoelastic mechanics Author links open overlay. Appl. Numer. Math. 169, 303–320 (2021)

    MathSciNet  Google Scholar 

  54. Nikan, O., Avazzadeh, Z., Tenreiro Machado, J.A.: Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model Author links open overlay. Appl. Math. Model. 100, 107–124 (2021)

    MathSciNet  Google Scholar 

  55. Nikan, O., Tenreiro Machado, J.A.: An efficient local meshless approach for solving nonlinear time-fractional fourth-order diffusion model. J. King Saud Univ. Sci. 33(1), 101243 (2021)

    Google Scholar 

  56. Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. RWA 11(4), 465–475 (2010)

    MathSciNet  Google Scholar 

Download references

Funding

There are no funders to report for this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vijayakumar.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, K., Vijayakumar, V. A discussion concerning approximate controllability results for Hilfer fractional evolution equations with time delay. Math Sci 18, 195–203 (2024). https://doi.org/10.1007/s40096-022-00493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-022-00493-x

Keywords

Mathematics Subject Classification

Navigation