ORIGINAL RESEARCH

The annihilating graph of a ring

Z. Shafiei ${ }^{1} \cdot$ M. Maghasedi $^{1} \cdot$ F. Heydari ${ }^{1} \cdot$ S. Khojasteh ${ }^{2}$

Received: 26 June 2017/Accepted: 23 September 2017/Published online: 5 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract

Let A be a commutative ring with unity. The annihilating graph of A, denoted by $\mathbb{G}(A)$, is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if $\operatorname{Ann}(I) \operatorname{Ann}(J)=0$. For every commutative ring A, we study the diameter and the girth of $\mathbb{G}(A)$. Also, we prove that if $\mathbb{G}(A)$ is a triangle-free graph, then $\mathbb{G}(A)$ is a bipartite graph. Among other results, we show that if $\mathbb{G}(A)$ is a tree, then $\mathbb{G}(A)$ is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a complete or a planar graph. Finally, we compute the domination number of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$.

Keywords Annihilating graph • Diameter • Girth • Planarity

Mathematics Subject Classification 05C10 - 05C25 . 05C40 - 13A99

[^0]
Introduction

There are many papers on assigning a graph to algebraic structures, for instance see [2-6, 8, 9]. Throughout this paper, all graphs are simple with no loops and multiple edges and A is a commutative ring with non-zero identity. We denote by $\square(A)^{*}$ and $\operatorname{Max}(A)$, the set of all non-trivial ideals of A and the set of all maximal ideals of A, respectively. A ring having just one maximal ideal is called a local ring and a ring having only finitely many maximal ideals is said to be a semilocal ring. For every ideal I of A, we denote by $\operatorname{Ann}(I)$, the set of elements $a \in A$ such that $a I=0$.

Let G be a graph with vertex set $V(G)$. If u is adjacent to v, then we write $u-v$. For $u, v \in V(G)$, we recall that a path between u and v is a sequence $u=x_{0}-\cdots-x_{n}=v$ of vertices of G such that for every i with $1 \leq i \leq n$, the vertices x_{i-1} and x_{i} are adjacent and $x_{i} \neq x_{j}$, where $i \neq j$. For every positive integer n, we denote the path of order n, by P_{n}. For $u, v \in V(G)$ with $u \neq v, d(u, v)$ denotes the length of a shortest path between u and v. If there is no such path, then we define $d(u, v)=\infty$. The diameter of G is defined $\operatorname{diam}(G)=\sup \{d(u, v) \mid u$ and v are vertices of $G\}$. For any $u \in V(G)$, the degree of $u, \operatorname{deg}(u)$, denotes the number of edges incident with u. The neighborhood of a vertex u is denoted by $N_{G}(u)$ or simply $N(u)$. A graph G is k-regular if $d(v)=k$ for all $v \in V(G)$; a regular graph is one that is k-regular for some k. We denote the complete graph on n vertices by K_{n}. A bipartite graph is one whose vertex set can be partitioned into two subsets V_{1} and V_{2} so that each edge has one end in V_{1} and one end in V_{2}. A complete bipartite graph is a bipartite graph with two partitions V_{1} and V_{2} in which every vertex in V_{1} is joined to every vertex in V_{2}. The complete bipartite graph with two partitions of size m and n is denoted by $K_{m, n}$. A star graph
with center v and n vertices is the complete bipartite graph with part sizes 1 and n such that $\operatorname{deg}(v)=n$. A double-star graph is a union of two star graphs with centers u and v such that u is adjacent to v. We use C_{n} for the cycle of order n, where $n \geq 3$. If a graph G has a cycle, then the girth of G (notated $\operatorname{gr}(G)$) is defined as the length of a shortest cycle of G; otherwise $\operatorname{gr}(G)=\infty$. A triangle-free graph is a graph which contains no triangle. A clique of a graph is a complete subgraph and the number of vertices in a largest clique of graph G, denoted by $\omega(G)$, is called the clique number of G. Recall that a graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. Also, a dominating set is a subset S of $V(G)$ such that every vertex of $V(G) \backslash S$ is adjacent to at least one vertex in S. The number of vertices in a smallest dominating set denoted by $\gamma(G)$, is called the domination number of G.

Let A be a commutative ring with non-zero identity. The annihilating graph of A, denoted by $\mathbb{G}(A)$, is a graph with the vertex set $\mathbb{\square}(A)^{*}$, and two distinct vertices $I, J \in \mathbb{Z}(A)^{*}$ are adjacent if and only if $\operatorname{Ann}(I) \operatorname{Ann}(J)=0$. In this paper, we prove that if A is a ring, then $\mathbb{G}(A)$ is a connected graph, $\operatorname{diam}(\mathbb{G}(A)) \leq 3$ and $\operatorname{gr}(\mathbb{G}(A)) \in\{3,4, \infty\}$. Also, we prove that for every ring A, if $\mathbb{G}(A)$ is a triangle-free graph, then $\mathbb{G}(A)$ is a bipartite graph. Among other results, we show that if A is a ring and $\mathbb{G}(A)$ is a tree, then $\mathbb{G}(A)$ is a star or a double star graph. Moreover, we prove that the annihilating graph of a ring cannot be a cycle. Also, we obtained some results about $\mathbb{G}\left(\mathbb{Z}_{n}\right)$. We show that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a complete graph if and only if $n \in\left\{p_{1}^{2}, p_{1}^{3}, p_{1} p_{2}\right\}$. We also prove that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph if and only if $n \in$ $\left\{p_{1}, p_{1}^{2}, \ldots, p_{1}^{8}, p_{1} p_{2}, p_{1}^{2} p_{2}, p_{1}^{3} p_{2}, p_{1}^{3} p_{2}^{2}, p_{1}^{4} p_{2}, p_{1}^{2} p_{2}^{2}, p_{1} p_{2} p_{3}, p_{1}^{2}\right.$ $\left.p_{2} p_{3}\right\}$. Finally, we determine the domination number of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$.

The annihilating graph of \boldsymbol{A}

In this section, we study the diameter and the girth of the annihilating graph of a ring. Also, we classify all rings whose annihilating graphs are complete graph, tree or cycle.

We start with the following lemma.
Lemma 1 If A is a commutative ring, then $\gamma(\mathbb{G}(A)) \leq|\operatorname{Max}(A)| \leq \omega(\mathbb{G}(A))$.
Proof Suppose that $\mathfrak{m}_{1}, \mathfrak{m}_{2}$ are two distinct maximal ideals of A. Then we have $\operatorname{Ann}\left(\mathfrak{m}_{1}\right) \operatorname{Ann}\left(\mathfrak{m}_{2}\right) \subseteq \operatorname{Ann}\left(\mathfrak{m}_{1}\right) \cap$ $\operatorname{Ann}\left(\mathfrak{m}_{2}\right) \subseteq \operatorname{Ann}\left(\mathfrak{m}_{1}+\mathfrak{m}_{2}\right)$. Since $\mathfrak{m}_{1}+\mathfrak{m}_{2}=A$, we conclude that $\operatorname{Ann}\left(\mathfrak{m}_{1}+\mathfrak{m}_{2}\right)=0$ and so \mathfrak{m}_{1} is adjacent to \mathfrak{m}_{2}. This implies that $\operatorname{Max}(A)$ is a clique in $\mathbb{G}(A)$. Now,
suppose that $I \in \mathbb{Z}(A)^{*} \backslash \operatorname{Max}(A)$. Let m be a maximal ideal containing $\operatorname{Ann}(I)$. Since $\operatorname{Ann}(I) \operatorname{Ann}(\mathfrak{m}) \subseteq \mathfrak{m A n n}(\mathfrak{m})$ $=0$, we deduce that I is adjacent to \mathfrak{m}. Hence $\operatorname{Max}(A)$ is a dominating set of $\mathbb{G}(A)$.

By the previous lemma, if the clique number of $\mathbb{G}(A)$ is finite, then A is a semilocal ring. Also, we have the following result.

Corollary 1 Let A be a ring. If every maximal ideal of A has finite degree, then $\mathbb{G}(A)$ is a finite graph.
Proof Since $\operatorname{Max}(A)$ is a clique in $\mathbb{G}(A)$, so $\operatorname{Max}(A)$ is finite. Now, since $\operatorname{Max}(A)$ is a dominating set of $\mathbb{G}(A)$, the result holds.

Next, we study the diameter and the girth of $\mathbb{G}(A)$.
Theorem 1 Let A be a ring. Then $\operatorname{diam}(\mathbb{G}(A)) \leq 3$. Moreover, if A is a local ring, then $\operatorname{diam}(\mathbb{G}(A)) \leq 2$.
Proof Assume that I and J are two non-trivial ideals of A. Suppose that \mathfrak{m}_{1} and \mathfrak{m}_{2} are maximal ideals such that $\operatorname{Ann}(I) \subseteq \mathfrak{m}_{1}$ and $\operatorname{Ann}(J) \subseteq \mathfrak{m}_{2}$. Since $\operatorname{Ann}(I) \operatorname{Ann}\left(\mathfrak{m}_{1}\right)$ $\subseteq \mathfrak{m}_{1} \operatorname{Ann}\left(\mathfrak{m}_{1}\right)=0$, we conclude that $I=\mathfrak{m}_{1}$ or I is adjacent to \mathfrak{m}_{1}. Similarly, $J=\mathfrak{m}_{2}$ or J is adjacent to \mathfrak{m}_{2}. Now, if $\mathfrak{m}_{1}=\mathfrak{m}_{2}$, then $d(I, J) \leq 2$. Otherwise, \mathfrak{m}_{1} and \mathfrak{m}_{2} are adjacent and so $d(I, J) \leq 3$. Thus $\operatorname{diam}(\mathbb{G}(A)) \leq 3$. (Note that if A has a non-trivial ideal I with $\operatorname{Ann}(I)=0$, then I is adjacent to all other vertices and hence $\operatorname{diam}(\mathbb{G}(A)) \leq 2$.) Finally, assume that (A, \mathfrak{m}) is a local ring. By the proof of Lemma 1, \mathfrak{m} is adjacent to all other vertices, so $\operatorname{diam}(\mathbb{G}(A)) \leq 2$.

Theorem 2 Let A be a ring. Then $\operatorname{gr}(\mathbb{G}(A)) \in\{3,4, \infty\}$. Moreover, if A is a local ring and $\mathbb{G}(A)$ contains a cycle, then $\operatorname{gr}(\mathbb{G}(A))=3$.

Proof Clearly, if A has at least three maximal ideals, then $\operatorname{gr}(\mathbb{G}(A))=3$. So assume that A has exactly two maximal ideals and $\mathbb{G}(A)$ contains a cycle C. If C is a cycle of length at most 4 , then we are done. Otherwise, C contains two adjacent vertices I and J which are not maximal ideals. Suppose that $I \subseteq \mathfrak{m}_{1}$ and $J \subseteq \mathfrak{m}_{2}$, where \mathfrak{m}_{1} and \mathfrak{m}_{2} are maximal ideals of A. Since $\operatorname{Ann}(I) \operatorname{Ann}\left(\mathfrak{m}_{2}\right) \subseteq$ $\operatorname{Ann}(I) A n n(J)=0$, we deduce that I and \mathfrak{m}_{2} are adjacent. Similarly, J and \mathfrak{m}_{1} are adjacent. If $\mathfrak{m}_{1}=\mathfrak{m}_{2}$, then $\operatorname{gr}(\mathbb{G}(A))=3$. Otherwise, $\operatorname{gr}(\mathbb{G}(A)) \leq 4$. The last part follows from the proof of Lemma 1.

The following theorem shows that triangle-free annihilating graphs are bipartite.

Theorem 3 Let A be a ring. If $\mathbb{G}(A)$ is a triangle-free graph, then $\mathbb{G}(A)$ is a bipartite graph.

Proof Let $\mathbb{G}(A)$ be a triangle-free graph. Clearly A has at most two maximal ideals. If A is a local ring, then $\mathbb{G}(A)$ is
a star and so $\mathbb{G}(A)$ is bipartite. Suppose that A contains exactly two distinct maximal ideals \mathfrak{m}_{1} and \mathfrak{m}_{2}. One can easily see that $\mathbb{G}(A)$ is a bipartite graph with parts $N\left(\mathfrak{m}_{1}\right)$ and $N\left(\mathrm{~m}_{2}\right)$.

Theorem 4 Let A be a ring. If $\mathbb{G}(A)$ is a tree, then $\mathbb{G}(A)$ is a star or a double star graph.

Proof Assume that $\mathbb{G}(A)$ is a tree. It is enough to show that if A has exactly two distinct maximal ideals \mathfrak{m}_{1} and \mathfrak{m}_{2}, then $\mathbb{G}(A)$ is a double star graph. By the proof of Lemma $1, \mathfrak{m}_{1}$ is adjacent to \mathfrak{m}_{2} and every other vertex is adjacent to one of the \mathfrak{m}_{1} and \mathfrak{m}_{2}. Now, since $\mathbb{G}(A)$ contains no cycles, $\mathbb{G}(A)$ is a double star graph.

By the previous theorem, we have the following immediate corollary.
Corollary 2 Let A be a ring. If $\mathbb{G}(A) \cong P_{n}$, then $n \leq 4$.
Theorem 5 The annihilating graph of a ring cannot be a cycle.

Proof By contrary suppose that $\mathbb{G}(A) \cong C_{n}$, for some $n \geq 3$. By Theorem 2, we conclude that $n \leq 4$. First assume that $\mathbb{G}(A) \cong C_{4}$. So A has exactly four non-trivial ideals. By Theorem 2, we deduce that A is not a local ring. Hence by [6, Theorem 8.7], $A \cong F \times S$, where F is a field and S is a ring with exactly one non-trivial ideal. Let m be the nontrivial ideal of S. Thus $\llbracket(A)^{*}=\{0 \times \mathfrak{m}, 0 \times S, F \times 0$, $F \times \mathfrak{m}\}$. We have $\operatorname{Ann}(0 \times \mathfrak{m})=F \times \mathfrak{m}, \operatorname{Ann}(F \times \mathfrak{m})=$ $0 \times \mathfrak{m}, \quad \operatorname{Ann}(0 \times S)=F \times 0$ and $\operatorname{Ann}(F \times 0)=0 \times S$. Therefore, $\mathbb{G}(A)$ is the path $0 \times \mathfrak{m}-F \times \mathfrak{m}-0 \times S-$ $F \times S$, a contradiction. Next assume that $\mathbb{G}(A) \cong C_{3}$. Since A has exactly three non-trivial ideals, by [6, Theorem 8.7], A is an Artinian local ring. Let $\square(A)^{*}=\{I, J, \mathfrak{m}\}$, where \mathfrak{m} is the maximal ideal of A. Suppose that k is the smallest positive integer such that $\mathfrak{m}^{k}=0$. So $\operatorname{Ann}(\mathfrak{m}) \neq 0$. With no loss of generality, we consider two cases. Note that the annihilating-ideal graph $\mathbb{A} \mathbb{G}(A)$ of A is a graph whose vertex set is the set of all non-zero ideals of A with nonzero annihilator and two distinct vertices I and J are adjacent if and only if $I J=0$, see [1].
Case $1 \quad \operatorname{Ann}(\mathfrak{m})=\mathfrak{m}$. So $\mathfrak{m}^{2}=0$ and hence $I J=I \mathfrak{m}=J \mathfrak{m}=0$. This implies that $\mathbb{A} \mathbb{G}(A) \cong \mathbb{G}(A)$ $\cong C_{3}$. By [1, Corollary 9], $\mathbb{A} \mathbb{G}(A)$ cannot be a cycle, a contradiction.

Case $2 \operatorname{Ann}(\mathfrak{m})=I$. Thus $I \mathfrak{m}=0$. So $I J=0$ and $\mathfrak{m}=\operatorname{Ann}(I)$. If $\mathfrak{m} J=0$, then $\mathbb{A} \mathbb{G}(A) \cong \mathbb{G}(A) \cong C_{3}$, a contradiction. Therefore, $\mathfrak{m} J \neq 0$ and hence $\mathbb{A} \mathbb{G}(A) \cong P_{3}$. Now, by [1, Theorem 11], we have $k=4$ and so $I=\mathfrak{m}^{3}$ and $J=\mathfrak{m}^{2}$. This implies that $\operatorname{Ann}(I)=\mathfrak{m}$ and $\operatorname{Ann}(J)=\mathfrak{m}^{2}$. Thus $\mathbb{G}(A) \cong P_{3}$, a contradiction.

Theorem 6 If $\mathbb{G}(A)$ is a regular graph of finite degree, then $\mathbb{G}(A)$ is a complete graph.

Proof By Corollary 1, A has finitely many ideals. So A is an Artinian ring. First suppose that (A, \mathfrak{m}) is an Artinian local ring. Since \mathfrak{m} is a vertex of $\mathbb{G}(A)$ which is adjacent to all other vertices, we deduce that $\mathbb{G}(A)$ is a complete graph. Now, by [6, Theorem 8.7], we may assume that $A \cong A_{1} \times \cdots \times A_{n}$, where $n \geq 2$ and $\left(A_{i}, \mathfrak{m}_{\mathfrak{i}}\right)$ is an Artinian local ring for $i=1, \ldots, n$. We have $\operatorname{Ann}\left(0 \times A_{2} \times \cdots\right.$ $\left.\times A_{n}\right)=A_{1} \times 0 \times \cdots \times 0, \quad \operatorname{Ann}\left(\mathfrak{m} \times \mathfrak{H} \times \cdots \times \mathfrak{H}_{\mathfrak{n}}\right)=$ $\operatorname{Ann}(\mathfrak{m}) \times \times \cdots \times, \quad$ and $\quad \operatorname{Ann}\left(A_{1} \times 0 \times \cdots \times 0\right)=$ $0 \times A_{2} \times \cdots \times A_{n}$. Let $v_{1}=0 \times A_{2} \times \cdots \times A_{n}, v_{2}=\mathfrak{m} \times$ $\mathfrak{H} \times \cdots \times \mathfrak{A}_{n}$ and $v_{3}=A_{1} \times 0 \times \cdots \times 0$. One can easily see that

$$
\begin{aligned}
& N\left(v_{1}\right)=\left\{A_{1} \times I_{2} \times \cdots \times I_{n} \mid I_{i} \text { is an ideal of } A_{i}\right. \\
& \quad \text { for } i=2, \ldots, n\} \backslash\{A\},
\end{aligned}
$$

and

$$
\begin{aligned}
& N\left(v_{2}\right)=\left\{I_{1} \times I_{2} \times \cdots \times I_{n} \mid I_{i} \text { is an ideal of } A_{i}\right. \\
& \left.\quad \text { for } i=1, \ldots, n \text { and } I_{1} \neq 0\right\} \backslash\{A\} .
\end{aligned}
$$

Note that every non-trivial ideal of an Artinian ring A has a non-zero annihilator. Since $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)$, we conclude that A_{1} has no proper ideal other than $0, \mathfrak{m}$. Thus
$N\left(v_{3}\right)=\left\{0 \times A_{2} \times \cdots \times A_{n}, \mathfrak{m} \times A_{2} \times \cdots \times A_{n}\right\}$.
Hence $\operatorname{deg}\left(v_{3}\right) \leq 2$. If $\mathbb{G}(A)$ is a 2-regular graph, then $\mathbb{G}(A)$ is a cycle, a contradiction. Note that by Theorem $1, \mathbb{G}(A)$ is a connected graph. Therefore, $\mathbb{G}(A)$ is a 1-regular graph. So $\mathbb{G}(A) \cong K_{2}$ is a complete graph. In this case, $A \cong F_{1} \times F_{2}$, where F_{1}, F_{2} are fields.

Remark 1 Let A be a commutative ring and m be a maximal ideal of A with non-zero annihilator. Since $\mathfrak{m A n n}(\mathfrak{m})=0$, we conclude that $\mathfrak{m} \subseteq \operatorname{Ann}(\operatorname{Ann}(\mathfrak{m}))$. Now, $\operatorname{Ann}(\mathfrak{m}) \neq 0$ implies that $\operatorname{Ann}(\operatorname{Ann}(\mathfrak{m}))=\mathfrak{m}$.
Lemma 2 Let A be a local ring with non-zero maximal ideal m . If $I \in \mathbb{Z}(A)^{*}$ and $\operatorname{Ann}(I)=\operatorname{Ann}(\mathfrak{m})$, then I is adjacent to all other vertices of $\mathbb{G}(A)$.

Proof Suppose that $\operatorname{Ann}(I)=\operatorname{Ann}(\mathfrak{m})$. Let J be a nontrivial ideal of A and $J \neq I$. Since $\operatorname{Ann}(J) \subseteq \mathfrak{m}$, we deduce that $\operatorname{Ann}(J) \operatorname{Ann}(I) \subseteq \mathfrak{m A n n}(\mathfrak{m})=0$. Hence I and J are adjacent. The proof is complete.

Theorem 7 Let A be a local ring with non-zero maximal ideal \mathfrak{m} such that $\operatorname{Ann}(\mathfrak{m}) \neq 0$. Then $\mathbb{G}(A)$ is a complete graph if and only if $\operatorname{Ann}(I)=\operatorname{Ann}(\mathrm{m})$, for every ideal $I \in \mathbb{Z}(A)^{*} \backslash\{\operatorname{Ann}(\mathfrak{m})\}$.
Proof Suppose that $\mathbb{G}(A)$ is a complete graph and let $I \in \mathbb{Z}(A)^{*} \backslash\{\operatorname{Ann}(\mathfrak{m})\}$. Since $\operatorname{Ann}(\mathfrak{m}) \neq 0, A$, we conclude that $\operatorname{Ann}(\mathfrak{m})$ is a vertex of $\mathbb{G}(A)$ and hence is adjacent to
I. Thus $\operatorname{Ann}(I) \operatorname{Ann}(\operatorname{Ann}(\mathfrak{m}))=0$. By Remark 1 , $\operatorname{Ann}(\operatorname{Ann}(\mathfrak{m}))=\mathfrak{m}$. So $\operatorname{Ann}(I) \mathfrak{m}=0$ which implies that $\operatorname{Ann}(I) \subseteq \operatorname{Ann}(\mathfrak{m})$. In other hand, since $I \subseteq \mathfrak{m}$, we deduce that $\operatorname{Ann}(\mathfrak{m}) \subseteq \operatorname{Ann}(I)$. Therefore, $\operatorname{Ann}(I)=\operatorname{Ann}(\mathfrak{m})$. Conversely, suppose that $\operatorname{Ann}(I)=\operatorname{Ann}(\mathfrak{m})$, for every ideal $I \in \mathbb{Z}(A)^{*} \backslash\{\operatorname{Ann}(\mathfrak{m})\}$. Assume that $I, J \in$ $\mathbb{Z}(A)^{*} \backslash\{\operatorname{Ann}(\mathfrak{m})\}$ and $I \neq J$. Since $\operatorname{Ann}(I)=\operatorname{Ann}(J)=$ $\operatorname{Ann}(\mathfrak{m})$, we conclude that $\operatorname{Ann}(I) \operatorname{Ann}(J)=$ $\operatorname{Ann}(\mathfrak{m}) \operatorname{Ann}(\mathfrak{m}) \subseteq \mathfrak{m} \operatorname{Ann}(\mathfrak{m})=0$. Hence I and J are adjacent. Now, since $\operatorname{Ann}(\operatorname{Ann}(\mathfrak{m})) \operatorname{Ann}(I)=m \operatorname{Ann}(I)=$ $\mathfrak{m} \operatorname{Ann}(\mathfrak{m})=0$, then $\operatorname{Ann}(\mathfrak{m})$ is adjacent to all other vertices. Thus $\mathbb{G}(A)$ is a complete graph.
Theorem 8 Let A be an Artinian local ring with non-zero maximal ideal \mathfrak{m}. Then $\mathbb{G}(A)$ is a complete graph if and only if either $\mathfrak{m}^{2}=0$ or $\mathfrak{m}^{3}=0$ and $I J=\mathfrak{m}^{2}$, for every ideal $I, J \in \mathbb{Z}(A)^{*} \backslash\left\{\mathfrak{m}^{2}\right\}$.

Proof First assume that $\mathfrak{m}^{2}=0$. Thus $\mathfrak{m} \subseteq \operatorname{Ann}(\mathfrak{m})$ and hence $\operatorname{Ann}(\mathfrak{m})=\mathfrak{m}$. Let $I \in \mathbb{Z}(A)^{*}$. Since $I \subseteq \mathfrak{m}$, we deduce that $\mathfrak{m}=\operatorname{Ann}(\mathfrak{m}) \subseteq \operatorname{Ann}(I)$. So $\operatorname{Ann}(I)=\mathfrak{m}$. Now, Theorem 9 implies that $\mathbb{G}(A)$ is a complete graph. Next assume that $\mathfrak{m}^{3}=0$ and $I J=\mathfrak{m}^{2}$, for every ideal $I, J \in \mathbb{Z}(A)^{*} \backslash\left\{\mathfrak{m}^{2}\right\}$. Note that $\mathfrak{m}^{2} \neq 0$. Hence $\operatorname{Ann}(\mathfrak{m}) \neq$ \mathfrak{m} and $\operatorname{Ann}\left(m^{2}\right)=m$. Since $\operatorname{Ann}(m) \operatorname{Ann}(\mathfrak{m}) \subseteq$ $\mathfrak{m A n n}(\mathfrak{m})=0$, we conclude that $\operatorname{Ann}(\mathfrak{m})=\mathfrak{m}^{2}$. Let $I \in \mathbb{Z}(A)^{*} \backslash\left\{\mathfrak{m}^{2}\right\}$. Since $I \operatorname{Ann}(I)=0 \neq \mathfrak{m}^{2}$, we deduce that $\operatorname{Ann}(I)=\mathfrak{m}^{2}=\operatorname{Ann}(\mathfrak{m})$. Thus by Theorem 9, $\mathbb{G}(A)$ is complete. Conversely, suppose that $\mathbb{G}(A)$ is a complete graph. Let k be the smallest positive integer such that $\mathrm{m}^{k}=0$. If $k=2$, we are done. Assume that $k \geq 3$. So $\operatorname{Ann}(\mathfrak{m}) \neq \mathfrak{m}$. Since $\mathfrak{m} \subseteq \operatorname{Ann}\left(\mathfrak{m}^{k-1}\right)$, we conclude that $\operatorname{Ann}\left(\mathfrak{m}^{k-1}\right)=\mathfrak{m}$. Now, by Theorem 9, $\operatorname{Ann}(\mathfrak{m})=\mathfrak{m}^{k-1}$. In other hand, since $\mathfrak{m}^{k-2} \subseteq \operatorname{Ann}\left(\mathfrak{m}^{2}\right)$, then $\operatorname{Ann}\left(\mathfrak{m}^{2}\right) \neq \mathfrak{m}^{k-1}$ $=\operatorname{Ann}(\mathfrak{m})$. This implies that $\mathfrak{m}^{2}=\operatorname{Ann}(\mathfrak{m})=\mathfrak{m}^{k-1}$. Therefore, $k=3$ and so we have $\mathfrak{m}^{3}=0, \operatorname{Ann}(\mathfrak{m})=\mathfrak{m}^{2}$, and $\quad \operatorname{Ann}\left(\mathfrak{m}^{2}\right)=\mathfrak{m}$. Finally, suppose that $I, J \in \mathbb{Z}(A)^{*} \backslash\left\{\mathfrak{m}^{2}\right\}$. Since $\mathfrak{m} I J \subseteq \mathfrak{m}^{3}=0$, we deduce that $I J=0$ or $\operatorname{Ann}(I J)=\mathfrak{m}$. If $I J=0$, then $I \subseteq \operatorname{Ann}(J)=\mathfrak{m}^{2}$ and hence $\mathfrak{m}=\operatorname{Ann}\left(m^{2}\right) \subseteq \operatorname{Ann}(I)=\mathfrak{m}^{2}$, a contradiction. Thus $\operatorname{Ann}(I J)=\mathfrak{m}$ and so Theorem 7 implies that $I J=\mathfrak{m}^{2}$. The proof is complete.

We close this section by the following theorem which is a classification of rings whose annihilating graphs are complete.

Theorem 9 Let A be a commutative ring. If $\mathbb{G}(A) \cong K_{n}$, then one of the following holds:
(i) (A, \mathfrak{m}) is an Artinian local ring with $\mathfrak{m}^{2}=0$.
(ii) (A, \mathfrak{m}) is an Artinian local ring with $\mathfrak{m}^{3}=0$ and $I J=\mathfrak{m}^{2}$, for every ideal $I, J \in \mathbb{Z}(A)^{*} \backslash\left\{\mathfrak{m}^{2}\right\}$.
(iii) $\quad A \cong F_{1} \times F_{2}$, where F_{1}, F_{2} are fields.

Proof Suppose that $\mathbb{G}(A) \cong K_{n}$, for some positive integer n. So A is an Artinian ring. By Theorem 8 , if A is a local ring, then the cases (ii) or (iii) occur. Otherwise, by the proof of Theorem $6, A \cong F_{1} \times F_{2}$, where F_{1}, F_{2} are fields.

The annihilating graph of \mathbb{Z}_{n}

In this section, we study the case that $A=\mathbb{Z}_{n}$. Throughout this section, without loss of generality, we assume that $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$, where p_{i} 's are distinct primes and $\alpha_{i}{ }^{\prime}$ s are positive integers. It is easy to see that $\mathbb{\square}\left(\mathbb{Z}_{n}\right)=\left\{d \mathbb{Z}_{n}: d\right.$ divides $n\}$ and $\left|\mathbb{\square}\left(\mathbb{Z}_{n}\right)^{*}\right|=\prod_{i=1}^{s}\left(\alpha_{i}+1\right)-2$. We denote the least common multiple and the greatest common divisor of integers a and b by $[a, b]$ and (a, b), respectively. Also, we write $a l b(a \mid b)$ if a divides $b(a$ does not divide $b)$. We begin with the following lemma.

Lemma 3 If $p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}} \mathbb{Z}_{n} \in \mathbb{Z}\left(\mathbb{Z}_{n}\right)^{*}$, then $\operatorname{Ann}\left(p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}} \mathbb{Z}_{n}\right)=p_{1}^{\alpha_{1}-\beta_{1}} \cdots p_{s}^{\alpha_{s}-\beta_{s}} \mathbb{Z}_{n}$.

Proof Let $d=p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}} \quad$ and $\quad d^{\prime}=p_{1}^{\alpha_{1}-\beta_{1}} \cdots p_{s}^{\alpha_{s}-\beta_{s}}$. Clearly, $d \mathbb{Z}_{n} d^{\prime} \mathbb{Z}_{n}=0$ and so $d^{\prime} \mathbb{Z}_{n} \subseteq \operatorname{Ann}\left(d \mathbb{Z}_{n}\right)$. Let $r \in \operatorname{Ann}\left(d \mathbb{Z}_{n}\right)$. Then n divides $r d$. Since $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ and $d=p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}}$, so $p_{1}^{\alpha_{1}-\beta_{1}} \cdots p_{s}^{\alpha_{s}-\beta_{s}}$ divides r. This implies that $r \in d^{\prime} \mathbb{Z}_{n}$ and $\operatorname{Ann}(d \mathbb{Z}) \subseteq d^{\prime} \mathbb{Z}_{n}$. The proof is complete.

Remark 2 Let $d_{1} \mathbb{Z}_{n}, d_{2} \mathbb{Z}_{n} \in \mathbb{Z}\left(\mathbb{Z}_{n}\right)^{*}$ and let $d_{1}=p_{1}^{\beta_{1}} \cdots$ $p_{s}^{\beta_{s}}, d_{2}=p_{1}^{\gamma_{1}} \cdots p_{s}^{\gamma_{s}}$. Then $d_{1} \mathbb{Z}_{n}$ and $d_{2} \mathbb{Z}_{n}$ are adjacent if and only if $p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ divides $p_{1}^{2 \alpha_{1}-\left(\beta_{1}+\gamma_{1}\right)} \cdots p_{s}^{2 \alpha_{s}-\left(\beta_{s}+\gamma_{s}\right)}$ which implies that $\alpha_{i} \geq \beta_{i}+\gamma_{i}$, for $i=1, \ldots, s$. Also, if $\left(d_{1}, d_{2}\right)=$ 1 then $d_{1} \mathbb{Z}_{n}$ and $d_{2} \mathbb{Z}_{n}$ are adjacent.

Lemma 4 If $d=p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}}$, then $\prod_{i=1}^{s}\left(\alpha_{i}-\beta_{i}+1\right)-$ $2 \leq \operatorname{deg}\left(d \mathbb{Z}_{n}\right) \leq \prod_{i=1}^{s}\left(\alpha_{i}-\beta_{i}+1\right)-1$.

Proof If $p_{1}^{\gamma_{1}} \cdots p_{s}^{\gamma_{s}} \mathbb{Z}_{n}$ and $d \mathbb{Z}_{n}$ are adjacent, then by Remark 2, $0 \leq \gamma_{i} \leq \alpha_{i}-\beta_{i}$. On the other hand, $p_{1}^{\gamma_{1}} \cdots p_{s}^{\gamma_{s}} \notin$ $\{1, d\}$ which implies that $\operatorname{deg}\left(d \mathbb{Z}_{n}\right) \in\left\{\prod_{i=1}^{s}\left(\alpha_{i}-\beta_{i}+1\right)\right.$ $\left.-2, \prod_{i=1}^{s}\left(\alpha_{i}-\beta_{i}+1\right)-1\right\}$.

Next, we study the girth of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$.
Theorem 10 Let n be a positive integer number. Then $\operatorname{gr}\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right) \in\{3, \infty\}$. Moreover, $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a tree if and only if $n \in\left\{p_{1}^{2}, p_{1}^{3}, p_{1} p_{2}, p_{1}^{2} p_{2}\right\}$.

Proof If $s \geqslant 3$, then $p_{1} \mathbb{Z}_{n}-p_{2} \mathbb{Z}_{n}-p_{3} \mathbb{Z}_{n}-p_{1} \mathbb{Z}_{n}$ is a 3 -cycle in $\mathbb{G}\left(\mathbb{Z}_{n}\right)$. Therefore $\operatorname{gr}\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=3$. Now, consider two following cases:

Case $1 \quad s=1$. If $\alpha_{1} \geqslant 4$, then it is easy to see that $p_{1} \mathbb{Z}_{n}-$ $p_{1}^{2} \mathbb{Z}_{n}-p_{1}^{3} \mathbb{Z}_{n}-p_{1} \mathbb{Z}_{n}$ is a triangle in $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ and so $\operatorname{gr}\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=3$. Also, it is clear that if $n=p_{1}^{2}$ or $n=p_{1}^{3}$, then $\operatorname{gr}\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=\infty$.
Case $2 s=2$. If $\alpha_{1} \geqslant 3$, then $p_{1} \mathbb{Z}_{n}-p_{2} \mathbb{Z}_{n}-p_{1}^{2} \mathbb{Z}_{n}-$ $p_{1} \mathbb{Z}_{n}$ is a 3-cycle in $\mathbb{G}\left(\mathbb{Z}_{n}\right)$. This yields that $\operatorname{gr}\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=3$. Now, suppose that $\alpha_{1}, \alpha_{2} \in\{1,2\}$. Whit out lose of generality we may assume the following three subcases:

Subcase $1 \quad n=p_{1} p_{2}$. Then $\mathbb{G}\left(\mathbb{Z}_{n}\right) \cong K_{2} \quad$ and $\operatorname{gr}\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=\infty$.

Subcase $2 n=p_{1}^{2} p_{2}$. Then $\mathbb{G}\left(\mathbb{Z}_{n}\right) \cong P_{4}$ and so $\operatorname{gr}\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=\infty$. Note that, $p_{1} p_{2} \mathbb{Z}_{n}-p_{1} \mathbb{Z}_{n}-p_{2} \mathbb{Z}_{n}-p_{1}^{2} \mathbb{Z}_{n}$.

Subcase $3 \quad n=p_{1}^{2} p_{2}^{2}$. Then $p_{1} \mathbb{Z}_{n}-p_{1} p_{2} \mathbb{Z}_{n}-p_{2} \mathbb{Z}_{n}-$ $p_{1} \mathbb{Z}_{n}$ is a triangle in $\mathbb{G}\left(\mathbb{Z}_{n}\right)$. Hence $\operatorname{gr}\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=3$.

Now, we compute some numerical invariants of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$, namely domination number and clique number.

Theorem 11 If n is a positive integer number, then $\gamma\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=s$.

Proof We note that $\operatorname{Max}\left(\mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}, \ldots, p_{s} \mathbb{Z}_{n}\right\}$. Hence by Theorem 1 , we find that $\gamma\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right) \leq s$. Next, we prove that $\gamma\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right) \geq s$. Let D be a smallest dominating set for $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ and let $I_{j}=p_{j}^{\alpha_{j}-1} \prod_{i \neq j} p_{i}^{\alpha_{i}} \mathbb{Z}_{n}$, for $j=1, \ldots, s$. We have $N\left(I_{j}\right)=\left\{p_{j} \mathbb{Z}_{n}\right\}$. This implies that $\left\{I_{j}, p_{j} \mathbb{Z}_{n}\right\} \cap D \neq \varnothing$, for every $j, \quad 1 \leq j \leq s$. Therefore $\quad|D| \geq s \quad$ and \quad so $\gamma\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=s$.
Theorem 12 If $n=p^{\alpha}$, then $\omega\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=$ $\begin{cases}\frac{\alpha}{2}, & \text { if } \alpha \text { iseven; } \\ \frac{\alpha+1}{2}, & \text { otherwise. }\end{cases}$

Proof First suppose that α is even. By Remark 2, $p^{r} \mathbb{Z}_{n}$ and $p^{r^{\prime}} \mathbb{Z}_{n}$ are adjacent, where $1 \leq r, r^{\prime} \leq \alpha / 2$. This yields that $A=\left\{p^{r} \mathbb{Z}_{n}: r=1, \ldots, \alpha / 2\right\}$ is a clique in $\mathbb{G}\left(\mathbb{Z}_{n}\right)$. We claim that A is a maximum clique in $\mathbb{G}\left(\mathbb{Z}_{n}\right)$. By contradiction, suppose that $\left\{p^{r_{1}} \mathbb{Z}_{n}, \ldots, p^{r_{\alpha / 2+1}} \mathbb{Z}_{n}\right\}$ is a clique in $\mathbb{G}\left(\mathbb{Z}_{n}\right)$. Clearly, $1 \leq r_{i} \leq \alpha$, for $i=1, \ldots, \alpha / 2+1$. With no loss of generality, we may assume that $r_{1} \geq \alpha / 2+1$. By Remark 2, we conclude that $\operatorname{deg}\left(p^{r_{1}} \mathbb{Z}_{n}\right) \leq \alpha / 2$, a contradiction. Therefore $\left\{p^{r} \mathbb{Z}_{n}: r=1, \ldots, \alpha / 2\right\}$ is a maximum clique in $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ and $\omega\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=\alpha / 2$. Similarly, $\left\{p^{r} \mathbb{Z}_{n}\right.$: $r=1, \ldots,(\alpha+1) / 2\}$ is a maximum clique in $\mathbb{G}\left(\mathbb{Z}_{n}\right)$, where α is odd. This completes the proof.

Theorem $13 \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a complete graph if and only if $n \in\left\{p_{1}^{2}, p_{1}^{3}, p_{1} p_{2}\right\}$.
Proof One side is obvious. For the other side assume that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a complete graph. By Theorem 9 , we find that
$s=1,2$. For the case $s=1$, we have $\operatorname{Max}\left(\mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}\right\}$. Hence by Theorem $9, \alpha_{1}=2,3$. Also, if $s=2$, then Theorem 9 implies that $\alpha_{1}=\alpha_{2}=1$. Therefore $n=p_{1} p_{2}$.

If $\quad n=p_{1}^{3} p_{2}^{2} \quad$ and $\quad v_{1}=p_{1} p_{2} \mathbb{Z}_{n}, v_{2}=p_{1} p_{2}^{2} \mathbb{Z}_{n}, v_{3}=$ $p_{1} \mathbb{Z}_{n}, v_{4}=p_{1}^{2} p_{2} \mathbb{Z}_{n}, v_{5}=p_{1}^{2} \mathbb{Z}_{n}, v_{6}=p_{2}^{2} \mathbb{Z}_{n}, v_{7}=p_{1}^{2} p_{2}^{2} \mathbb{Z}_{n}$, $v_{8}=p_{1}^{2} p_{2}^{2} \mathbb{Z}_{n}, v_{9}=p_{2} \mathbb{Z}_{n}, v_{10}=p_{1}^{3} p_{2} \mathbb{Z}_{n}$, then we have the following graph (Fig. 1):

Also, if $n=p_{1}^{2} p_{2} p_{3}$ and $v_{1}=p_{1} \mathbb{Z}_{n}, v_{2}=p_{1} p_{2} \mathbb{Z}_{n}, v_{3}=$ $p_{1} p_{3} \mathbb{Z}_{n}, v_{4}=p_{2} \mathbb{Z}_{n}, v_{5}=p_{1}^{2} \mathbb{Z}_{n}, v_{6}=p_{2} p_{3} \mathbb{Z}_{n}, v_{7}=p_{3} \mathbb{Z}_{n}, v_{8}$ $=p_{1} p_{2} p_{3} \mathbb{Z}_{n}, v_{9}=p_{1}^{2} p_{2} \mathbb{Z}_{n}, v_{10}=p_{1}^{2} p_{3} \mathbb{Z}_{n}$, then we have the following graph (Fig. 2):

Now, we investigate the planarity of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$. We will frequently need a celebrated theorem due to Kuratowski.

Proposition 1 [7, Theorem 10.30] A graph is planar if and only if it contains no subdivision of either K_{5} or $K_{3,3}$.

Fig. $1 \mathbb{G}\left(\mathbb{Z}_{p_{1}^{3} p_{2}^{2}}\right)$

Fig. $2 \mathbb{G}\left(\mathbb{Z}_{p_{1}^{2} p_{2} p_{3}}\right)$

Theorem $14 \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph if and only if $n \in$ $\left\{p_{1}, p_{1}^{2}, \ldots, p_{1}^{8}, p_{1} p_{2}, p_{1}^{2} p_{2}, p_{1}^{3} p_{2}, p_{1}^{3} p_{2}^{2}, p_{1}^{4} p_{2}, p_{1}^{2} p_{2}^{2}, \quad p_{1} p_{2} p_{3}\right.$, $\left.p_{1}^{2} p_{2} p_{3}\right\}$.

Proof One side is obvious. For the other side assume that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $s \geq 5$, then $\left\{p_{1} \mathbb{Z}_{n}, \ldots, p_{5} \mathbb{Z}_{n}\right\}$ is a clique, a contradiction. Therefore $s \leq 4$. Consider two following cases:
Case $1 s=1$. If $\alpha_{1} \geq 9$, then $\left\{p_{1} \mathbb{Z}_{n}, p_{1}^{2} \mathbb{Z}_{n}, \ldots, p_{1}^{5} \mathbb{Z}_{n}\right\}$ is a clique, a contradiction. Hence $\alpha_{1} \leq 8$. It is clear that if $\alpha_{1} \leq 5$, then $\left|V\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)\right| \leq 4$ and so $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $\alpha_{1}=6$, then $\left|V\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)\right|=5$. On the other hand $p_{1}^{4} \mathbb{Z}_{n}$ and $p_{1}^{5} \mathbb{Z}_{n}$ are two non adjacent vertices. Now, by Theorem 1 , we find that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $\alpha_{1}=7$, then $\left|V\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)\right|=6$. Also, $N\left(p_{1}^{6} \mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}\right\}$. Therefore by Theorem $1, \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $\alpha_{1}=8$, then $\left|V\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)\right|=7$. It is easy to see that $N\left(p_{1}^{7} \mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}\right\}$, $N\left(p_{1}^{6} \mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}, p_{1}^{2} \mathbb{Z}_{n}\right\} \quad$ and $N\left(p_{1}^{5} \mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}, \quad p_{1}^{2} \mathbb{Z}_{n}\right.$, $\left.p_{1}^{3} \mathbb{Z}_{n}\right\}$. Hence $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ contains no subdivision of either K_{5} or $K_{3,3}$. Therefore by Theorem $1, \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. Case $22 \leq s \leq 4$. If $\alpha_{1}, \alpha_{2} \geq 3$, then vertices of the set $\left\{p_{1} \mathbb{Z}_{n}, p_{1}^{2} \mathbb{Z}_{n}, p_{1}^{3} \mathbb{Z}_{n}\right\}$ are adjacent to the vertices of the set $\left\{p_{2} \mathbb{Z}_{n}, p_{2}^{2} \mathbb{Z}_{n}, p_{2}^{3} \mathbb{Z}_{n}\right\}$, and so $K_{3,3}$ is a subgraph of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$, a contradiction. Hence we may assume that $\alpha_{2}, \ldots, \alpha_{s} \leq 2$. If $\alpha_{1} \geq 5$, then two sets $\left\{p_{1} \mathbb{Z}_{n}, p_{1}^{2} \mathbb{Z}_{n}, p_{1}^{3} \mathbb{Z}_{n}\right\}$ and $\left\{p_{2} \mathbb{Z}_{n}\right.$, $\left.p_{1} p_{2} \mathbb{Z}_{n}, p_{1}^{2} p_{2} \mathbb{Z}_{n}\right\}$ imply that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ contains $K_{3,3}$, a contradiction. Therefore $\alpha_{1} \leq 4$. There are three following subcases:
Subcase $1 s=2$. Since $\alpha_{1} \leq 4$ and $\alpha_{2} \leq 2, n \in\left\{p_{1} p_{2}\right.$, $\left.p_{1}^{2} p_{2}, p_{1}^{3} p_{2}, p_{1}^{4} p_{2}, p_{1} p_{2}^{2}, p_{1}^{2} p_{2}^{2}, p_{1}^{3} p_{2}^{2}, p_{1}^{4} p_{2}^{2}\right\}$. With no loss of generality we may assume that $n \in\left\{p_{1} p_{2}, p_{1}^{2} p_{2}, p_{1}^{3}\right.$ $\left.p_{2}, p_{1}^{4} p_{2}, p_{1}^{2} p_{2}^{2}, p_{1}^{3} p_{2}^{2}, p_{1}^{4} p_{2}^{2}\right\}$. It is clear that if $n \in\left\{p_{1} p_{2}\right.$, $\left.p_{1}^{2} p_{2}\right\}$, then $\left|V\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)\right| \leq 4$ and so $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $n=p_{1}^{3} p_{2}$, then $\left|V\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)\right|=6$. Clearly, $N\left(p_{1}^{3} \mathbb{Z}_{n}\right)=$ $\left\{p_{2} \mathbb{Z}_{n}\right\}$ and $N\left(p_{1}^{2} p_{2} \mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}\right\}$. This implies that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ contains no subdivision of either K_{5} or $K_{3,3}$. Therefore by Theorem $1, \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $n=p_{1}^{4} p_{2}$, then $\left|V\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)\right|=8$. Clearly, $N\left(p_{1}^{4} \mathbb{Z}_{n}\right)=\left\{p_{2} \mathbb{Z}_{n}\right\}, N\left(p_{1}^{3} p_{2} \mathbb{Z}_{n}\right)$ $=\left\{p_{1} \mathbb{Z}_{n}\right\}$ and $N\left(p_{1}^{2} p_{2} \mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}, p_{1}^{2} \mathbb{Z}_{n}\right\}$. Hence $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ contains no subdivision of either K_{5} or $K_{3,3}$. Therefore by Theorem $1, \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $n=p_{1}^{2} p_{2}^{2}$, then $\left|V\left(\mathbb{G}\left(\mathbb{Z}_{n}\right)\right)\right|=7 . \quad$ Clearly, $\quad N\left(p_{1}^{2} p_{2} \mathbb{Z}_{n}\right)=\left\{p_{2} \mathbb{Z}_{n}\right\}$, $N\left(p_{1} p_{2}^{2} \mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}\right\} \quad$ and $\quad N\left(p_{1} p_{2} \mathbb{Z}_{n}\right)=\left\{p_{1} \mathbb{Z}_{n}, p_{2} \mathbb{Z}_{n}\right\}$. Hence $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ contains no subdivision of either K_{5} or $K_{3,3}$. Therefore by Theorem $1, \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $n=n=p_{1}^{3} p_{2}^{2}$, then by Fig.1, we find that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is planar. If $n=p_{1}^{4} p_{2}^{2}$, then two sets $\left\{p_{1} \mathbb{Z}_{n}, p_{1}^{2} \mathbb{Z}_{n}, p_{1}^{3} \mathbb{Z}_{n}\right\}$ and $\left\{p_{2} \mathbb{Z}_{n}, p_{2}^{2} \mathbb{Z}_{n}, p_{1} p_{2} \mathbb{Z}_{n}\right\}$ imply that $K_{3,3}$ is a subgraph of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$, a contradiction.

Subcase $2 s=3$. If $\alpha_{1} \geq 3$, then two sets $\left\{p_{1} \mathbb{Z}_{n}, p_{1}^{2} \mathbb{Z}_{n}, p_{1}^{3} \mathbb{Z}_{n}\right\}$ and $\left\{p_{2} \mathbb{Z}_{n}, p_{3} \mathbb{Z}_{n}, p_{2} p_{3} \mathbb{Z}_{n}\right\}$ imply that $K_{3,3}$ is a subgraph of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$, a contradiction. Hence $\alpha_{1} \leq 2$ and $n \in\left\{p_{1} p_{2} p_{3}, p_{1}^{2} p_{2} p_{3}, p_{1} p_{2}^{2} p_{3}, p_{1} p_{2} p_{3}^{2}, p_{1}^{2} p_{2}^{2} p_{3}, p_{1}^{2} p_{2} p_{3}^{2}\right.$, $\left.p_{1} p_{2}^{2} p_{3}^{2}, p_{1}^{2} p_{2}^{2} p_{3}^{2}\right\}$. With no loss of generality we may assume that $n \in\left\{p_{1} p_{2} p_{3}, p_{1}^{2} p_{2} p_{3}, p_{1}^{2} p_{2}^{2} p_{3}, p_{1}^{2} p_{2}^{2} p_{3}^{2}\right\}$. If $n=p_{1} p_{2} p_{3}$, then $\operatorname{deg}\left(p_{1} p_{2} \mathbb{Z}_{n}\right)=\operatorname{deg}\left(p_{1} p_{3} \mathbb{Z}_{n}\right)=\operatorname{deg}\left(p_{2} p_{3} \mathbb{Z}_{n}\right)=1$ and $\operatorname{deg}\left(p_{1} \mathbb{Z}_{n}\right)=\operatorname{deg}\left(p_{2} \mathbb{Z}_{n}\right)=\operatorname{deg}\left(p_{3} \mathbb{Z}_{n}\right)=2$. This yields that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $n=p_{1}^{2} p_{2} p_{3}$, then by Fig.2, we conclude that $\mathbb{G}\left(\mathbb{Z}_{n}\right)$ is planar. If $n \in\left\{p_{1}^{2} p_{2}^{2} p_{3}, p_{1}^{2} p_{2}^{2} p_{3}^{2}\right\}$, then two sets $\left\{p_{1} \mathbb{Z}_{n}, p_{2} \mathbb{Z}_{n}, p_{1} p_{2} \mathbb{Z}_{n}\right\}$ and $\left\{p_{3} \mathbb{Z}_{n}, p_{2} p_{3} \mathbb{Z}_{n}\right.$, $\left.p_{1} p_{2} p_{3} \mathbb{Z}_{n}\right\}$ imply that $K_{3,3}$ is a subgraph of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$, a contradiction.
Subcase $3 s=4$. If $\alpha_{2}, \alpha_{3} \geq 2$, then $\left\{p_{1} \mathbb{Z}_{n}, p_{1} p_{2} \mathbb{Z}_{n}\right.$, $\left.p_{1} p_{3} \mathbb{Z}_{n}, p_{1} p_{4} \mathbb{Z}_{n}, p_{1} p_{5} \mathbb{Z}_{n}\right\}$ is a clique, a contradiction. Similarly, we conclude that at most one of the element of the set $\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ can be more than 2 . Therefore with no loss of generality we may assume that $\alpha_{3}=\alpha_{4}=1$. If $\alpha_{1} \geq 3$ and $\alpha_{2}=1$, then $\left\{p_{1} \mathbb{Z}_{n}, p_{2} \mathbb{Z}_{n}, p_{3} \mathbb{Z}_{n}, p_{4} \mathbb{Z}_{n}, p_{1}^{2} \mathbb{Z}_{n}\right\}$ is a clique, a contradiction. Otherwise, two sets $\left\{p_{1} \mathbb{Z}_{n}, p_{2}\right.$ $\left.\mathbb{Z}_{n}, p_{1} p_{2} \mathbb{Z}_{n}\right\}$ and $\left\{p_{3} \mathbb{Z}_{n}, p_{4} \mathbb{Z}_{n}, p_{3} p_{4} \mathbb{Z}_{n}\right\}$ imply that $K_{3,3}$ is a subgraph of $\mathbb{G}\left(\mathbb{Z}_{n}\right)$, a contradiction.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://crea tivecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aalipour, G., Akbari, S., Nikandish, R., Nikmehr, M.J., Shaveisi, F.: The classification of the annihilating-ideal graph of a commutative ring. Algebra Colloq. 21(02), 249-256 (2014)
2. Akbari, S., Heydari, F.: The regular graph of a noncommutative ring. Bull. Aust. Math. Soc. 89, 132-140 (2014)
3. Akbari, S., Heydari, F., Maghasedi, M.: The intersection graph of a group. J. Algebra Appl. 14, 1550065 (2015)
4. Akbari, S., Khojasteh, S., Yousefzadehfard, A.: The proof of a conjecture in Jacobson graph of a commutative ring. J. Algebra Appl. 14(10), 1550107 (2015)
5. Akbari, S., Khojasteh, S.: Commutative rings whose cozerodivisor graphs are unicyclic or of bounded degree. Commun. Algebra 42, 1594-1605 (2014)
6. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969)
7. Bondy, J.A., Murty, U.S.R.: Graph Theory, Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)
8. Jafari Rad, N., Jafari, S.H.: A note on the intersection graphs of subspaces of a vector space. Ars Comb. 125, 401-407 (2016)
9. Jafari Rad, N., Jafari, S.H., Mojdeh, D.A.: On domination in zerodivisor graphs. Can. Math. Bull. 56, 407-411 (2013)

[^0]: M. Maghasedi
 maghasedi@kiau.ac.ir
 Z. Shafiei
 zahra.shafiei@kiau.ac.ir
 F. Heydari
 f-heydari@kiau.ac.ir
 S. Khojasteh
 s_khojasteh@liau.ac.ir
 ${ }^{1}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
 2 Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran

