ORIGINAL RESEARCH

The annihilating graph of a ring

Z. Shafiei¹ · M. Maghasedi¹ · F. Heydari¹ · S. Khojasteh²

Received: 26 June 2017/Accepted: 23 September 2017/Published online: 5 October 2017 © The Author(s) 2017. This article is an open access publication

Abstract Let *A* be a commutative ring with unity. The annihilating graph of *A*, denoted by $\mathbb{G}(A)$, is a graph whose vertices are all non-trivial ideals of *A* and two distinct vertices *I* and *J* are adjacent if and only if Ann(*I*)Ann(*J*) = 0. For every commutative ring *A*, we study the diameter and the girth of $\mathbb{G}(A)$. Also, we prove that if $\mathbb{G}(A)$ is a triangle-free graph, then $\mathbb{G}(A)$ is a bipartite graph. Among other results, we show that if $\mathbb{G}(A)$ is a tree, then $\mathbb{G}(A)$ is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let *n* be a positive integer number. We classify all integer numbers *n* for which $\mathbb{G}(\mathbb{Z}_n)$ is a complete or a planar graph. Finally, we compute the domination number of $\mathbb{G}(\mathbb{Z}_n)$.

Keywords Annihilating graph · Diameter · Girth · Planarity

Mathematics Subject Classification 05C10 · 05C25 · 05C40 · 13A99

 M. Maghasedi maghasedi@kiau.ac.ir
 Z. Shafiei zahra.shafiei@kiau.ac.ir

> F. Heydari f-heydari@kiau.ac.ir

S. Khojasteh s_khojasteh@liau.ac.ir

¹ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

² Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Introduction

There are many papers on assigning a graph to algebraic structures, for instance see [2–6, 8, 9]. Throughout this paper, all graphs are simple with no loops and multiple edges and A is a commutative ring with non-zero identity. We denote by $\mathbb{I}(A)^*$ and Max(A), the set of all non-trivial ideals of A and the set of all maximal ideals of A, respectively. A ring having just one maximal ideal is called a local ring and a ring having only finitely many maximal ideals is said to be a semilocal ring. For every ideal I of A, we denote by Ann(I), the set of elements $a \in A$ such that aI = 0.

Let G be a graph with vertex set V(G). If u is adjacent to v, then we write u - v. For $u, v \in V(G)$, we recall that a path between *u* and *v* is a sequence $u = x_0 - \cdots - x_n = v$ of vertices of G such that for every *i* with $1 \le i \le n$, the vertices x_{i-1} and x_i are adjacent and $x_i \neq x_i$, where $i \neq j$. For every positive integer *n*, we denote the path of order *n*, by P_n . For $u, v \in V(G)$ with $u \neq v$, d(u, v) denotes the length of a shortest path between *u* and *v*. If there is no such path, then we define $d(u, v) = \infty$. The diameter of G is defined diam(G) = sup{d(u, v) | u and v are vertices of G}. For any $u \in V(G)$, the degree of u, deg(u), denotes the number of edges incident with u. The neighborhood of a vertex u is denoted by $N_G(u)$ or simply N(u). A graph G is *k*-regular if d(v) = k for all $v \in V(G)$; a regular graph is one that is k-regular for some k. We denote the complete graph on *n* vertices by K_n . A bipartite graph is one whose vertex set can be partitioned into two subsets V_1 and V_2 so that each edge has one end in V_1 and one end in V_2 . A complete bipartite graph is a bipartite graph with two partitions V_1 and V_2 in which every vertex in V_1 is joined to every vertex in V_2 . The complete bipartite graph with two partitions of size *m* and *n* is denoted by $K_{m,n}$. A star graph

with center *v* and *n* vertices is the complete bipartite graph with part sizes 1 and *n* such that deg(v) = n. A double-star graph is a union of two star graphs with centers u and v such that u is adjacent to v. We use C_n for the cycle of order *n*, where $n \ge 3$. If a graph *G* has a cycle, then the girth of G (notated gr(G)) is defined as the length of a shortest cycle of G; otherwise $gr(G) = \infty$. A triangle-free graph is a graph which contains no triangle. A clique of a graph is a complete subgraph and the number of vertices in a largest clique of graph G, denoted by $\omega(G)$, is called the clique number of G. Recall that a graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. Also, a dominating set is a subset S of V(G) such that every vertex of $V(G) \setminus S$ is adjacent to at least one vertex in S. The number of vertices in a smallest dominating set denoted by $\gamma(G)$, is called the domination number of G.

Let A be a commutative ring with non-zero identity. The annihilating graph of A, denoted by $\mathbb{G}(A)$, is a graph with the vertex set $\mathbb{I}(A)^*$, and two distinct vertices $I, J \in \mathbb{Z}(A)^*$ are adjacent if and only if Ann(I)Ann(J) = 0. In this paper, we prove that if A is a ring, then $\mathbb{G}(A)$ is a connected graph, diam($\mathbb{G}(A)$) < 3 and gr($\mathbb{G}(A)$) $\in \{3, 4, \infty\}$. Also, we prove that for every ring A, if $\mathbb{G}(A)$ is a triangle-free graph, then $\mathbb{G}(A)$ is a bipartite graph. Among other results, we show that if A is a ring and $\mathbb{G}(A)$ is a tree, then $\mathbb{G}(A)$ is a star or a double star graph. Moreover, we prove that the annihilating graph of a ring cannot be a cycle. Also, we obtained some results about $\mathbb{G}(\mathbb{Z}_n)$. We show that $\mathbb{G}(\mathbb{Z}_n)$ is a complete graph if and only if $n \in \{p_1^2, p_1^3, p_1p_2\}$. We also prove that $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph if and only if $n \in$ $\{p_1, p_1^2, \dots, p_1^8, p_1p_2, p_1^2p_2, p_1^3p_2, p_1^3p_2^2, p_1^4p_2, p_1^2p_2^2, p_1p_2p_3, p_1^2\}$ p_2p_3 . Finally, we determine the domination number of $\mathbb{G}(\mathbb{Z}_n).$

The annihilating graph of A

In this section, we study the diameter and the girth of the annihilating graph of a ring. Also, we classify all rings whose annihilating graphs are complete graph, tree or cycle.

We start with the following lemma.

Lemma 1 If A is a commutative ring, then $\gamma(\mathbb{G}(A)) \leq |\operatorname{Max}(A)| \leq \omega(\mathbb{G}(A)).$

Proof Suppose that $\mathfrak{m}_1, \mathfrak{m}_2$ are two distinct maximal ideals of *A*. Then we have $\operatorname{Ann}(\mathfrak{m}_1)\operatorname{Ann}(\mathfrak{m}_2) \subseteq \operatorname{Ann}(\mathfrak{m}_1) \cap \operatorname{Ann}(\mathfrak{m}_2) \subseteq \operatorname{Ann}(\mathfrak{m}_1 + \mathfrak{m}_2)$. Since $\mathfrak{m}_1 + \mathfrak{m}_2 = A$, we conclude that $\operatorname{Ann}(\mathfrak{m}_1 + \mathfrak{m}_2) = 0$ and so \mathfrak{m}_1 is adjacent to \mathfrak{m}_2 . This implies that $\operatorname{Max}(A)$ is a clique in $\mathbb{G}(A)$. Now,

🖉 Springer

suppose that $I \in \mathbb{Z}(A)^* \setminus Max(A)$. Let \mathfrak{m} be a maximal ideal containing Ann(I). Since $Ann(I)Ann(\mathfrak{m}) \subseteq \mathfrak{m}Ann(\mathfrak{m}) = 0$, we deduce that I is adjacent to \mathfrak{m} . Hence Max(A) is a dominating set of $\mathbb{G}(A)$.

By the previous lemma, if the clique number of $\mathbb{G}(A)$ is finite, then A is a semilocal ring. Also, we have the following result.

Corollary 1 Let A be a ring. If every maximal ideal of A has finite degree, then $\mathbb{G}(A)$ is a finite graph.

Proof Since Max(A) is a clique in $\mathbb{G}(A)$, so Max(A) is finite. Now, since Max(A) is a dominating set of $\mathbb{G}(A)$, the result holds.

Next, we study the diameter and the girth of $\mathbb{G}(A)$.

Theorem 1 Let A be a ring. Then $diam(\mathbb{G}(A)) \leq 3$. Moreover, if A is a local ring, then $diam(\mathbb{G}(A)) \leq 2$.

Proof Assume that *I* and *J* are two non-trivial ideals of *A*. Suppose that \mathfrak{m}_1 and \mathfrak{m}_2 are maximal ideals such that $\operatorname{Ann}(I) \subseteq \mathfrak{m}_1$ and $\operatorname{Ann}(J) \subseteq \mathfrak{m}_2$. Since $\operatorname{Ann}(I)\operatorname{Ann}(\mathfrak{m}_1) \subseteq \mathfrak{m}_1\operatorname{Ann}(\mathfrak{m}_1) = 0$, we conclude that $I = \mathfrak{m}_1$ or *I* is adjacent to \mathfrak{m}_1 . Similarly, $J = \mathfrak{m}_2$ or *J* is adjacent to \mathfrak{m}_2 . Now, if $\mathfrak{m}_1 = \mathfrak{m}_2$, then $d(I, J) \leq 2$. Otherwise, \mathfrak{m}_1 and \mathfrak{m}_2 are adjacent and so $d(I, J) \leq 3$. Thus diam($\mathbb{G}(A)$) ≤ 3 . (Note that if *A* has a non-trivial ideal *I* with $\operatorname{Ann}(I) = 0$, then *I* is adjacent to all other vertices and hence diam($\mathbb{G}(A)$) ≤ 2 .) Finally, assume that (*A*, \mathfrak{m}) is a local ring. By the proof of Lemma 1, \mathfrak{m} is adjacent to all other vertices, so diam($\mathbb{G}(A)$) ≤ 2 .

Theorem 2 Let A be a ring. Then $gr(\mathbb{G}(A)) \in \{3, 4, \infty\}$. Moreover, if A is a local ring and $\mathbb{G}(A)$ contains a cycle, then $gr(\mathbb{G}(A)) = 3$.

Proof Clearly, if *A* has at least three maximal ideals, then $gr(\mathbb{G}(A)) = 3$. So assume that *A* has exactly two maximal ideals and $\mathbb{G}(A)$ contains a cycle *C*. If *C* is a cycle of length at most 4, then we are done. Otherwise, *C* contains two adjacent vertices *I* and *J* which are not maximal ideals. Suppose that *I* ⊆ m₁ and *J* ⊆ m₂, where m₁ and m₂ are maximal ideals of *A*. Since Ann(*I*)Ann(m₂) ⊆ Ann(*I*)Ann(*J*) = 0, we deduce that *I* and m₂ are adjacent. Similarly, *J* and m₁ are adjacent. If m₁ = m₂, then $gr(\mathbb{G}(A)) = 3$. Otherwise, $gr(\mathbb{G}(A)) \le 4$. The last part follows from the proof of Lemma 1.

The following theorem shows that triangle-free annihilating graphs are bipartite.

Theorem 3 Let A be a ring. If $\mathbb{G}(A)$ is a triangle-free graph, then $\mathbb{G}(A)$ is a bipartite graph.

Proof Let $\mathbb{G}(A)$ be a triangle-free graph. Clearly A has at most two maximal ideals. If A is a local ring, then $\mathbb{G}(A)$ is

a star and so $\mathbb{G}(A)$ is bipartite. Suppose that A contains exactly two distinct maximal ideals \mathfrak{m}_1 and \mathfrak{m}_2 . One can easily see that $\mathbb{G}(A)$ is a bipartite graph with parts $N(\mathfrak{m}_1)$ and $N(\mathfrak{m}_2)$.

Theorem 4 Let A be a ring. If $\mathbb{G}(A)$ is a tree, then $\mathbb{G}(A)$ is a star or a double star graph.

Proof Assume that $\mathbb{G}(A)$ is a tree. It is enough to show that if A has exactly two distinct maximal ideals \mathfrak{m}_1 and \mathfrak{m}_2 , then $\mathbb{G}(A)$ is a double star graph. By the proof of Lemma 1, \mathfrak{m}_1 is adjacent to \mathfrak{m}_2 and every other vertex is adjacent to one of the \mathfrak{m}_1 and \mathfrak{m}_2 . Now, since $\mathbb{G}(A)$ contains no cycles, $\mathbb{G}(A)$ is a double star graph. \Box

By the previous theorem, we have the following immediate corollary.

Corollary 2 Let A be a ring. If $\mathbb{G}(A) \cong P_n$, then $n \leq 4$.

Theorem 5 *The annihilating graph of a ring cannot be a cycle.*

Proof By contrary suppose that $\mathbb{G}(A) \cong C_n$, for some $n \ge 3$. By Theorem 2, we conclude that $n \le 4$. First assume that $\mathbb{G}(A) \cong C_4$. So A has exactly four non-trivial ideals. By Theorem 2, we deduce that A is not a local ring. Hence by [6, Theorem 8.7], $A \cong F \times S$, where F is a field and S is a ring with exactly one non-trivial ideal. Let m be the nontrivial ideal of S. Thus $\mathbb{I}(A)^* = \{0 \times \mathfrak{m}, 0 \times S, F \times 0, \}$ $F \times \mathfrak{m}$. We have $\operatorname{Ann}(0 \times \mathfrak{m}) = F \times \mathfrak{m}$, $\operatorname{Ann}(F \times \mathfrak{m}) =$ $0 \times \mathfrak{m}$, $\operatorname{Ann}(0 \times S) = F \times 0$ and $\operatorname{Ann}(F \times 0) = 0 \times S$. Therefore, $\mathbb{G}(A)$ is the path $0 \times \mathfrak{m} - F \times \mathfrak{m} - 0 \times S - F$ $F \times S$, a contradiction. Next assume that $\mathbb{G}(A) \cong C_3$. Since A has exactly three non-trivial ideals, by [6, Theorem 8.7], A is an Artinian local ring. Let $\mathbb{I}(A)^* = \{I, J, \mathfrak{m}\}$, where \mathfrak{m} is the maximal ideal of A. Suppose that k is the smallest positive integer such that $\mathfrak{m}^k = 0$. So $\operatorname{Ann}(\mathfrak{m}) \neq 0$. With no loss of generality, we consider two cases. Note that the annihilating-ideal graph AG(A) of A is a graph whose vertex set is the set of all non-zero ideals of A with nonzero annihilator and two distinct vertices I and J are adjacent if and only if IJ = 0, see [1].

Case 1 Ann $(\mathfrak{m}) = \mathfrak{m}$. So $\mathfrak{m}^2 = 0$ and hence $IJ = I\mathfrak{m} = J\mathfrak{m} = 0$. This implies that $\mathbb{A}\mathbb{G}(A) \cong \mathbb{G}(A) \cong \mathbb{C}_3$. By [1, Corollary 9], $\mathbb{A}\mathbb{G}(A)$ cannot be a cycle, a contradiction.

Case 2 Ann(\mathfrak{m}) = *I*. Thus $I\mathfrak{m} = 0$. So IJ = 0 and $\mathfrak{m} = \operatorname{Ann}(I)$. If $\mathfrak{m}J = 0$, then $\mathbb{AG}(A) \cong \mathbb{G}(A) \cong C_3$, a contradiction. Therefore, $\mathfrak{m}J \neq 0$ and hence $\mathbb{AG}(A) \cong P_3$. Now, by [1, Theorem 11], we have k = 4 and so $I = \mathfrak{m}^3$ and $J = \mathfrak{m}^2$. This implies that $\operatorname{Ann}(I) = \mathfrak{m}$ and $\operatorname{Ann}(J) = \mathfrak{m}^2$. Thus $\mathbb{G}(A) \cong P_3$, a contradiction. \Box **Theorem 6** If $\mathbb{G}(A)$ is a regular graph of finite degree, then $\mathbb{G}(A)$ is a complete graph.

Proof By Corollary 1, A has finitely many ideals. So A is an Artinian ring. First suppose that (A, \mathfrak{m}) is an Artinian local ring. Since \mathfrak{m} is a vertex of $\mathbb{G}(A)$ which is adjacent to all other vertices, we deduce that $\mathbb{G}(A)$ is a complete graph. Now, by [6, Theorem 8.7], we may assume that $A \cong A_1 \times \cdots \times A_n$, where $n \ge 2$ and (A_i, \mathfrak{m}_i) is an Artinian local ring for $i = 1, \ldots, n$. We have $\operatorname{Ann}(0 \times A_2 \times \cdots \times A_n) = A_1 \times 0 \times \cdots \times 0$, $\operatorname{Ann}(\mathfrak{m} \times \mathfrak{A} \times \cdots \times \mathfrak{A}_n) = A_1 \times 0 \times \cdots \times 0$, $\operatorname{Ann}(\mathfrak{m} \times \mathfrak{A} \times \cdots \times \mathfrak{A}_n) = 0 \times A_2 \times \cdots \times A_n$. Let $v_1 = 0 \times A_2 \times \cdots \times A_n$, $v_2 = \mathfrak{m} \times \mathfrak{A} \times \cdots \times \mathfrak{A}_n$ and $v_3 = A_1 \times 0 \times \cdots \times 0$. One can easily see that

$$N(v_1) = \{A_1 \times I_2 \times \cdots \times I_n \mid I_i \text{ is an ideal of } A_i \text{ for } i = 2, \dots, n\} \setminus \{A\},\$$

and

$$N(v_2) = \{I_1 \times I_2 \times \cdots \times I_n \mid I_i \text{ is an ideal of } A_i \text{ for } i = 1, \dots, n \text{ and } I_1 \neq 0\} \setminus \{A\}.$$

Note that every non-trivial ideal of an Artinian ring *A* has a non-zero annihilator. Since $\deg(v_1) = \deg(v_2)$, we conclude that A_1 has no proper ideal other than 0, m. Thus

$$N(v_3) = \{0 \times A_2 \times \cdots \times A_n, \mathfrak{m} \times A_2 \times \cdots \times A_n\}.$$

Hence deg $(v_3) \le 2$. If $\mathbb{G}(A)$ is a 2-regular graph, then $\mathbb{G}(A)$ is a cycle, a contradiction. Note that by Theorem 1, $\mathbb{G}(A)$ is a connected graph. Therefore, $\mathbb{G}(A)$ is a 1-regular graph. So $\mathbb{G}(A) \cong K_2$ is a complete graph. In this case, $A \cong F_1 \times F_2$, where F_1, F_2 are fields.

Remark 1 Let A be a commutative ring and m be a maximal ideal of A with non-zero annihilator. Since mAnn(m) = 0, we conclude that $m \subseteq Ann(Ann(m))$. Now, $Ann(m) \neq 0$ implies that Ann(Ann(m)) = m.

Lemma 2 Let A be a local ring with non-zero maximal ideal m. If $I \in \mathbb{Z}(A)^*$ and $\operatorname{Ann}(I) = \operatorname{Ann}(\mathfrak{m})$, then I is adjacent to all other vertices of $\mathbb{G}(A)$.

Proof Suppose that $Ann(I) = Ann(\mathfrak{m})$. Let *J* be a non-trivial ideal of *A* and $J \neq I$. Since $Ann(J) \subseteq \mathfrak{m}$, we deduce that $Ann(J)Ann(I) \subseteq \mathfrak{m}Ann(\mathfrak{m}) = 0$. Hence *I* and *J* are adjacent. The proof is complete.

Theorem 7 Let A be a local ring with non-zero maximal ideal \mathfrak{m} such that $\operatorname{Ann}(\mathfrak{m}) \neq 0$. Then $\mathbb{G}(A)$ is a complete graph if and only if $\operatorname{Ann}(I) = \operatorname{Ann}(\mathfrak{m})$, for every ideal $I \in \mathbb{Z}(A)^* \setminus \{\operatorname{Ann}(\mathfrak{m})\}.$

Proof Suppose that $\mathbb{G}(A)$ is a complete graph and let $I \in \mathbb{Z}(A)^* \setminus \{\operatorname{Ann}(\mathfrak{m})\}$. Since $\operatorname{Ann}(\mathfrak{m}) \neq 0, A$, we conclude that $\operatorname{Ann}(\mathfrak{m})$ is a vertex of $\mathbb{G}(A)$ and hence is adjacent to

I. Thus $Ann(I)Ann(Ann(\mathfrak{m})) = 0$. By Remark 1, $Ann(Ann(\mathfrak{m})) = \mathfrak{m}$. So $Ann(I)\mathfrak{m} = 0$ which implies that Ann(I) \subseteq Ann(\mathfrak{m}). In other hand, since $I \subseteq \mathfrak{m}$, we deduce that $\operatorname{Ann}(\mathfrak{m}) \subseteq \operatorname{Ann}(I)$. Therefore, $\operatorname{Ann}(I) = \operatorname{Ann}(\mathfrak{m})$. Conversely, suppose that Ann(I) = Ann(m), for every $I \in \mathbb{Z}(A)^* \setminus \{\operatorname{Ann}(\mathfrak{m})\}.$ ideal Assume that $I, J \in$ $\mathbb{Z}(A)^* \setminus \{\operatorname{Ann}(\mathfrak{m})\}\$ and $I \neq J$. Since $\operatorname{Ann}(I) = \operatorname{Ann}(J) =$ $Ann(\mathfrak{m}),$ we conclude that $\operatorname{Ann}(I)\operatorname{Ann}(J) =$ $Ann(\mathfrak{m})Ann(\mathfrak{m}) \subseteq \mathfrak{m}Ann(\mathfrak{m}) = 0$. Hence I and J are adjacent. Now, since Ann(Ann(m))Ann(I) = mAnn(I) = $\mathfrak{mAnn}(\mathfrak{m}) = 0$, then $Ann(\mathfrak{m})$ is adjacent to all other vertices. Thus $\mathbb{G}(A)$ is a complete graph.

Theorem 8 Let A be an Artinian local ring with non-zero maximal ideal m. Then $\mathbb{G}(A)$ is a complete graph if and only if either $\mathfrak{m}^2 = 0$ or $\mathfrak{m}^3 = 0$ and $IJ = \mathfrak{m}^2$, for every ideal $I, J \in \mathbb{Z}(A)^* \setminus \{\mathfrak{m}^2\}$.

Proof First assume that $\mathfrak{m}^2 = 0$. Thus $\mathfrak{m} \subseteq \operatorname{Ann}(\mathfrak{m})$ and hence Ann $(\mathfrak{m}) = \mathfrak{m}$. Let $I \in \mathbb{Z}(A)^*$. Since $I \subseteq \mathfrak{m}$, we deduce that $\mathfrak{m} = \operatorname{Ann}(\mathfrak{m}) \subseteq \operatorname{Ann}(I)$. So $\operatorname{Ann}(I) = \mathfrak{m}$. Now, Theorem 9 implies that $\mathbb{G}(A)$ is a complete graph. Next assume that $\mathfrak{m}^3 = 0$ and $IJ = \mathfrak{m}^2$, for every ideal $I, J \in \mathbb{Z}(A)^* \setminus \{\mathfrak{m}^2\}$. Note that $\mathfrak{m}^2 \neq 0$. Hence $\operatorname{Ann}(\mathfrak{m}) \neq 0$ Ann $(\mathfrak{m}^2) = \mathfrak{m}$. Since Ann (\mathfrak{m}) Ann $(\mathfrak{m}) \subset$ m and $\mathfrak{mAnn}(\mathfrak{m}) = 0$, we conclude that $Ann(\mathfrak{m}) = \mathfrak{m}^2$. Let $I \in \mathbb{Z}(A)^* \setminus \{\mathfrak{m}^2\}$. Since $IAnn(I) = 0 \neq \mathfrak{m}^2$, we deduce that Ann $(I) = \mathfrak{m}^2 = \operatorname{Ann}(\mathfrak{m})$. Thus by Theorem 9. $\mathbb{G}(A)$ is complete. Conversely, suppose that $\mathbb{G}(A)$ is a complete graph. Let k be the smallest positive integer such that $\mathfrak{m}^k = 0$. If k = 2, we are done. Assume that $k \ge 3$. So Ann $(\mathfrak{m}) \neq \mathfrak{m}$. Since $\mathfrak{m} \subseteq \operatorname{Ann}(\mathfrak{m}^{k-1})$, we conclude that Ann $(\mathfrak{m}^{k-1}) = \mathfrak{m}$. Now, by Theorem 9, Ann $(\mathfrak{m}) = \mathfrak{m}^{k-1}$. In other hand, since $\mathfrak{m}^{k-2} \subseteq \operatorname{Ann}(\mathfrak{m}^2)$, then $\operatorname{Ann}(\mathfrak{m}^2) \neq \mathfrak{m}^{k-1}$ = Ann(\mathfrak{m}). This implies that $\mathfrak{m}^2 = \operatorname{Ann}(\mathfrak{m}) = \mathfrak{m}^{k-1}$. Therefore, k = 3 and so we have $\mathfrak{m}^3 = 0$, $Ann(\mathfrak{m}) = \mathfrak{m}^2$, Ann $(\mathfrak{m}^2) = \mathfrak{m}$. and Finally, suppose that $I, J \in \mathbb{Z}(A)^* \setminus \{\mathfrak{m}^2\}$. Since $\mathfrak{m}IJ \subset \mathfrak{m}^3 = 0$, we deduce that IJ = 0 or Ann $(IJ) = \mathfrak{m}$. If IJ = 0, then $I \subseteq Ann(J) = \mathfrak{m}^2$ and hence $\mathfrak{m} = \operatorname{Ann}(\mathfrak{m}^2) \subset \operatorname{Ann}(I) = \mathfrak{m}^2$, a contradiction. Thus $Ann(IJ) = \mathfrak{m}$ and so Theorem 7 implies that $IJ = \mathfrak{m}^2$. The proof is complete.

We close this section by the following theorem which is a classification of rings whose annihilating graphs are complete.

Theorem 9 Let A be a commutative ring. If $\mathbb{G}(A) \cong K_n$, then one of the following holds:

- (i) (A, \mathfrak{m}) is an Artinian local ring with $\mathfrak{m}^2 = 0$.
- (ii) (A, \mathfrak{m}) is an Artinian local ring with $\mathfrak{m}^3 = 0$ and $IJ = \mathfrak{m}^2$, for every ideal $I, J \in \mathbb{Z}(A)^* \setminus \{\mathfrak{m}^2\}$.

(iii) $A \cong F_1 \times F_2$, where F_1, F_2 are fields.

Proof Suppose that $\mathbb{G}(A) \cong K_n$, for some positive integer *n*. So *A* is an Artinian ring. By Theorem 8, if *A* is a local ring, then the cases (ii) or (iii) occur. Otherwise, by the proof of Theorem 6, $A \cong F_1 \times F_2$, where F_1, F_2 are fields.

The annihilating graph of \mathbb{Z}_n

In this section, we study the case that $A = \mathbb{Z}_n$. Throughout this section, without loss of generality, we assume that $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, where p_i 's are distinct primes and α_i 's are positive integers. It is easy to see that $\mathbb{I}(\mathbb{Z}_n) = \{d\mathbb{Z}_n : d$ divides $n\}$ and $|\mathbb{I}(\mathbb{Z}_n)^*| = \prod_{i=1}^s (\alpha_i + 1) - 2$. We denote the least common multiple and the greatest common divisor of integers a and b by [a, b] and (a, b), respectively. Also, we write alb (a |/b) if a divides b (a does not divide b). We begin with the following lemma.

Lemma 3 If
$$p_1^{\beta_1} \cdots p_s^{\beta_s} \mathbb{Z}_n \in \mathbb{Z}(\mathbb{Z}_n)^*$$
, then
 $\operatorname{Ann}(p_1^{\beta_1} \cdots p_s^{\beta_s} \mathbb{Z}_n) = p_1^{\alpha_1 - \beta_1} \cdots p_s^{\alpha_s - \beta_s} \mathbb{Z}_n$.

Proof Let $d = p_1^{\beta_1} \cdots p_s^{\beta_s}$ and $d' = p_1^{\alpha_1 - \beta_1} \cdots p_s^{\alpha_s - \beta_s}$. Clearly, $d\mathbb{Z}_n d'\mathbb{Z}_n = 0$ and so $d'\mathbb{Z}_n \subseteq \operatorname{Ann}(d\mathbb{Z}_n)$. Let $r \in \operatorname{Ann}(d\mathbb{Z}_n)$. Then *n* divides *rd*. Since $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$ and $d = p_1^{\beta_1} \cdots p_s^{\beta_s}$, so $p_1^{\alpha_1 - \beta_1} \cdots p_s^{\alpha_s - \beta_s}$ divides *r*. This implies that $r \in d'\mathbb{Z}_n$ and $\operatorname{Ann}(d\mathbb{Z}) \subseteq d'\mathbb{Z}_n$. The proof is complete.

Remark 2 Let $d_1\mathbb{Z}_n, d_2\mathbb{Z}_n \in \mathbb{Z}(\mathbb{Z}_n)^*$ and let $d_1 = p_1^{\beta_1} \cdots p_s^{\beta_s}, d_2 = p_1^{\gamma_1} \cdots p_s^{\gamma_s}$. Then $d_1\mathbb{Z}_n$ and $d_2\mathbb{Z}_n$ are adjacent if and only if $p_1^{\alpha_1} \cdots p_s^{\alpha_s}$ divides $p_1^{2\alpha_1-(\beta_1+\gamma_1)} \cdots p_s^{2\alpha_s-(\beta_s+\gamma_s)}$ which implies that $\alpha_i \ge \beta_i + \gamma_i$, for $i = 1, \ldots, s$. Also, if $(d_1, d_2) = 1$ then $d_1\mathbb{Z}_n$ and $d_2\mathbb{Z}_n$ are adjacent.

Lemma 4 If $d = p_1^{\beta_1} \cdots p_s^{\beta_s}$, then $\prod_{i=1}^s (\alpha_i - \beta_i + 1) - 2 \le \deg(d\mathbb{Z}_n) \le \prod_{i=1}^s (\alpha_i - \beta_i + 1) - 1$.

Proof If $p_1^{\gamma_1} \cdots p_s^{\gamma_s} \mathbb{Z}_n$ and $d\mathbb{Z}_n$ are adjacent, then by Remark 2, $0 \le \gamma_i \le \alpha_i - \beta_i$. On the other hand, $p_1^{\gamma_1} \cdots p_s^{\gamma_s} \notin \{1, d\}$ which implies that $\deg(d\mathbb{Z}_n) \in \{\prod_{i=1}^s (\alpha_i - \beta_i + 1) - 2, \prod_{i=1}^s (\alpha_i - \beta_i + 1) - 1\}$.

Next, we study the girth of $\mathbb{G}(\mathbb{Z}_n)$.

Theorem 10 Let *n* be a positive integer number. Then $gr(\mathbb{G}(\mathbb{Z}_n)) \in \{3, \infty\}$. Moreover, $\mathbb{G}(\mathbb{Z}_n)$ is a tree if and only if $n \in \{p_1^2, p_1^3, p_1 p_2, p_1^2 p_2\}$.

Proof If $s \ge 3$, then $p_1\mathbb{Z}_n - p_2\mathbb{Z}_n - p_3\mathbb{Z}_n - p_1\mathbb{Z}_n$ is a 3-cycle in $\mathbb{G}(\mathbb{Z}_n)$. Therefore $gr(\mathbb{G}(\mathbb{Z}_n)) = 3$. Now, consider two following cases:

Case 1 s = 1. If $\alpha_1 \ge 4$, then it is easy to see that $p_1\mathbb{Z}_n - p_1^2\mathbb{Z}_n - p_1^3\mathbb{Z}_n - p_1\mathbb{Z}_n$ is a triangle in $\mathbb{G}(\mathbb{Z}_n)$ and so $\operatorname{gr}(\mathbb{G}(\mathbb{Z}_n)) = 3$. Also, it is clear that if $n = p_1^2$ or $n = p_1^3$, then $\operatorname{gr}(\mathbb{G}(\mathbb{Z}_n)) = \infty$.

Case 2 s = 2. If $\alpha_1 \ge 3$, then $p_1 \mathbb{Z}_n - p_2 \mathbb{Z}_n - p_1^2 \mathbb{Z}_n - p_1 \mathbb{Z}_n$ is a 3-cycle in $\mathbb{G}(\mathbb{Z}_n)$. This yields that $gr(\mathbb{G}(\mathbb{Z}_n)) = 3$. Now, suppose that $\alpha_1, \alpha_2 \in \{1, 2\}$. Whit out lose of generality we may assume the following three subcases:

Subcase 1 $n = p_1 p_2$. Then $\mathbb{G}(\mathbb{Z}_n) \cong K_2$ and $\operatorname{gr}(\mathbb{G}(\mathbb{Z}_n)) = \infty$.

Subcase 2 $n = p_1^2 p_2$. Then $\mathbb{G}(\mathbb{Z}_n) \cong P_4$ and so $\operatorname{gr}(\mathbb{G}(\mathbb{Z}_n)) = \infty$. Note that, $p_1 p_2 \mathbb{Z}_n - p_1 \mathbb{Z}_n - p_2 \mathbb{Z}_n - p_1^2 \mathbb{Z}_n$.

Subcase 3 $n = p_1^2 p_2^2$. Then $p_1 \mathbb{Z}_n - p_1 p_2 \mathbb{Z}_n - p_2 \mathbb{Z}_n - p_1 \mathbb{Z}_n$ is a triangle in $\mathbb{G}(\mathbb{Z}_n)$. Hence $\operatorname{gr}(\mathbb{G}(\mathbb{Z}_n)) = 3$. \Box

Now, we compute some numerical invariants of $\mathbb{G}(\mathbb{Z}_n)$, namely domination number and clique number.

Theorem 11 If *n* is a positive integer number, then $\gamma(\mathbb{G}(\mathbb{Z}_n)) = s$.

Proof We note that $\operatorname{Max}(\mathbb{Z}_n) = \{p_1\mathbb{Z}_n, \dots, p_s\mathbb{Z}_n\}$. Hence by Theorem 1, we find that $\gamma(\mathbb{G}(\mathbb{Z}_n)) \leq s$. Next, we prove that $\gamma(\mathbb{G}(\mathbb{Z}_n)) \geq s$. Let *D* be a smallest dominating set for $\mathbb{G}(\mathbb{Z}_n)$ and let $I_j = p_j^{\alpha_j-1} \prod_{i \neq j} p_i^{\alpha_i} \mathbb{Z}_n$, for $j = 1, \dots, s$. We have $N(I_j) = \{p_j\mathbb{Z}_n\}$. This implies that $\{I_j, p_j\mathbb{Z}_n\} \cap D \neq \emptyset$, for every *j*, $1 \leq j \leq s$. Therefore $|D| \geq s$ and so $\gamma(\mathbb{G}(\mathbb{Z}_n)) = s$.

Theorem 12 If $n = p^{\alpha}$, then $\omega(\mathbb{G}(\mathbb{Z}_n)) = \begin{cases} \frac{\alpha}{2}, & \text{if } \alpha \text{ iseven;} \\ \frac{\alpha+1}{2}, & \text{otherwise.} \end{cases}$

Proof First suppose that α is even. By Remark 2, $p^r \mathbb{Z}_n$ and $p^{r'} \mathbb{Z}_n$ are adjacent, where $1 \leq r, r' \leq \alpha/2$. This yields that $A = \{p^r \mathbb{Z}_n : r = 1, ..., \alpha/2\}$ is a clique in $\mathbb{G}(\mathbb{Z}_n)$. We claim that A is a maximum clique in $\mathbb{G}(\mathbb{Z}_n)$. By contradiction, suppose that $\{p^{r_1} \mathbb{Z}_n, ..., p^{r_{\alpha/2+1}} \mathbb{Z}_n\}$ is a clique in $\mathbb{G}(\mathbb{Z}_n)$. Clearly, $1 \leq r_i \leq \alpha$, for $i = 1, ..., \alpha/2 + 1$. With no loss of generality, we may assume that $r_1 \geq \alpha/2 + 1$. By Remark 2, we conclude that $\deg(p^{r_1} \mathbb{Z}_n) \leq \alpha/2$, a contradiction. Therefore $\{p^r \mathbb{Z}_n : r = 1, ..., \alpha/2\}$ is a maximum clique in $\mathbb{G}(\mathbb{Z}_n)$ and $\omega(\mathbb{G}(\mathbb{Z}_n)) = \alpha/2$. Similarly, $\{p^r \mathbb{Z}_n : r = 1, ..., (\alpha + 1)/2\}$ is a maximum clique in $\mathbb{G}(\mathbb{Z}_n)$, where α is odd. This completes the proof.

Theorem 13 $\mathbb{G}(\mathbb{Z}_n)$ is a complete graph if and only if $n \in \{p_1^2, p_1^3, p_1 p_2\}.$

Proof One side is obvious. For the other side assume that $\mathbb{G}(\mathbb{Z}_n)$ is a complete graph. By Theorem 9, we find that

s = 1, 2. For the case s = 1, we have $Max(\mathbb{Z}_n) = \{p_1\mathbb{Z}_n\}$. Hence by Theorem 9, $\alpha_1 = 2, 3$. Also, if s = 2, then Theorem 9 implies that $\alpha_1 = \alpha_2 = 1$. Therefore $n = p_1p_2$.

If $n = p_1^3 p_2^2$ and $v_1 = p_1 p_2 \mathbb{Z}_n, v_2 = p_1 p_2^2 \mathbb{Z}_n, v_3 = p_1 \mathbb{Z}_n, v_4 = p_1^2 p_2 \mathbb{Z}_n, v_5 = p_1^2 \mathbb{Z}_n, v_6 = p_2^2 \mathbb{Z}_n, v_7 = p_1^2 p_2^2 \mathbb{Z}_n, v_8 = p_1^2 p_2^2 \mathbb{Z}_n, v_9 = p_2 \mathbb{Z}_n, v_{10} = p_1^3 p_2 \mathbb{Z}_n$, then we have the following graph (Fig. 1):

Also, if $n = p_1^2 p_2 p_3$ and $v_1 = p_1 \mathbb{Z}_n, v_2 = p_1 p_2 \mathbb{Z}_n, v_3 = p_1 p_3 \mathbb{Z}_n, v_4 = p_2 \mathbb{Z}_n, v_5 = p_1^2 \mathbb{Z}_n, v_6 = p_2 p_3 \mathbb{Z}_n, v_7 = p_3 \mathbb{Z}_n, v_8 = p_1 p_2 p_3 \mathbb{Z}_n, v_9 = p_1^2 p_2 \mathbb{Z}_n, v_{10} = p_1^2 p_3 \mathbb{Z}_n$, then we have the following graph (Fig. 2):

Now, we investigate the planarity of $\mathbb{G}(\mathbb{Z}_n)$. We will frequently need a celebrated theorem due to Kuratowski.

Proposition 1 [7, Theorem 10.30] A graph is planar if and only if it contains no subdivision of either K_5 or $K_{3,3}$.

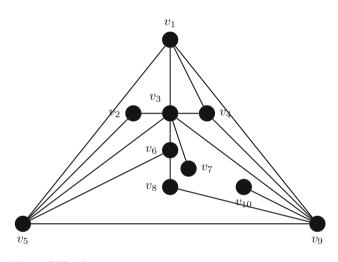


Fig. 1 $G(\mathbb{Z}_{p_1^3p_2^2})$

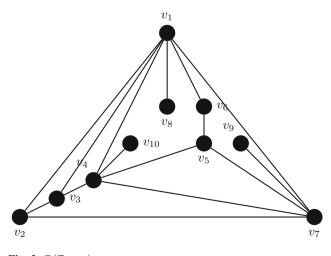


Fig. 2 $G(\mathbb{Z}_{p_1^2p_2p_3})$

Theorem 14 $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph if and only if $n \in \{p_1, p_1^2, \ldots, p_1^8, p_1p_2, p_1^2p_2, p_1^3p_2, p_1^3p_2^2, p_1^4p_2, p_1^2p_2^2, p_1p_2p_3, p_1^2p_2p_3\}.$

Proof One side is obvious. For the other side assume that $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. If $s \ge 5$, then $\{p_1\mathbb{Z}_n, \ldots, p_5\mathbb{Z}_n\}$ is a clique, a contradiction. Therefore $s \le 4$. Consider two following cases:

Case 1 s = 1. If $\alpha_1 \ge 9$, then $\{p_1 \mathbb{Z}_n, p_1^2 \mathbb{Z}_n, \dots, p_1^5 \mathbb{Z}_n\}$ is a clique, a contradiction. Hence $\alpha_1 < 8$. It is clear that if $\alpha_1 \leq 5$, then $|V(\mathbb{G}(\mathbb{Z}_n))| \leq 4$ and so $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. If $\alpha_1 = 6$, then $|V(\mathbb{G}(\mathbb{Z}_n))| = 5$. On the other hand $p_1^4 \mathbb{Z}_n$ and $p_1^5 \mathbb{Z}_n$ are two non adjacent vertices. Now, by Theorem 1, we find that $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. If $\alpha_1 = 7$, then $|V(\mathbb{G}(\mathbb{Z}_n))| = 6$. Also, $N(p_1^6\mathbb{Z}_n) = \{p_1\mathbb{Z}_n\}$. Therefore by Theorem 1, $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. If $\alpha_1 = 8$, then $|V(\mathbb{G}(\mathbb{Z}_n))| = 7$. It is easy to see that $N(p_1^7\mathbb{Z}_n) = \{p_1\mathbb{Z}_n\},\$ $N(p_1^6\mathbb{Z}_n) = \{p_1\mathbb{Z}_n, p_1^2\mathbb{Z}_n\}$ and $N(p_1^5\mathbb{Z}_n) = \{p_1\mathbb{Z}_n, p_1^2\mathbb{Z}_n\}$ $p_1^3\mathbb{Z}_n$. Hence $\mathbb{G}(\mathbb{Z}_n)$ contains no subdivision of either K_5 or $K_{3,3}$. Therefore by Theorem 1, $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. **Case 2** $2 \le s \le 4$. If $\alpha_1, \alpha_2 \ge 3$, then vertices of the set $\{p_1\mathbb{Z}_n, p_1^2\mathbb{Z}_n, p_1^3\mathbb{Z}_n\}$ are adjacent to the vertices of the set $\{p_2\mathbb{Z}_n, p_2^2\mathbb{Z}_n, p_2^3\mathbb{Z}_n\}$, and so $K_{3,3}$ is a subgraph of $\mathbb{G}(\mathbb{Z}_n)$, a contradiction. Hence we may assume that $\alpha_2, \ldots, \alpha_s \leq 2$. If $\alpha_1 \geq 5$, then two sets $\{p_1\mathbb{Z}_n, p_1^2\mathbb{Z}_n, p_1^3\mathbb{Z}_n\}$ and $\{p_2\mathbb{Z}_n, p_1^3\mathbb{Z}_n\}$ $p_1p_2\mathbb{Z}_n, p_1^2p_2\mathbb{Z}_n$ imply that $\mathbb{G}(\mathbb{Z}_n)$ contains $K_{3,3}$, a contradiction. Therefore $\alpha_1 \leq 4$. There are three following subcases:

Subcase 1 s = 2. Since $\alpha_1 \leq 4$ and $\alpha_2 \leq 2$, $n \in \{p_1 p_2, \dots, p_n\}$ $p_1^2p_2, p_1^3p_2, p_1^4p_2, p_1p_2^2, p_1^2p_2^2, p_1^3p_2^2, p_1^4p_2^2$. With no loss of generality we may assume that $n \in \{p_1p_2, p_1^2p_2, p_1^3\}$ $p_1^2p_2$, then $|V(\mathbb{G}(\mathbb{Z}_n))| \le 4$ and so $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. If $n = p_1^3 p_2$, then $|V(\mathbb{G}(\mathbb{Z}_n))| = 6$. Clearly, $N(p_1^3 \mathbb{Z}_n) =$ $\{p_2\mathbb{Z}_n\}$ and $N(p_1^2p_2\mathbb{Z}_n) = \{p_1\mathbb{Z}_n\}$. This implies that $\mathbb{G}(\mathbb{Z}_n)$ contains no subdivision of either K_5 or $K_{3,3}$. Therefore by Theorem 1, $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. If $n = p_1^4 p_2$, then $|V(\mathbb{G}(\mathbb{Z}_n))| = 8$. Clearly, $N(p_1^4 \mathbb{Z}_n) = \{p_2 \mathbb{Z}_n\}, N(p_1^3 p_2 \mathbb{Z}_n)$ $= \{p_1\mathbb{Z}_n\}$ and $N(p_1^2p_2\mathbb{Z}_n) = \{p_1\mathbb{Z}_n, p_1^2\mathbb{Z}_n\}$. Hence $\mathbb{G}(\mathbb{Z}_n)$ contains no subdivision of either K_5 or $K_{3,3}$. Therefore by Theorem 1, $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. If $n = p_1^2 p_2^2$, then $N(p_1^2 p_2 \mathbb{Z}_n) = \{ p_2 \mathbb{Z}_n \},\$ $|V(\mathbb{G}(\mathbb{Z}_n))| = 7.$ Clearly, $N(p_1p_2^2\mathbb{Z}_n) = \{p_1\mathbb{Z}_n\}$ and $N(p_1p_2\mathbb{Z}_n) = \{p_1\mathbb{Z}_n, p_2\mathbb{Z}_n\}.$ Hence $\mathbb{G}(\mathbb{Z}_n)$ contains no subdivision of either K_5 or $K_{3,3}$. Therefore by Theorem 1, $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. If $n = n = p_1^3 p_2^2$, then by Fig.1, we find that $\mathbb{G}(\mathbb{Z}_n)$ is planar. If $n = p_1^4 p_2^2$, then two sets $\{p_1 \mathbb{Z}_n, p_1^2 \mathbb{Z}_n, p_1^3 \mathbb{Z}_n\}$ and $\{p_2\mathbb{Z}_n, p_2^2\mathbb{Z}_n, p_1p_2\mathbb{Z}_n\}$ imply that $K_{3,3}$ is a subgraph of $\mathbb{G}(\mathbb{Z}_n)$, a contradiction.

Subcase 2 s = 3. If $\alpha_1 \ge 3$, then two sets $\{p_1\mathbb{Z}_n, p_1^2\mathbb{Z}_n, p_1^3\mathbb{Z}_n\}$ and $\{p_2\mathbb{Z}_n, p_3\mathbb{Z}_n, p_2p_3\mathbb{Z}_n\}$ imply that $K_{3,3}$ is a subgraph of $\mathbb{G}(\mathbb{Z}_n)$, a contradiction. Hence $\alpha_1 \le 2$ and $n \in \{p_1p_2p_3, p_1^2p_2p_3, p_1p_2^2p_3, p_1p_2p_3^2, p_1^2p_2p_3^2, p_1^2p_2p_3^2, p_1^2p_2p_3^2, p_1^2p_2p_3^2, p_1^2p_2p_3^2, p_1^2p_2p_3^2\}$. With no loss of generality we may assume that $n \in \{p_1p_2p_3, p_1^2p_2p_3, p_1^2p_2p_3, p_1^2p_2p_3^2\}$. If $n = p_1p_2p_3$, then $\deg(p_1p_2\mathbb{Z}_n) = \deg(p_1p_3\mathbb{Z}_n) = \deg(p_2p_3\mathbb{Z}_n) = 1$ and $\deg(p_1\mathbb{Z}_n) = \deg(p_2\mathbb{Z}_n) = \deg(p_3\mathbb{Z}_n) = 2$. This yields that $\mathbb{G}(\mathbb{Z}_n)$ is a planar graph. If $n = p_1^2p_2p_3$, then by Fig.2, we conclude that $\mathbb{G}(\mathbb{Z}_n)$ is planar. If $n \in \{p_1^2p_2^2p_3, p_1^2p_2^2p_3^2\}$, then two sets $\{p_1\mathbb{Z}_n, p_2\mathbb{Z}_n, p_1p_2\mathbb{Z}_n\}$ and $\{p_3\mathbb{Z}_n, p_2p_3\mathbb{Z}_n, p_1p_2p_3\mathbb{Z}_n\}$ imply that $K_{3,3}$ is a subgraph of $\mathbb{G}(\mathbb{Z}_n)$, a contradiction.

Subcase 3 s = 4. If $\alpha_2, \alpha_3 \ge 2$, then $\{p_1\mathbb{Z}_n, p_1p_2\mathbb{Z}_n, p_1p_3\mathbb{Z}_n, p_1p_4\mathbb{Z}_n, p_1p_5\mathbb{Z}_n\}$ is a clique, a contradiction. Similarly, we conclude that at most one of the element of the set $\{\alpha_2, \alpha_3, \alpha_4\}$ can be more than 2. Therefore with no loss of generality we may assume that $\alpha_3 = \alpha_4 = 1$. If $\alpha_1 \ge 3$ and $\alpha_2 = 1$, then $\{p_1\mathbb{Z}_n, p_2\mathbb{Z}_n, p_3\mathbb{Z}_n, p_4\mathbb{Z}_n, p_1^2\mathbb{Z}_n\}$ is a clique, a contradiction. Otherwise, two sets $\{p_1\mathbb{Z}_n, p_2\mathbb{Z}_n, p_3\mathbb{Z}_n, p_4\mathbb{Z}_n\}$ and $\{p_3\mathbb{Z}_n, p_4\mathbb{Z}_n, p_3p_4\mathbb{Z}_n\}$ imply that $K_{3,3}$ is a subgraph of $\mathbb{G}(\mathbb{Z}_n)$, a contradiction.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Aalipour, G., Akbari, S., Nikandish, R., Nikmehr, M.J., Shaveisi, F.: The classification of the annihilating-ideal graph of a commutative ring. Algebra Colloq. 21(02), 249–256 (2014)
- 2. Akbari, S., Heydari, F.: The regular graph of a noncommutative ring. Bull. Aust. Math. Soc. **89**, 132–140 (2014)
- Akbari, S., Heydari, F., Maghasedi, M.: The intersection graph of a group. J. Algebra Appl. 14, 1550065 (2015)
- Akbari, S., Khojasteh, S., Yousefzadehfard, A.: The proof of a conjecture in Jacobson graph of a commutative ring. J. Algebra Appl. 14(10), 1550107 (2015)
- Akbari, S., Khojasteh, S.: Commutative rings whose cozerodivisor graphs are unicyclic or of bounded degree. Commun. Algebra 42, 1594–1605 (2014)
- 6. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969)
- 7. Bondy, J.A., Murty, U.S.R.: Graph Theory, Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)
- Jafari Rad, N., Jafari, S.H.: A note on the intersection graphs of subspaces of a vector space. Ars Comb. 125, 401–407 (2016)
- Jafari Rad, N., Jafari, S.H., Mojdeh, D.A.: On domination in zerodivisor graphs. Can. Math. Bull. 56, 407–411 (2013)