Introduction

There are many papers on assigning a graph to algebraic structures, for instance see [2,3,4,5,6, 8, 9]. Throughout this paper, all graphs are simple with no loops and multiple edges and A is a commutative ring with non-zero identity. We denote by \(\mathbb {I}(A)^{*}\) and \({\rm Max}(A)\), the set of all non-trivial ideals of A and the set of all maximal ideals of A, respectively. A ring having just one maximal ideal is called a local ring and a ring having only finitely many maximal ideals is said to be a semilocal ring. For every ideal I of A, we denote by \({\rm Ann}(I)\), the set of elements \(a\in A\) such that \(aI=0\).

Let G be a graph with vertex set V(G). If u is adjacent to v, then we write \(u - v\). For \(u,v\in V(G)\), we recall that a path between u and v is a sequence \(u = x_{0} - \cdots - x_{n} = v\) of vertices of G such that for every i with \(1 \le i \le n\), the vertices \(x_{i-1}\) and \(x_{i}\) are adjacent and \(x_{i}\ne x_{j}\), where \(i\ne j\). For every positive integer n, we denote the path of order n, by \(P_n\). For \(u,v\in V(G)\) with \(u\ne v\), d(uv) denotes the length of a shortest path between u and v. If there is no such path, then we define \(d(u,v)=\infty\). The diameter of G is defined \({\rm diam}(G)={\rm sup}\{d(u,v)| u\) and v are vertices of \(G\}\). For any \(u\in V(G)\), the degree of u, \({\rm deg}(u)\), denotes the number of edges incident with u. The neighborhood of a vertex u is denoted by \(N_G(u)\) or simply N(u). A graph G is k-regular if \(d(v) = k\) for all \(v \in V(G)\) ; a regular graph is one that is k-regular for some k. We denote the complete graph on n vertices by \(K_n\). A bipartite graph is one whose vertex set can be partitioned into two subsets \(V_1\) and \(V_2\) so that each edge has one end in \(V_1\) and one end in \(V_2\). A complete bipartite graph is a bipartite graph with two partitions \(V_1\) and \(V_2\) in which every vertex in \(V_1\) is joined to every vertex in \(V_2\). The complete bipartite graph with two partitions of size m and n is denoted by \(K_{m,n}\). A star graph with center v and n vertices is the complete bipartite graph with part sizes 1 and n such that \({\rm deg}(v)=n\). A double-star graph is a union of two star graphs with centers u and v such that u is adjacent to v. We use \(C_{n}\) for the cycle of order n, where \(n\ge 3\). If a graph G has a cycle, then the girth of G (notated \({\rm gr}(G)\)) is defined as the length of a shortest cycle of G; otherwise \({\rm gr}(G)=\infty\). A triangle-free graph is a graph which contains no triangle. A clique of a graph is a complete subgraph and the number of vertices in a largest clique of graph G, denoted by \(\omega (G)\), is called the clique number of G. Recall that a graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. Also, a dominating set is a subset S of V(G) such that every vertex of \(V(G){\setminus} S\) is adjacent to at least one vertex in S. The number of vertices in a smallest dominating set denoted by \(\gamma (G)\), is called the domination number of G.

Let A be a commutative ring with non-zero identity. The annihilating graph of A, denoted by \({\mathbb {G}}(A)\), is a graph with the vertex set \(\mathbb {I}(A)^{*}\), and two distinct vertices \(I,J\in{\mathbb {Z}}(A)^{*}\) are adjacent if and only if \({\rm Ann}(I){\rm Ann}(J)=0\). In this paper, we prove that if A is a ring, then \({\mathbb {G}}(A)\) is a connected graph, \({\rm diam}({\mathbb {G}}(A))\le 3\) and \({\rm gr}({\mathbb {G}}(A))\in \{3, 4, \infty \}\). Also, we prove that for every ring A, if \({\mathbb {G}}(A)\) is a triangle-free graph, then \({\mathbb {G}}(A)\) is a bipartite graph. Among other results, we show that if A is a ring and \({\mathbb {G}}(A)\) is a tree, then \({\mathbb {G}}(A)\) is a star or a double star graph. Moreover, we prove that the annihilating graph of a ring cannot be a cycle. Also, we obtained some results about \({\mathbb {G}}({\mathbb {Z}}_n)\). We show that \({\mathbb {G}}({\mathbb {Z}}_n)\) is a complete graph if and only if \(n\in \{p_1^{2},p_1^{3},p_1p_2\}\). We also prove that \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph if and only if \(n\in \{p_1,p_1^{2},\ldots ,p_1^{8},p_1p_2,p_1^{2}p_2,p_1^{3}p_2,p_1^{3}p_2^{2},p_1^{4}p_2,p_1^{2}p_2^{2}, p_1p_2p_3,p_1^{2}p_2p_3\}\). Finally, we determine the domination number of \({\mathbb {G}}({\mathbb {Z}}_n)\).

The annihilating graph of A

In this section, we study the diameter and the girth of the annihilating graph of a ring. Also, we classify all rings whose annihilating graphs are complete graph, tree or cycle.

We start with the following lemma.

Lemma 1

If A is a commutative ring, then \(\gamma ({\mathbb {G}}(A))\le |{\rm Max}(A)|\le \omega ({\mathbb {G}}(A))\).

Proof

Suppose that \({{\mathfrak {m}}}_1,{\mathfrak {m}}_2\) are two distinct maximal ideals of A. Then we have \({\rm Ann}({\mathfrak {m}}_1){\rm Ann}({\mathfrak {m}}_2)\subseteq {\rm Ann}({\mathfrak {m}}_1)\cap {\rm Ann}({\mathfrak {m}}_2)\subseteq {\rm Ann}({\mathfrak {m}}_1+{\mathfrak {m}}_2)\). Since \({\mathfrak {m}}_1+{\mathfrak {m}}_2=A\), we conclude that \({\rm Ann}({\mathfrak {m}}_1+{\mathfrak {m}}_2)=0\) and so \({\mathfrak {m}}_1\) is adjacent to \({\mathfrak {m}}_2\). This implies that \({\rm Max}(A)\) is a clique in \({\mathbb {G}}(A)\). Now, suppose that \(I\in{\mathbb {Z}}(A)^{*} {\setminus} {\rm Max}(A)\). Let \({\mathfrak {m}}\) be a maximal ideal containing \({\rm Ann}(I)\). Since \({\rm Ann}(I){\rm Ann}({\mathfrak {m}})\subseteq {\mathfrak {m}}{\rm Ann}({\mathfrak {m}})=0\), we deduce that I is adjacent to \({\mathfrak {m}}\). Hence \({\rm Max}(A)\) is a dominating set of \({\mathbb {G}}(A)\). \(\square\)

By the previous lemma, if the clique number of \({\mathbb {G}}(A)\) is finite, then A is a semilocal ring. Also, we have the following result.

Corollary 1

Let A be a ring. If every maximal ideal of A has finite degree, then \({\mathbb {G}}(A)\) is a finite graph.

Proof

Since \({\rm Max}(A)\) is a clique in \({\mathbb {G}}(A)\), so \({\rm Max}(A)\) is finite. Now, since \({\rm Max}(A)\) is a dominating set of \({\mathbb {G}}(A)\), the result holds. \(\square\)

Next, we study the diameter and the girth of \({\mathbb {G}}(A)\).

Theorem 1

Let A be a ring. Then \({\rm diam}({\mathbb {G}}(A))\le 3\). Moreover, if A is a local ring, then \({\rm diam}({\mathbb {G}}(A))\le 2\).

Proof

Assume that I and J are two non-trivial ideals of A. Suppose that \({\mathfrak {m}}_1\) and \({\mathfrak {m}}_2\) are maximal ideals such that \({\rm Ann}(I)\subseteq {\mathfrak {m}}_1\) and \({\rm Ann}(J)\subseteq {\mathfrak {m}}_2\). Since \({\rm Ann}(I){\rm Ann}({\mathfrak {m}}_1)\subseteq {\mathfrak {m}}_1{\rm Ann}({\mathfrak {m}}_1)=0\), we conclude that \(I={\mathfrak {m}}_1\) or I is adjacent to \({\mathfrak {m}}_1\). Similarly, \(J={\mathfrak {m}}_2\) or J is adjacent to \({\mathfrak {m}}_2\). Now, if \({\mathfrak {m}}_1={\mathfrak {m}}_2\), then \(d(I,J)\le 2\). Otherwise, \({\mathfrak {m}}_1\) and \({\mathfrak {m}}_2\) are adjacent and so \(d(I,J)\le 3\). Thus \({\rm diam}({\mathbb {G}}(A))\le 3\). (Note that if A has a non-trivial ideal I with \({\rm Ann}(I)=0\), then I is adjacent to all other vertices and hence \({\rm diam}({\mathbb {G}}(A))\le 2\).) Finally, assume that \((A,{\mathfrak {m}})\) is a local ring. By the proof of Lemma 1, \({\mathfrak {m}}\) is adjacent to all other vertices, so \({\rm diam}({\mathbb {G}}(A))\le 2\). \(\square\)

Theorem 2

Let A be a ring. Then \({\rm gr}({\mathbb {G}}(A))\in \{3, 4, \infty \}\). Moreover, if A is a local ring and \({\mathbb {G}}(A)\) contains a cycle, then \({\rm gr}({\mathbb {G}}(A))=3\).

Proof

Clearly, if A has at least three maximal ideals, then \({\rm gr}({\mathbb {G}}(A))=3\). So assume that A has exactly two maximal ideals and \({\mathbb {G}}(A)\) contains a cycle C. If C is a cycle of length at most 4, then we are done. Otherwise, C contains two adjacent vertices I and J which are not maximal ideals. Suppose that \(I\subseteq {\mathfrak {m}}_1\) and \(J\subseteq {\mathfrak {m}}_2\), where \({\mathfrak {m}}_1\) and \({\mathfrak {m}}_2\) are maximal ideals of A. Since \({\rm Ann}(I){\rm Ann}({\mathfrak {m}}_2)\subseteq {\rm Ann}(I)Ann(J)=0\), we deduce that I and \({\mathfrak {m}}_2\) are adjacent. Similarly, J and \({\mathfrak {m}}_1\) are adjacent. If \({\mathfrak {m}}_1={\mathfrak {m}}_2\), then \({\rm gr}({\mathbb {G}}(A))=3\). Otherwise, \({\rm gr}({\mathbb {G}}(A))\le 4\). The last part follows from the proof of Lemma 1. \(\square\)

The following theorem shows that triangle-free annihilating graphs are bipartite.

Theorem 3

Let A be a ring. If \({\mathbb {G}}(A)\) is a triangle-free graph, then \({\mathbb {G}}(A)\) is a bipartite graph.

Proof

Let \({\mathbb {G}}(A)\) be a triangle-free graph. Clearly A has at most two maximal ideals. If A is a local ring, then \({\mathbb {G}}(A)\) is a star and so \({\mathbb {G}}(A)\) is bipartite. Suppose that A contains exactly two distinct maximal ideals \({\mathfrak {m}}_1\) and \({\mathfrak {m}}_2\). One can easily see that \({\mathbb {G}}(A)\) is a bipartite graph with parts \(N({\mathfrak {m}}_1)\) and \(N({\mathfrak {m}}_2)\). \(\square\)

Theorem 4

Let A be a ring. If \({\mathbb {G}}(A)\) is a tree, then \({\mathbb {G}}(A)\) is a star or a double star graph.

Proof

Assume that \({\mathbb {G}}(A)\) is a tree. It is enough to show that if A has exactly two distinct maximal ideals \({\mathfrak {m}}_1\) and \({\mathfrak {m}}_2\), then \({\mathbb {G}}(A)\) is a double star graph. By the proof of Lemma 1, \({\mathfrak {m}}_1\) is adjacent to \({\mathfrak {m}}_2\) and every other vertex is adjacent to one of the \({\mathfrak {m}}_1\) and \({\mathfrak {m}}_2\). Now, since \({\mathbb {G}}(A)\) contains no cycles, \({\mathbb {G}}(A)\) is a double star graph. \(\square\)

By the previous theorem, we have the following immediate corollary.

Corollary 2

Let A be a ring. If \({\mathbb {G}}(A)\cong P_n\), then \(n\le 4\).

Theorem 5

The annihilating graph of a ring cannot be a cycle.

Proof

By contrary suppose that \({\mathbb {G}}(A)\cong C_n\), for some \(n\ge 3\). By Theorem 2, we conclude that \(n\le 4\). First assume that \({\mathbb {G}}(A)\cong C_4\). So A has exactly four non-trivial ideals. By Theorem 2, we deduce that A is not a local ring. Hence by [6, Theorem 8.7], \(A\cong F\times S\), where F is a field and S is a ring with exactly one non-trivial ideal. Let \({\mathfrak {m}}\) be the non-trivial ideal of S. Thus \(\mathbb {I}(A)^{*}=\{0\times {\mathfrak {m}}, 0\times S, F\times 0, F\times {\mathfrak {m}}\}\). We have \({\rm Ann}(0\times {\mathfrak {m}})=F\times {\mathfrak {m}}\), \({\rm Ann}(F\times {\mathfrak {m}})=0\times {\mathfrak {m}}\), \({\rm Ann}( 0\times S)=F\times 0\) and \({\rm Ann}(F\times 0)=0\times S\). Therefore, \({\mathbb {G}}(A)\) is the path \(0\times {\mathfrak {m}}- F\times {\mathfrak {m}} - 0\times S - F\times S\), a contradiction. Next assume that \({\mathbb {G}}(A)\cong C_3\). Since A has exactly three non-trivial ideals, by [6, Theorem 8.7], A is an Artinian local ring. Let \(\mathbb {I}(A)^{*}=\{I, J, {\mathfrak {m}}\}\), where \({\mathfrak {m}}\) is the maximal ideal of A. Suppose that k is the smallest positive integer such that \({\mathfrak {m}}^ k=0\). So \({\rm Ann}({\mathfrak {m}})\ne 0\). With no loss of generality, we consider two cases. Note that the annihilating-ideal graph \(\mathbb {AG}(A)\) of A is a graph whose vertex set is the set of all non-zero ideals of A with non-zero annihilator and two distinct vertices I and J are adjacent if and only if \(IJ =0\), see [1].

Case 1

\({\rm Ann}({\mathfrak {m}})={\mathfrak {m}}\). So \({\mathfrak {m}}^2=0\) and hence \(IJ=I{\mathfrak {m}}=J{\mathfrak {m}}=0\). This implies that \(\mathbb {AG}(A)\cong {\mathbb {G}}(A)\cong C_3\). By [1, Corollary 9], \(\mathbb {AG}(A)\) cannot be a cycle, a contradiction.

Case 2

\({\rm Ann}({\mathfrak {m}})=I\). Thus \(I{\mathfrak {m}}=0\). So \(IJ=0\) and \({\mathfrak {m}}={\rm Ann}(I)\). If \({\mathfrak {m}}J=0\), then \(\mathbb {AG}(A)\cong {\mathbb {G}}(A)\cong C_3\), a contradiction. Therefore, \({\mathfrak {m}}J\ne 0\) and hence \(\mathbb {AG}(A)\cong P_3\). Now, by [1, Theorem 11], we have \(k=4\) and so \(I={\mathfrak {m}}^3\) and \(J={\mathfrak {m}}^2\). This implies that \({\rm Ann}(I)={\mathfrak {m}}\) and \({\rm Ann}(J)={\mathfrak {m}}^2\). Thus \({\mathbb {G}}(A)\cong P_3\), a contradiction. \(\square\)

Theorem 6

If \({\mathbb {G}}(A)\) is a regular graph of finite degree, then \({\mathbb {G}}(A)\) is a complete graph.

Proof

By Corollary 1, A has finitely many ideals. So A is an Artinian ring. First suppose that \((A,{\mathfrak {m}})\) is an Artinian local ring. Since \({\mathfrak {m}}\) is a vertex of \({\mathbb {G}}(A)\) which is adjacent to all other vertices, we deduce that \({\mathbb {G}}(A)\) is a complete graph. Now, by [6, Theorem 8.7], we may assume that \(A\cong A_1\times \cdots \times A_n\), where \(n\ge 2\) and \((A_i,\mathfrak {m_i})\) is an Artinian local ring for \(i=1,\ldots ,n\). We have \({\rm Ann}(0\times A_2\times \cdots \times A_n)=A_1\times 0\times \cdots \times 0\), \({\rm Ann}(\mathfrak {m_1}\times A_2\times \cdots \times A_n)={\rm Ann}(\mathfrak {m_1})\times 0\times \cdots \times 0\), and \({\rm Ann}(A_1\times 0\times \cdots \times 0)=0\times A_2\times \cdots \times A_n\). Let \(v_1=0\times A_2\times \cdots \times A_n\), \(v_2=\mathfrak {m_1}\times A_2\times \cdots \times A_n\) and \(v_3=A_1\times 0\times \cdots \times 0\). One can easily see that

$$\begin{aligned} N(v_1)=\{ A_1\times I_2\times \cdots \times I_n \ | \ I_i \ \hbox {is an ideal of} \ A_i \ \hbox {for} \ i=2,\ldots ,n \}{\setminus} \{A\}, \end{aligned}$$

and

$$\begin{aligned} N(v_2)=\{ I_1\times I_2\times \cdots \times I_n \ | \ I_i \ \hbox {is an ideal of} \ A_i \ \hbox {for} \ i=1,\ldots ,n \ \hbox {and} \ I_1\ne 0 \}{\setminus} \{A\}. \end{aligned}$$

Note that every non-trivial ideal of an Artinian ring A has a non-zero annihilator. Since \({\rm deg}(v_1)={\rm deg}(v_2)\), we conclude that \(A_1\) has no proper ideal other than \(0, \mathfrak {m_1}\). Thus

$$\begin{aligned} N(v_3)=\{ 0\times A_2\times \cdots \times A_n, \mathfrak {m_1}\times A_2\times \cdots \times A_n \}. \end{aligned}$$

Hence \({\rm deg}(v_3)\le 2\). If \({\mathbb {G}}(A)\) is a 2-regular graph, then \({\mathbb {G}}(A)\) is a cycle, a contradiction. Note that by Theorem 1, \({\mathbb {G}}(A)\) is a connected graph. Therefore, \({\mathbb {G}}(A)\) is a 1-regular graph. So \({\mathbb {G}}(A)\cong K_2\) is a complete graph. In this case, \(A\cong F_1\times F_2\), where \(F_1, F_2\) are fields.

Remark 1

Let A be a commutative ring and \({\mathfrak {m}}\) be a maximal ideal of A with non-zero annihilator. Since \({\mathfrak {m}}{\rm Ann}({\mathfrak {m}})=0\), we conclude that \({\mathfrak {m}}\subseteq {\rm Ann}(Ann({\mathfrak {m}}))\). Now, \({\rm Ann}({\mathfrak {m}})\ne 0\) implies that \({\rm Ann}({\rm Ann}({\mathfrak {m}}))={\mathfrak {m}}\).

Lemma 2

Let A be a local ring with non-zero maximal ideal \({\mathfrak {m}}\). If \(I\in{\mathbb {Z}}(A)^{*}\) and \({\rm Ann}(I)={\rm Ann}({\mathfrak {m}})\), then I is adjacent to all other vertices of \({\mathbb {G}}(A)\).

Proof

Suppose that \({\rm Ann}(I)={\rm Ann}({\mathfrak {m}})\). Let J be a non-trivial ideal of A and \(J\ne I\). Since \({\rm Ann}(J)\subseteq {\mathfrak {m}}\), we deduce that \({\rm Ann}(J){\rm Ann}(I)\subseteq {\mathfrak {m}}{\rm Ann}({\mathfrak {m}})=0\). Hence I and J are adjacent. The proof is complete. \(\square\)

Theorem 7

Let A be a local ring with non-zero maximal ideal \({\mathfrak {m}}\) such that \({\rm Ann}({\mathfrak {m}})\ne 0\). Then \({\mathbb {G}}(A)\) is a complete graph if and only if \({\rm Ann}(I)={\rm Ann}({\mathfrak {m}})\), for every ideal \(I\in{\mathbb {Z}}(A)^{*}{\setminus} \{{\rm Ann}({\mathfrak {m}})\}\).

Proof

Suppose that \({\mathbb {G}}(A)\) is a complete graph and let \(I\in{\mathbb {Z}}(A)^{*}{\setminus} \{{\rm Ann}({\mathfrak {m}})\}\). Since \({\rm Ann}({\mathfrak {m}})\ne 0, A\), we conclude that \({\rm Ann}({\mathfrak {m}})\) is a vertex of \({\mathbb {G}}(A)\) and hence is adjacent to I. Thus \({\rm Ann}(I){\rm Ann}(Ann({\mathfrak {m}}))=0\). By Remark 1, \({\rm Ann}({\rm Ann}({\mathfrak {m}}))={\mathfrak {m}}\). So \({\rm Ann}(I){\mathfrak {m}}=0\) which implies that \({\rm Ann}(I)\subseteq {\rm Ann}({\mathfrak {m}})\). In other hand, since \(I\subseteq {\mathfrak {m}}\), we deduce that \({\rm Ann}({\mathfrak {m}})\subseteq {\rm Ann}(I)\). Therefore, \({\rm Ann}(I)={\rm Ann}({\mathfrak {m}})\). Conversely, suppose that \({\rm Ann}(I)={\rm Ann}({\mathfrak {m}})\), for every ideal \(I\in{\mathbb {Z}}(A)^{*}{\setminus} \{{\rm Ann}({\mathfrak {m}})\}\). Assume that \(I, J\in{\mathbb {Z}}(A)^{*}{\setminus} \{{\rm Ann}({\mathfrak {m}})\}\) and \(I\ne J\). Since \({\rm Ann}(I)={\rm Ann}(J)=Ann({\mathfrak {m}})\), we conclude that \({\rm Ann}(I){\rm Ann}(J)=Ann({\mathfrak {m}}){\rm Ann}({\mathfrak {m}})\subseteq {\mathfrak {m}}{\rm Ann}({\mathfrak {m}})=0\). Hence I and J are adjacent. Now, since \({\rm Ann}({\rm Ann}({\mathfrak {m}})){\rm Ann}(I)={\mathfrak {m}}{\rm Ann}(I)={\mathfrak {m}}{\rm Ann}({\mathfrak {m}})=0\), then \({\rm Ann}({\mathfrak {m}})\) is adjacent to all other vertices. Thus \({\mathbb {G}}(A)\) is a complete graph. \(\square\)

Theorem 8

Let A be an Artinian local ring with non-zero maximal ideal \({\mathfrak {m}}\). Then \({\mathbb {G}}(A)\) is a complete graph if and only if either \({\mathfrak {m}}^2=0\) or \({\mathfrak {m}}^3=0\) and \(IJ={\mathfrak {m}}^2\), for every ideal \(I,J\in{\mathbb {Z}}(A)^{*}{\setminus} \{{\mathfrak {m}}^2\}\).

Proof

First assume that \({\mathfrak {m}}^2=0\). Thus \({\mathfrak {m}}\subseteq {\rm Ann}({\mathfrak {m}})\) and hence \({\rm Ann}({\mathfrak {m}})={\mathfrak {m}}\). Let \(I\in{\mathbb {Z}}(A)^{*}\). Since \(I\subseteq {\mathfrak {m}}\), we deduce that \({\mathfrak {m}}={\rm Ann}({\mathfrak {m}})\subseteq {\rm Ann}(I)\). So \({\rm Ann}(I)={\mathfrak {m}}\). Now, Theorem 9 implies that \({\mathbb {G}}(A)\) is a complete graph. Next assume that \({\mathfrak {m}}^3=0\) and \(IJ={\mathfrak {m}}^2\), for every ideal \(I,J\in{\mathbb {Z}}(A)^{*}{\setminus} \{{\mathfrak {m}}^2\}\). Note that \({\mathfrak {m}}^2\ne 0\). Hence \({\rm Ann}({\mathfrak {m}})\ne {\mathfrak {m}}\) and \({\rm Ann}({\mathfrak {m}}^2)={\mathfrak {m}}\). Since \({\rm Ann}({\mathfrak {m}}){\rm Ann}({\mathfrak {m}})\subseteq {\mathfrak {m}}{\rm Ann}({\mathfrak {m}})=0\), we conclude that \({\rm Ann}({\mathfrak {m}})={\mathfrak {m}}^2\). Let \(I\in{\mathbb {Z}}(A)^{*}{\setminus} \{{\mathfrak {m}}^2\}\). Since \(I{\rm Ann}(I)=0\ne {\mathfrak {m}}^2\), we deduce that \({\rm Ann}(I)={\mathfrak {m}}^2={\rm Ann}({\mathfrak {m}})\). Thus by Theorem 9, \({\mathbb {G}}(A)\) is complete. Conversely, suppose that \({\mathbb {G}}(A)\) is a complete graph. Let k be the smallest positive integer such that \({\mathfrak {m}}^k=0\). If \(k=2\), we are done. Assume that \(k\ge 3\). So \({\rm Ann}({\mathfrak {m}})\ne {\mathfrak {m}}\). Since \({\mathfrak {m}}\subseteq {\rm Ann}({\mathfrak {m}}^{k-1})\), we conclude that \({\rm Ann}({\mathfrak {m}}^{k-1})={\mathfrak {m}}\). Now, by Theorem 9, \({\rm Ann}({\mathfrak {m}})={\mathfrak {m}}^{k-1}\). In other hand, since \({\mathfrak {m}}^{k-2}\subseteq {\rm Ann}({\mathfrak {m}}^2)\), then \({\rm Ann}({\mathfrak {m}}^2)\ne {\mathfrak {m}}^{k-1}={\rm Ann}({\mathfrak {m}})\). This implies that \({\mathfrak {m}}^2={\rm Ann}({\mathfrak {m}})={\mathfrak {m}}^{k-1}\). Therefore, \(k=3\) and so we have \({\mathfrak {m}}^3=0\), \({\rm Ann}({\mathfrak {m}})={\mathfrak {m}}^2\), and \({\rm Ann}({\mathfrak {m}}^2)={\mathfrak {m}}\). Finally, suppose that \(I,J\in{\mathbb {Z}}(A)^{*}{\setminus} \{{\mathfrak {m}}^2\}\). Since \({\mathfrak {m}}IJ\subseteq {\mathfrak {m}}^3=0\), we deduce that \(IJ=0\) or \({\rm Ann}(IJ)={\mathfrak {m}}\). If \(IJ=0\), then \(I\subseteq {\rm Ann}(J)={\mathfrak {m}}^2\) and hence \({\mathfrak {m}}={\rm Ann}({\mathfrak {m}}^2)\subseteq {\rm Ann}(I)={\mathfrak {m}}^2\), a contradiction. Thus \({\rm Ann}(IJ)={\mathfrak {m}}\) and so Theorem 7 implies that \(IJ={\mathfrak {m}}^2\). The proof is complete. \(\square\)

We close this section by the following theorem which is a classification of rings whose annihilating graphs are complete.

Theorem 9

Let A be a commutative ring. If \({\mathbb {G}}(A)\cong K_n\), then one of the following holds:

  1. (i)

    \((A,{\mathfrak {m}})\) is an Artinian local ring with \({\mathfrak {m}}^2=0\).

  2. (ii)

    \((A,{\mathfrak {m}})\) is an Artinian local ring with \({\mathfrak {m}}^3=0\) and \(IJ={\mathfrak {m}}^2\), for every ideal \(I,J\in{\mathbb {Z}}(A)^{*}{\setminus} \{{\mathfrak {m}}^2\}\).

  3. (iii)

    \(A\cong F_1\times F_2\), where \(F_1, F_2\) are fields.

Proof

Suppose that \({\mathbb {G}}(A)\cong K_n\), for some positive integer n. So A is an Artinian ring. By Theorem 8, if A is a local ring, then the cases (ii) or (iii) occur. Otherwise, by the proof of Theorem 6, \(A\cong F_1\times F_2\), where \(F_1, F_2\) are fields. \(\square\)

The annihilating graph of \({\mathbb {Z}}_n\)

In this section, we study the case that \(A={\mathbb {Z}}_n\). Throughout this section, without loss of generality, we assume that \(n=p_1^{\alpha _1}\cdots p_s^{\alpha _s}\), where \(p_i\)’s are distinct primes and \(\alpha _i\)’s are positive integers. It is easy to see that \(\mathbb {I}({\mathbb {Z}}_n)=\{d{\mathbb {Z}}_n : d\) divides \(n \}\) and \(|\mathbb {I}({\mathbb {Z}}_n)^{*}|=\prod _{i=1}^{s}(\alpha _i+1)-2\). We denote the least common multiple and the greatest common divisor of integers a and b by [ab] and (ab), respectively. Also, we write a|b (\(a\not \mid b\)) if a divides b (a does not divide b). We begin with the following lemma.

Lemma 3

If \(p_1^{\beta _1}\cdots p_s^{\beta _s}{\mathbb {Z}}_n \in{\mathbb {Z}}({\mathbb {Z}}_n)^{*}\), then \({\rm Ann}(p_1^{\beta _1}\cdots p_s^{\beta _s}{\mathbb {Z}}_n)=p_1^{\alpha _1-\beta _1} \cdots p_s^{\alpha _s-\beta _s} {\mathbb {Z}}_n\).

Proof

Let \(d=p_1^{\beta _1}\cdots p_s^{\beta _s}\) and \(d'=p_1^{\alpha _1-\beta _1} \cdots p_s^{\alpha _s-\beta _s}\). Clearly, \(d{\mathbb {Z}}_n d'{\mathbb {Z}}_n = 0\) and so \(d' {\mathbb {Z}}_n \subseteq {\rm Ann}(d{\mathbb {Z}}_n)\). Let \(r\in {\rm Ann}(d{\mathbb {Z}}_n)\). Then n divides rd. Since \(n=p_1^{\alpha _1}\cdots p_s^{\alpha _s}\) and \(d= p_1^{\beta _1}\cdots p_s^{\beta _s}\), so \(p_1^{\alpha _1-\beta _1} \cdots p_s^{\alpha _s-\beta _s}\) divides r. This implies that \(r\in d'{\mathbb {Z}}_n\) and \({\rm Ann}(d{\mathbb {Z}})\subseteq d'{\mathbb {Z}}_n\). The proof is complete. \(\square\)

Remark 2

Let \(d_1{\mathbb {Z}}_n, d_2 {\mathbb {Z}}_n \in{\mathbb {Z}}({\mathbb {Z}}_n)^{*}\) and let \(d_1=p_1^{\beta _1}\cdots p_s^{\beta _s}\), \(d_2=p_1^{\gamma _1}\cdots p_s^{\gamma _s}\). Then \(d_1 {\mathbb {Z}}_n\) and \(d_2 {\mathbb {Z}}_n\) are adjacent if and only if \(p_1^{\alpha _1}\cdots p_s^{\alpha _s}\) divides \(p_1^{2\alpha _1-(\beta _1+\gamma _1)}\cdots p_s^{2\alpha _s-(\beta _s+\gamma _s)}\) which implies that \(\alpha _i\ge \beta _i+\gamma _i\), for \(i=1,\ldots ,s\). Also, if \((d_1, d_2)=1\) then \(d_1{\mathbb {Z}}_n\) and \(d_2{\mathbb {Z}}_n\) are adjacent.

Lemma 4

If \(d=p_1^{\beta _1}\cdots p_s^{\beta _s}\), then \(\prod _{i=1}^{s}(\alpha _i-\beta _i+1)-2\le {\rm deg}(d{\mathbb {Z}}_n)\le \prod _{i=1}^{s}(\alpha _i-\beta _i+1)-1\).

Proof

If \(p_1^{\gamma _1}\cdots p_s^{\gamma _s}{\mathbb {Z}}_n\) and \(d{\mathbb {Z}}_n\) are adjacent, then by Remark 2, \(0\le \gamma _i\le \alpha _i-\beta _i\). On the other hand, \(p_1^{\gamma _1}\cdots p_s^{\gamma _s}\notin \{1,d\}\) which implies that \({\rm deg}(d{\mathbb {Z}}_n)\in \{\prod _{i=1}^{s}(\alpha _i-\beta _i+1)-2,\prod _{i=1}^{s}(\alpha _i-\beta _i+1)-1\}\). \(\square\)

Next, we study the girth of \({\mathbb {G}}({\mathbb {Z}}_n)\).

Theorem 10

Let n be a positive integer number. Then \({\rm gr}({\mathbb {G}}({\mathbb {Z}}_n))\in \{3, \infty \}\). Moreover, \({\mathbb {G}}({\mathbb {Z}}_n)\) is a tree if and only if \(n\in \{p_1^2, p_1^3, p_1 p_2, p_1^2 p_2\}\).

Proof

If \(s\geqslant 3\), then \(p_1 {\mathbb {Z}}_n - p_2 {\mathbb {Z}}_n - p_3 {\mathbb {Z}}_n - p_1 {\mathbb {Z}}_n\) is a 3-cycle in \({\mathbb {G}}({\mathbb {Z}}_n)\). Therefore \({\rm gr}({\mathbb {G}}({\mathbb {Z}}_n))=3\). Now, consider two following cases:

Case 1

\(s=1\). If \(\alpha _1\geqslant 4\), then it is easy to see that \(p_1 {\mathbb {Z}}_n - p_1^{2} {\mathbb {Z}}_n - p_1^{3} {\mathbb {Z}}_n - p_1 {\mathbb {Z}}_n\) is a triangle in \({\mathbb {G}}({\mathbb {Z}}_n)\) and so \({\rm gr}({\mathbb {G}}({\mathbb {Z}}_n))=3\). Also, it is clear that if \(n=p_1^2\) or \(n=p_1^3\), then \({\rm gr}({\mathbb {G}}({\mathbb {Z}}_n))=\infty\).

Case 2

\(s=2\). If \(\alpha _1\geqslant 3\), then \(p_1{\mathbb {Z}}_n - p_2 {\mathbb {Z}}_n - p_1^2 {\mathbb {Z}}_n - p_1{\mathbb {Z}}_n\) is a 3-cycle in \({\mathbb {G}}({\mathbb {Z}}_n)\). This yields that \({\rm gr}({\mathbb {G}}({\mathbb {Z}}_n))=3\). Now, suppose that \(\alpha _1,\alpha _2\in \{1, 2 \}\). Whit out lose of generality we may assume the following three subcases:

Subcase 1

\(n=p_1 p_2\). Then \({\mathbb {G}}({\mathbb {Z}}_n)\cong K_2\) and \({\rm gr}({\mathbb {G}}({\mathbb {Z}}_n))=\infty\).

Subcase 2

\(n=p_1^2 p_2\). Then \({\mathbb {G}}({\mathbb {Z}}_n)\cong P_4\) and so \({\rm gr}({\mathbb {G}}({\mathbb {Z}}_n))=\infty\). Note that, \(p_1p_2 {\mathbb {Z}}_n - p_1 {\mathbb {Z}}_n - p_2 {\mathbb {Z}}_n - p_1^2 {\mathbb {Z}}_n\).

Subcase 3

\(n=p_1^2 p_2^2\). Then \(p_1 {\mathbb {Z}}_n - p_1 p_2 {\mathbb {Z}}_n - p_2 {\mathbb {Z}}_n - p_1 {\mathbb {Z}}_n\) is a triangle in \({\mathbb {G}}({\mathbb {Z}}_n)\). Hence \({\rm gr}({\mathbb {G}}({\mathbb {Z}}_n))=3\). \(\square\)

Now, we compute some numerical invariants of \({\mathbb {G}}({\mathbb {Z}}_n)\), namely domination number and clique number.

Theorem 11

If n is a positive integer number, then \(\gamma ({\mathbb {G}}({\mathbb {Z}}_n))=s\).

Proof

We note that \({\rm Max}({\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n,\ldots ,p_s{\mathbb {Z}}_n\}\). Hence by Theorem 1, we find that \(\gamma ({\mathbb {G}}({\mathbb {Z}}_n))\le s\). Next, we prove that \(\gamma ({\mathbb {G}}({\mathbb {Z}}_n))\ge s\). Let D be a smallest dominating set for \({\mathbb {G}}({\mathbb {Z}}_n)\) and let \(I_j=p_j^{\alpha _j-1}\prod _{i\ne j}p_i^{\alpha _i}{\mathbb {Z}}_n\), for \(j=1,\ldots ,s\). We have \(N(I_j)=\{p_j{\mathbb {Z}}_n\}\). This implies that \(\{I_j,p_j{\mathbb {Z}}_n\}\cap D\ne \varnothing\), for every j, \(1\le j\le s\). Therefore \(|D|\ge s\) and so \(\gamma ({\mathbb {G}}({\mathbb {Z}}_n))=s\). \(\square\)

Theorem 12

If \(n=p^{\alpha }\), then \(\omega (\mathbb {G}(\mathbb {Z}_n))=\left\{ \begin{array}{ll} \dfrac{\alpha }{2}, &{} {\text {if}} \, \alpha \, {\text {is even;}}\\ \dfrac{\alpha +1}{2}, &{} {\text {otherwise.}} \end{array} \right.\)

Proof

First suppose that \(\alpha\) is even. By Remark 2, \(p^{r}{\mathbb {Z}}_n\) and \(p^{r'}{\mathbb {Z}}_n\) are adjacent, where \(1\le r,r'\le \alpha /2\). This yields that \(A=\{p^{r}{\mathbb {Z}}_n: r=1,\ldots ,\alpha /2\}\) is a clique in \({\mathbb {G}}({\mathbb {Z}}_n)\). We claim that A is a maximum clique in \({\mathbb {G}}({\mathbb {Z}}_n)\). By contradiction, suppose that \(\{p^{r_1}{\mathbb {Z}}_n,\ldots , p^{r_{\alpha /2+1}}{\mathbb {Z}}_n\}\) is a clique in \({\mathbb {G}}({\mathbb {Z}}_n)\). Clearly, \(1\le r_i\le \alpha\), for \(i=1,\ldots , \alpha /2+1\). With no loss of generality, we may assume that \(r_1\ge \alpha /2+1\). By Remark 2, we conclude that \({\rm deg}(p^{r_1}{\mathbb {Z}}_n)\le \alpha /2\), a contradiction. Therefore \(\{p^{r}{\mathbb {Z}}_n: r=1,\ldots ,\alpha /2\}\) is a maximum clique in \({\mathbb {G}}({\mathbb {Z}}_n)\) and \(\omega ({\mathbb {G}}({\mathbb {Z}}_n))=\alpha /2\). Similarly, \(\{p^{r}{\mathbb {Z}}_n: r=1,\ldots ,(\alpha +1)/2\}\) is a maximum clique in \({\mathbb {G}}({\mathbb {Z}}_n)\), where \(\alpha\) is odd. This completes the proof. \(\square\)

Theorem 13

\({\mathbb {G}}({\mathbb {Z}}_n)\) is a complete graph if and only if \(n\in \{p_1^{2},p_1^{3},p_1p_2\}\).

Proof

One side is obvious. For the other side assume that \({\mathbb {G}}({\mathbb {Z}}_n)\) is a complete graph. By Theorem 9, we find that \(s=1,2\). For the case \(s=1\), we have \({\rm Max}({\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n\}\). Hence by Theorem 9, \(\alpha _1=2,3\). Also, if \(s=2\), then Theorem 9 implies that \(\alpha _1=\alpha _2=1\). Therefore \(n=p_1p_2\). \(\square\)

If \(n=p_1^{3}p_2^{2}\) and \(v_1=p_1p_2{\mathbb {Z}}_{n},v_2=p_1p_2^{2}{\mathbb {Z}}_{n},v_3=p_1{\mathbb {Z}}_{n},v_4=p_1^{2}p_2{\mathbb {Z}}_{n},v_5=p_1^{2}{\mathbb {Z}}_{n},v_6=p_2^{2}{\mathbb {Z}}_{n}, v_7=p_1^{2}p_2^{2}{\mathbb {Z}}_{n},v_8=p_1^{2}p_2^{2}{\mathbb {Z}}_{n},v_9=p_2{\mathbb {Z}}_{n},v_{10}=p_1^{3}p_2{\mathbb {Z}}_{n}\), then we have the following graph (Fig. 1):

Fig. 1
figure 1

\({\mathbb {G}}({\mathbb {Z}}_{p_1^{3}p_2^{2}})\)

Also, if \(n=p_1^{2}p_2p_3\) and \(v_1=p_1{\mathbb {Z}}_{n},v_2=p_1p_2{\mathbb {Z}}_{n},v_3=p_1p_3{\mathbb {Z}}_{n},v_4=p_2{\mathbb {Z}}_{n},v_5=p_1^{2}{\mathbb {Z}}_{n},v_6=p_2p_3{\mathbb {Z}}_{n},v_7=p_3{\mathbb {Z}}_{n}, v_8=p_1p_2p_3{\mathbb {Z}}_{n},v_9=p_1^{2}p_2{\mathbb {Z}}_{n},v_{10}=p_1^{2}p_3{\mathbb {Z}}_{n}\), then we have the following graph (Fig. 2):

Fig. 2
figure 2

\({\mathbb {G}}({\mathbb {Z}}_{p_1^{2}p_2p_3})\)

Now, we investigate the planarity of \({\mathbb {G}}({\mathbb {Z}}_{n})\). We will frequently need a celebrated theorem due to Kuratowski.

Proposition 1

[7, Theorem 10.30] A graph is planar if and only if it contains no subdivision of either \(K_5\) or \(K_{3,3}\).

Theorem 14

\({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph if and only if \(n\in \{p_1,p_1^{2},\ldots ,p_1^{8},p_1p_2,p_1^{2}p_2,p_1^{3}p_2,p_1^{3}p_2^{2},p_1^{4}p_2,p_1^{2}p_2^{2},\) \(p_1p_2p_3,p_1^{2}p_2p_3\}\).

Proof

One side is obvious. For the other side assume that \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph. If \(s\ge 5\), then \(\{p_1{\mathbb {Z}}_n,\ldots ,p_5{\mathbb {Z}}_n\}\) is a clique, a contradiction. Therefore \(s\le 4\). Consider two following cases:

Case 1 \(s=1\). If \(\alpha _1\ge 9\), then \(\{p_1{\mathbb {Z}}_n,p_1^{2}{\mathbb {Z}}_n,\ldots ,p_1^{5}{\mathbb {Z}}_n\}\) is a clique, a contradiction. Hence \(\alpha _1\le 8\). It is clear that if \(\alpha _1\le 5\), then \(|V({\mathbb {G}}({\mathbb {Z}}_n))|\le 4\) and so \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph. If \(\alpha _1=6\), then \(|V({\mathbb {G}}({\mathbb {Z}}_n))|=5\). On the other hand \(p_1^{4}{\mathbb {Z}}_n\) and \(p_1^{5}{\mathbb {Z}}_n\) are two non adjacent vertices. Now, by Theorem 1, we find that \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph. If \(\alpha _1=7\), then \(|V({\mathbb {G}}({\mathbb {Z}}_n))|=6\). Also, \(N(p_1^{6}{\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n\}\). Therefore by Theorem 1, \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph. If \(\alpha _1=8\), then \(|V({\mathbb {G}}({\mathbb {Z}}_n))|=7\). It is easy to see that \(N(p_1^{7}{\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n\}\), \(N(p_1^{6}{\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n, p_1^{2}{\mathbb {Z}}_n\}\) and \(N(p_1^{5}{\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n, p_1^{2}{\mathbb {Z}}_n,p_1^{3}{\mathbb {Z}}_n\}\). Hence \({\mathbb {G}}({\mathbb {Z}}_n)\) contains no subdivision of either \(K_5\) or \(K_{3,3}\). Therefore by Theorem 1, \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph.

Case 2 \(2\le s\le 4\). If \(\alpha _1,\alpha _2\ge 3\), then vertices of the set \(\{p_1{\mathbb {Z}}_n,p_1^{2}{\mathbb {Z}}_n,p_1^{3}{\mathbb {Z}}_n\}\) are adjacent to the vertices of the set \(\{p_2{\mathbb {Z}}_n,p_2^{2}{\mathbb {Z}}_n,p_2^{3}{\mathbb {Z}}_n\}\), and so \(K_{3,3}\) is a subgraph of \({\mathbb {G}}({\mathbb {Z}}_n)\), a contradiction. Hence we may assume that \(\alpha _2,\ldots ,\alpha _s\le 2\). If \(\alpha _1\ge 5\), then two sets \(\{p_1{\mathbb {Z}}_n,p_1^{2}{\mathbb {Z}}_n,p_1^{3}{\mathbb {Z}}_n\}\) and \(\{p_2{\mathbb {Z}}_n,p_1p_2{\mathbb {Z}}_n,p_1^{2}p_2{\mathbb {Z}}_n\}\) imply that \({\mathbb {G}}({\mathbb {Z}}_n)\) contains \(K_{3,3}\), a contradiction. Therefore \(\alpha _1\le 4\). There are three following subcases:

Subcase 1 \(s=2\). Since \(\alpha _1\le 4\) and \(\alpha _2\le 2\), \(n\in \{p_1p_2,p_1^{2}p_2,p_1^{3}p_2,p_1^{4}p_2,p_1p_2^{2},p_1^{2}p_2^{2},p_1^{3}p_2^{2},p_1^{4}p_2^{2}\}\). With no loss of generality we may assume that \(n\in \{p_1p_2,p_1^{2}p_2,p_1^{3}p_2,p_1^{4}p_2,p_1^{2}p_2^{2},p_1^{3}p_2^{2},p_1^{4}p_2^{2}\}\). It is clear that if \(n\in \{p_1p_2,p_1^{2}p_2\}\), then \(|V({\mathbb {G}}({\mathbb {Z}}_n))|\le 4\) and so \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph. If \(n=p_1^{3}p_2\), then \(|V({\mathbb {G}}({\mathbb {Z}}_n))|=6\). Clearly, \(N(p_1^{3}{\mathbb {Z}}_n)=\{p_2{\mathbb {Z}}_n\}\) and \(N(p_1^{2}p_2{\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n\}\). This implies that \({\mathbb {G}}({\mathbb {Z}}_n)\) contains no subdivision of either \(K_5\) or \(K_{3,3}\). Therefore by Theorem 1, \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph. If \(n=p_1^{4}p_2\), then \(|V({\mathbb {G}}({\mathbb {Z}}_n))|=8\). Clearly, \(N(p_1^{4}{\mathbb {Z}}_n)=\{p_2{\mathbb {Z}}_n\}\), \(N(p_1^{3}p_2{\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n\}\) and \(N(p_1^{2}p_2{\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n,p_1^{2}{\mathbb {Z}}_n\}\). Hence \({\mathbb {G}}({\mathbb {Z}}_n)\) contains no subdivision of either \(K_5\) or \(K_{3,3}\). Therefore by Theorem 1, \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph. If \(n=p_1^{2}p_2^{2}\), then \(|V({\mathbb {G}}({\mathbb {Z}}_n))|=7\). Clearly, \(N(p_1^{2}p_2{\mathbb {Z}}_n)=\{p_2{\mathbb {Z}}_n\}\), \(N(p_1p_2^{2}{\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n\}\) and \(N(p_1p_2{\mathbb {Z}}_n)=\{p_1{\mathbb {Z}}_n,p_2{\mathbb {Z}}_n\}\). Hence \({\mathbb {G}}({\mathbb {Z}}_n)\) contains no subdivision of either \(K_5\) or \(K_{3,3}\). Therefore by Theorem 1, \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph. If \(n=n=p_1^{3}p_2^{2}\), then by Fig.1, we find that \({\mathbb {G}}({\mathbb {Z}}_n)\) is planar. If \(n=p_1^{4}p_2^{2}\), then two sets \(\{p_1{\mathbb {Z}}_n,p_1^{2}{\mathbb {Z}}_n,p_1^{3}{\mathbb {Z}}_n\}\) and \(\{p_2{\mathbb {Z}}_n,p_2^{2}{\mathbb {Z}}_n,p_1p_2{\mathbb {Z}}_n\}\) imply that \(K_{3,3}\) is a subgraph of \({\mathbb {G}}({\mathbb {Z}}_n)\), a contradiction.

Subcase 2 \(s=3\). If \(\alpha _1\ge 3\), then two sets \(\{p_1{\mathbb {Z}}_n,p_1^{2}{\mathbb {Z}}_n,p_1^{3}{\mathbb {Z}}_n\}\) and \(\{p_2{\mathbb {Z}}_n,p_3{\mathbb {Z}}_n,p_2p_3{\mathbb {Z}}_n\}\) imply that \(K_{3,3}\) is a subgraph of \({\mathbb {G}}({\mathbb {Z}}_n)\), a contradiction. Hence \(\alpha _1\le 2\) and \(n\in \{p_1p_2p_3,p_1^{2}p_2p_3,p_1p_2^{2}p_3,p_1p_2p_3^{2},p_1^{2}p_2^{2}p_3,\) \(p_1^{2}p_2p_3^{2},p_1p_2^{2}p_3^{2},p_1^{2}p_2^{2}p_3^{2}\}\). With no loss of generality we may assume that \(n\in \{p_1p_2p_3,p_1^{2}p_2p_3,p_1^{2}p_2^{2}p_3,p_1^{2}p_2^{2}p_3^{2}\}\). If \(n=p_1p_2p_3\), then \({\rm deg}(p_1p_2{\mathbb {Z}}_n)={\rm deg}(p_1p_3{\mathbb {Z}}_n)={\rm deg}(p_2p_3{\mathbb {Z}}_n)=1\) and \({\rm deg}(p_1{\mathbb {Z}}_n)={\rm deg}(p_2{\mathbb {Z}}_n)={\rm deg}(p_3{\mathbb {Z}}_n)=2\). This yields that \({\mathbb {G}}({\mathbb {Z}}_n)\) is a planar graph. If \(n=p_1^{2}p_2p_3\), then by Fig.2, we conclude that \({\mathbb {G}}({\mathbb {Z}}_n)\) is planar. If \(n\in \{p_1^{2}p_2^{2}p_3,p_1^{2}p_2^{2}p_3^{2}\}\), then two sets \(\{p_1{\mathbb {Z}}_n,p_2{\mathbb {Z}}_n,p_1p_2{\mathbb {Z}}_n\}\) and \(\{p_3{\mathbb {Z}}_n,p_2p_3{\mathbb {Z}}_n,p_1p_2p_3{\mathbb {Z}}_n\}\) imply that \(K_{3,3}\) is a subgraph of \({\mathbb {G}}({\mathbb {Z}}_n)\), a contradiction.

Subcase 3 \(s=4\). If \(\alpha _2,\alpha _3\ge 2\), then \(\{p_1{\mathbb {Z}}_n,p_1p_2{\mathbb {Z}}_n,p_1p_3{\mathbb {Z}}_n,p_1p_4{\mathbb {Z}}_n,p_1p_5{\mathbb {Z}}_n\}\) is a clique, a contradiction. Similarly, we conclude that at most one of the element of the set \(\{\alpha _2,\alpha _3,\alpha _4\}\) can be more than 2. Therefore with no loss of generality we may assume that \(\alpha _3=\alpha _4=1\). If \(\alpha _1\ge 3\) and \(\alpha _2=1\), then \(\{p_1{\mathbb {Z}}_n,p_2{\mathbb {Z}}_n,p_3{\mathbb {Z}}_n,p_4{\mathbb {Z}}_n,p_1^{2}{\mathbb {Z}}_n\}\) is a clique, a contradiction. Otherwise, two sets \(\{p_1{\mathbb {Z}}_n,p_2{\mathbb {Z}}_n,p_1p_2{\mathbb {Z}}_n\}\) and \(\{p_3{\mathbb {Z}}_n,p_4{\mathbb {Z}}_n,p_3p_4{\mathbb {Z}}_n\}\) imply that \(K_{3,3}\) is a subgraph of \({\mathbb {G}}({\mathbb {Z}}_n)\), a contradiction. \(\square\)