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Abstract Let A be a commutative ring with unity. The

annihilating graph of A, denoted by GðAÞ, is a graph whose

vertices are all non-trivial ideals of A and two distinct

vertices I and J are adjacent if and only if

AnnðIÞAnnðJÞ ¼ 0. For every commutative ring A, we

study the diameter and the girth of GðAÞ. Also, we prove

that if GðAÞ is a triangle-free graph, then GðAÞ is a

bipartite graph. Among other results, we show that if GðAÞ
is a tree, then GðAÞ is a star or a double star graph.

Moreover, we prove that the annihilating graph of a com-

mutative ring cannot be a cycle. Let n be a positive integer

number. We classify all integer numbers n for which

GðZnÞ is a complete or a planar graph. Finally, we compute

the domination number of GðZnÞ.

Keywords Annihilating graph � Diameter � Girth �
Planarity

Mathematics Subject Classification 05C10 � 05C25 �
05C40 � 13A99

Introduction

There are many papers on assigning a graph to algebraic

structures, for instance see [2–6, 8, 9]. Throughout this

paper, all graphs are simple with no loops and multiple

edges and A is a commutative ring with non-zero identity.

We denote by IðAÞ� and MaxðAÞ, the set of all non-trivial

ideals of A and the set of all maximal ideals of A, respec-

tively. A ring having just one maximal ideal is called a local

ring and a ring having only finitely many maximal ideals is

said to be a semilocal ring. For every ideal I of A, we denote

by AnnðIÞ, the set of elements a 2 A such that aI ¼ 0.

Let G be a graph with vertex set V(G). If u is adjacent to

v, then we write u� v. For u; v 2 VðGÞ, we recall that a

path between u and v is a sequence u ¼ x0 � � � � � xn ¼ v

of vertices of G such that for every i with 1� i� n, the

vertices xi�1 and xi are adjacent and xi 6¼ xj, where i 6¼ j.

For every positive integer n, we denote the path of order n,

by Pn. For u; v 2 VðGÞ with u 6¼ v, d(u, v) denotes the

length of a shortest path between u and v. If there is no such

path, then we define dðu; vÞ ¼ 1. The diameter of G is

defined diamðGÞ ¼ supfdðu; vÞju and v are vertices of Gg.

For any u 2 VðGÞ, the degree of u, degðuÞ, denotes the

number of edges incident with u. The neighborhood of a

vertex u is denoted by NGðuÞ or simply N(u). A graph G is

k-regular if dðvÞ ¼ k for all v 2 VðGÞ ; a regular graph is

one that is k-regular for some k. We denote the complete

graph on n vertices by Kn. A bipartite graph is one whose

vertex set can be partitioned into two subsets V1 and V2 so

that each edge has one end in V1 and one end in V2. A

complete bipartite graph is a bipartite graph with two

partitions V1 and V2 in which every vertex in V1 is joined to

every vertex in V2. The complete bipartite graph with two

partitions of size m and n is denoted by Km;n. A star graph
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with center v and n vertices is the complete bipartite graph

with part sizes 1 and n such that degðvÞ ¼ n. A double-star

graph is a union of two star graphs with centers u and

v such that u is adjacent to v. We use Cn for the cycle of

order n, where n� 3. If a graph G has a cycle, then the girth

of G (notated grðGÞ) is defined as the length of a shortest

cycle of G; otherwise grðGÞ ¼ 1. A triangle-free graph is

a graph which contains no triangle. A clique of a graph is a

complete subgraph and the number of vertices in a largest

clique of graph G, denoted by xðGÞ, is called the clique

number of G. Recall that a graph is said to be planar if it

can be drawn in the plane so that its edges intersect only at

their ends. A subdivision of a graph is any graph that can

be obtained from the original graph by replacing edges by

paths. Also, a dominating set is a subset S of V(G) such that

every vertex of VðGÞnS is adjacent to at least one vertex in

S. The number of vertices in a smallest dominating set

denoted by cðGÞ, is called the domination number of G.

Let A be a commutative ring with non-zero identity. The

annihilating graph of A, denoted by GðAÞ, is a graph with

the vertex set IðAÞ�, and two distinct vertices I; J 2 ZðAÞ�
are adjacent if and only if AnnðIÞAnnðJÞ ¼ 0. In this paper,

we prove that if A is a ring, then GðAÞ is a connected graph,

diamðGðAÞÞ� 3 and grðGðAÞÞ 2 f3; 4;1g. Also, we

prove that for every ring A, if GðAÞ is a triangle-free graph,

then GðAÞ is a bipartite graph. Among other results, we

show that if A is a ring and GðAÞ is a tree, then GðAÞ is a

star or a double star graph. Moreover, we prove that the

annihilating graph of a ring cannot be a cycle. Also, we

obtained some results about GðZnÞ. We show that GðZnÞ is

a complete graph if and only if n 2 fp2
1; p

3
1; p1p2g. We also

prove that GðZnÞ is a planar graph if and only if n 2
fp1; p

2
1; . . .; p

8
1; p1p2; p

2
1p2; p

3
1p2; p

3
1p

2
2; p

4
1p2; p

2
1p

2
2; p1p2p3; p

2
1

p2p3g. Finally, we determine the domination number of

GðZnÞ.

The annihilating graph of A

In this section, we study the diameter and the girth of the

annihilating graph of a ring. Also, we classify all rings

whose annihilating graphs are complete graph, tree or

cycle.

We start with the following lemma.

Lemma 1 If A is a commutative ring, then

cðGðAÞÞ� jMaxðAÞj �xðGðAÞÞ.

Proof Suppose that m1;m2 are two distinct maximal

ideals of A. Then we have Annðm1ÞAnnðm2Þ � Annðm1Þ\
Annðm2Þ � Annðm1 þm2Þ. Since m1 þm2 ¼ A, we con-

clude that Annðm1 þm2Þ ¼ 0 and so m1 is adjacent to m2.

This implies that MaxðAÞ is a clique in GðAÞ. Now,

suppose that I 2 ZðAÞ�nMaxðAÞ. Let m be a maximal ideal

containing AnnðIÞ. Since AnnðIÞAnnðmÞ � mAnnðmÞ
¼ 0, we deduce that I is adjacent to m. Hence MaxðAÞ is a

dominating set of GðAÞ. h

By the previous lemma, if the clique number of GðAÞ is

finite, then A is a semilocal ring. Also, we have the fol-

lowing result.

Corollary 1 Let A be a ring. If every maximal ideal of

A has finite degree, then GðAÞ is a finite graph.

Proof Since MaxðAÞ is a clique in GðAÞ, so MaxðAÞ is

finite. Now, since MaxðAÞ is a dominating set of GðAÞ, the

result holds. h

Next, we study the diameter and the girth of GðAÞ.

Theorem 1 Let A be a ring. Then diamðGðAÞÞ� 3.

Moreover, if A is a local ring, then diamðGðAÞÞ� 2.

Proof Assume that I and J are two non-trivial ideals of

A. Suppose that m1 and m2 are maximal ideals such that

AnnðIÞ � m1 and AnnðJÞ � m2. Since AnnðIÞAnnðm1Þ
� m1Annðm1Þ ¼ 0, we conclude that I ¼ m1 or I is adja-

cent to m1. Similarly, J ¼ m2 or J is adjacent to m2. Now,

if m1 ¼ m2, then dðI; JÞ� 2. Otherwise, m1 and m2 are

adjacent and so dðI; JÞ� 3. Thus diamðGðAÞÞ� 3. (Note

that if A has a non-trivial ideal I with AnnðIÞ ¼ 0, then I is

adjacent to all other vertices and hence diamðGðAÞÞ� 2.)

Finally, assume that ðA;mÞ is a local ring. By the proof of

Lemma 1, m is adjacent to all other vertices, so

diamðGðAÞÞ� 2. h

Theorem 2 Let A be a ring. Then grðGðAÞÞ 2 f3; 4;1g.

Moreover, if A is a local ring and GðAÞ contains a cycle,

then grðGðAÞÞ ¼ 3.

Proof Clearly, if A has at least three maximal ideals, then

grðGðAÞÞ ¼ 3. So assume that A has exactly two maximal

ideals and GðAÞ contains a cycle C. If C is a cycle of length

at most 4, then we are done. Otherwise, C contains two

adjacent vertices I and J which are not maximal ideals.

Suppose that I � m1 and J � m2, where m1 and m2 are

maximal ideals of A. Since AnnðIÞAnnðm2Þ �
AnnðIÞAnnðJÞ ¼ 0, we deduce that I and m2 are adjacent.

Similarly, J and m1 are adjacent. If m1 ¼ m2, then

grðGðAÞÞ ¼ 3. Otherwise, grðGðAÞÞ� 4. The last part

follows from the proof of Lemma 1. h

The following theorem shows that triangle-free annihi-

lating graphs are bipartite.

Theorem 3 Let A be a ring. If GðAÞ is a triangle-free

graph, then GðAÞ is a bipartite graph.

Proof Let GðAÞ be a triangle-free graph. Clearly A has at

most two maximal ideals. If A is a local ring, then GðAÞ is
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a star and so GðAÞ is bipartite. Suppose that A contains

exactly two distinct maximal ideals m1 and m2. One can

easily see that GðAÞ is a bipartite graph with parts Nðm1Þ
and Nðm2Þ. h

Theorem 4 Let A be a ring. If GðAÞ is a tree, then GðAÞ
is a star or a double star graph.

Proof Assume that GðAÞ is a tree. It is enough to show

that if A has exactly two distinct maximal ideals m1 and

m2, then GðAÞ is a double star graph. By the proof of

Lemma 1, m1 is adjacent to m2 and every other vertex is

adjacent to one of the m1 and m2. Now, since GðAÞ con-

tains no cycles, GðAÞ is a double star graph. h

By the previous theorem, we have the following

immediate corollary.

Corollary 2 Let A be a ring. If GðAÞ ffi Pn, then n� 4.

Theorem 5 The annihilating graph of a ring cannot be a

cycle.

Proof By contrary suppose that GðAÞ ffi Cn, for some

n� 3. By Theorem 2, we conclude that n� 4. First assume

that GðAÞ ffi C4. So A has exactly four non-trivial ideals.

By Theorem 2, we deduce that A is not a local ring. Hence

by [6, Theorem 8.7], A ffi F 	 S, where F is a field and S is

a ring with exactly one non-trivial ideal. Let m be the non-

trivial ideal of S. Thus IðAÞ� ¼ f0 	m; 0 	 S;F 	 0;

F 	mg. We have Annð0 	mÞ ¼ F 	m, AnnðF 	mÞ ¼
0 	m, Annð0 	 SÞ ¼ F 	 0 and AnnðF 	 0Þ ¼ 0 	 S.

Therefore, GðAÞ is the path 0 	m� F 	m� 0 	 S�
F 	 S, a contradiction. Next assume that GðAÞ ffi C3. Since

A has exactly three non-trivial ideals, by [6, Theorem 8.7],

A is an Artinian local ring. Let IðAÞ� ¼ fI; J;mg, where m

is the maximal ideal of A. Suppose that k is the smallest

positive integer such that mk ¼ 0. So AnnðmÞ 6¼ 0. With

no loss of generality, we consider two cases. Note that the

annihilating-ideal graph AGðAÞ of A is a graph whose

vertex set is the set of all non-zero ideals of A with non-

zero annihilator and two distinct vertices I and J are

adjacent if and only if IJ ¼ 0, see [1].

Case 1 AnnðmÞ ¼ m. So m2 ¼ 0 and hence

IJ ¼ Im ¼ Jm ¼ 0. This implies that AGðAÞ ffi GðAÞ
ffi C3. By [1, Corollary 9], AGðAÞ cannot be a cycle, a

contradiction.

Case 2 AnnðmÞ ¼ I. Thus Im ¼ 0. So IJ ¼ 0 and

m ¼ AnnðIÞ. If mJ ¼ 0, then AGðAÞ ffi GðAÞ ffi C3, a

contradiction. Therefore, mJ 6¼ 0 and hence AGðAÞ ffi P3.

Now, by [1, Theorem 11], we have k ¼ 4 and so I ¼ m3

and J ¼ m2. This implies that AnnðIÞ ¼ m and

AnnðJÞ ¼ m2. Thus GðAÞ ffi P3, a contradiction. h

Theorem 6 If GðAÞ is a regular graph of finite degree,

then GðAÞ is a complete graph.

Proof By Corollary 1, A has finitely many ideals. So A is

an Artinian ring. First suppose that ðA;mÞ is an Artinian

local ring. Since m is a vertex of GðAÞ which is adjacent to

all other vertices, we deduce that GðAÞ is a complete graph.

Now, by [6, Theorem 8.7], we may assume that

A ffi A1 	 � � � 	 An, where n� 2 and ðAi;miÞ is an Artinian

local ring for i ¼ 1; . . .; n. We have Annð0 	 A2 	 � � �
	AnÞ ¼ A1 	 0 	 � � � 	 0, Annðm 	A 	 � � � 	AnÞ ¼
AnnðmÞ 	 	 � � � 	 , and AnnðA1 	 0 	 � � � 	 0Þ ¼
0 	 A2	 � � � 	 An. Let v1 ¼ 0 	 A2 	 � � � 	 An, v2 ¼ m 	
A 	 � � � 	An and v3 ¼ A1 	 0 	 � � � 	 0. One can easily

see that

Nðv1Þ ¼ fA1 	 I2 	 � � � 	 In j Ii is an ideal of Ai

for i ¼ 2; . . .; ngnfAg;

and

Nðv2Þ ¼ fI1 	 I2 	 � � � 	 In j Ii is an ideal of Ai

for i ¼ 1; . . .; n and I1 6¼ 0gnfAg:

Note that every non-trivial ideal of an Artinian ring A has a

non-zero annihilator. Since degðv1Þ ¼ degðv2Þ, we con-

clude that A1 has no proper ideal other than 0;m. Thus

Nðv3Þ ¼ f0 	 A2 	 � � � 	 An;m 	 A2 	 � � � 	 Ang:

Hence degðv3Þ� 2. If GðAÞ is a 2-regular graph, then GðAÞ
is a cycle, a contradiction. Note that by Theorem 1, GðAÞ is

a connected graph. Therefore, GðAÞ is a 1-regular graph.

So GðAÞ ffi K2 is a complete graph. In this case,

A ffi F1 	 F2, where F1;F2 are fields.

Remark 1 Let A be a commutative ring and m be a

maximal ideal of A with non-zero annihilator. Since

mAnnðmÞ ¼ 0, we conclude that m � AnnðAnnðmÞÞ.
Now, AnnðmÞ 6¼ 0 implies that AnnðAnnðmÞÞ ¼ m.

Lemma 2 Let A be a local ring with non-zero maximal

ideal m. If I 2 ZðAÞ� and AnnðIÞ ¼ AnnðmÞ, then I is

adjacent to all other vertices of GðAÞ.

Proof Suppose that AnnðIÞ ¼ AnnðmÞ. Let J be a non-

trivial ideal of A and J 6¼ I. Since AnnðJÞ � m, we deduce

that AnnðJÞAnnðIÞ � mAnnðmÞ ¼ 0. Hence I and J are

adjacent. The proof is complete. h

Theorem 7 Let A be a local ring with non-zero maximal

ideal m such that AnnðmÞ 6¼ 0. Then GðAÞ is a complete

graph if and only if AnnðIÞ ¼ AnnðmÞ, for every ideal

I 2 ZðAÞ�nfAnnðmÞg.

Proof Suppose that GðAÞ is a complete graph and let

I 2 ZðAÞ�nfAnnðmÞg. Since AnnðmÞ 6¼ 0;A, we conclude

that AnnðmÞ is a vertex of GðAÞ and hence is adjacent to
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I. Thus AnnðIÞAnnðAnnðmÞÞ ¼ 0. By Remark 1,

AnnðAnnðmÞÞ ¼ m. So AnnðIÞm ¼ 0 which implies that

AnnðIÞ � AnnðmÞ. In other hand, since I � m, we deduce

that AnnðmÞ � AnnðIÞ. Therefore, AnnðIÞ ¼ AnnðmÞ.
Conversely, suppose that AnnðIÞ ¼ AnnðmÞ, for every

ideal I 2 ZðAÞ�nfAnnðmÞg. Assume that I; J 2
ZðAÞ�nfAnnðmÞg and I 6¼ J. Since AnnðIÞ ¼ AnnðJÞ ¼
AnnðmÞ, we conclude that AnnðIÞAnnðJÞ ¼
AnnðmÞAnnðmÞ � mAnnðmÞ ¼ 0. Hence I and J are

adjacent. Now, since AnnðAnnðmÞÞAnnðIÞ ¼ mAnnðIÞ ¼
mAnnðmÞ ¼ 0, then AnnðmÞ is adjacent to all other ver-

tices. Thus GðAÞ is a complete graph. h

Theorem 8 Let A be an Artinian local ring with non-zero

maximal ideal m. Then GðAÞ is a complete graph if and

only if either m2 ¼ 0 or m3 ¼ 0 and IJ ¼ m2, for every

ideal I; J 2 ZðAÞ�nfm2g.

Proof First assume that m2 ¼ 0. Thus m � AnnðmÞ and

hence AnnðmÞ ¼ m. Let I 2 ZðAÞ�. Since I � m, we

deduce that m ¼ AnnðmÞ � AnnðIÞ. So AnnðIÞ ¼ m.

Now, Theorem 9 implies that GðAÞ is a complete graph.

Next assume that m3 ¼ 0 and IJ ¼ m2, for every ideal

I; J 2 ZðAÞ�nfm2g. Note that m2 6¼ 0. Hence AnnðmÞ 6¼
m and Annðm2Þ ¼ m. Since AnnðmÞAnnðmÞ �
mAnnðmÞ ¼ 0, we conclude that AnnðmÞ ¼ m2. Let

I 2 ZðAÞ�nfm2g. Since IAnnðIÞ ¼ 0 6¼ m2, we deduce that

AnnðIÞ ¼ m2 ¼ AnnðmÞ. Thus by Theorem 9, GðAÞ is

complete. Conversely, suppose that GðAÞ is a complete

graph. Let k be the smallest positive integer such that

mk ¼ 0. If k ¼ 2, we are done. Assume that k� 3. So

AnnðmÞ 6¼ m. Since m � Annðmk�1Þ, we conclude that

Annðmk�1Þ ¼ m. Now, by Theorem 9, AnnðmÞ ¼ mk�1. In

other hand, since mk�2 � Annðm2Þ, then Annðm2Þ 6¼ mk�1

¼ AnnðmÞ. This implies that m2 ¼ AnnðmÞ ¼ mk�1.

Therefore, k ¼ 3 and so we have m3 ¼ 0, AnnðmÞ ¼ m2,

and Annðm2Þ ¼ m. Finally, suppose that

I; J 2 ZðAÞ�nfm2g. Since mIJ � m3 ¼ 0, we deduce that

IJ ¼ 0 or AnnðIJÞ ¼ m. If IJ ¼ 0, then I � AnnðJÞ ¼ m2

and hence m ¼ Annðm2Þ � AnnðIÞ ¼ m2, a contradiction.

Thus AnnðIJÞ ¼ m and so Theorem 7 implies that

IJ ¼ m2. The proof is complete. h

We close this section by the following theorem which is

a classification of rings whose annihilating graphs are

complete.

Theorem 9 Let A be a commutative ring. If GðAÞ ffi Kn,

then one of the following holds:

(i) ðA;mÞ is an Artinian local ring with m2 ¼ 0.

(ii) ðA;mÞ is an Artinian local ring with m3 ¼ 0 and

IJ ¼ m2, for every ideal I; J 2 ZðAÞ�nfm2g.

(iii) A ffi F1 	 F2, where F1;F2 are fields.

Proof Suppose that GðAÞ ffi Kn, for some positive inte-

ger n. So A is an Artinian ring. By Theorem 8, if A is a

local ring, then the cases (ii) or (iii) occur. Otherwise, by

the proof of Theorem 6, A ffi F1 	 F2, where F1;F2 are

fields. h

The annihilating graph of Zn

In this section, we study the case that A ¼ Zn. Throughout

this section, without loss of generality, we assume that

n ¼ pa1

1 � � � pass , where pi’s are distinct primes and ai’s are

positive integers. It is easy to see that IðZnÞ ¼ fdZn : d

divides ng and jIðZnÞ�j ¼
Qs

i¼1ðai þ 1Þ � 2. We denote the

least common multiple and the greatest common divisor of

integers a and b by [a, b] and (a, b), respectively. Also, we

write a|b (a 6j b) if a divides b (a does not divide b). We

begin with the following lemma.

Lemma 3 If p
b1

1 � � � pbss Zn 2 ZðZnÞ�, then

Annðpb1

1 � � � pbss ZnÞ ¼ p
a1�b1

1 � � � pas�bs
s Zn.

Proof Let d ¼ p
b1

1 � � � pbss and d0 ¼ p
a1�b1

1 � � � pas�bs
s .

Clearly, dZnd
0Zn ¼ 0 and so d0Zn � AnnðdZnÞ. Let

r 2 AnnðdZnÞ. Then n divides rd. Since n ¼ pa1

1 � � � pass
and d ¼ p

b1

1 � � � pbss , so p
a1�b1

1 � � � pas�bs
s divides r. This

implies that r 2 d0Zn and AnnðdZÞ � d0Zn. The proof is

complete. h

Remark 2 Let d1Zn; d2Zn 2 ZðZnÞ� and let d1 ¼ p
b1

1 � � �
pbss , d2 ¼ p

c1

1 � � � pcss . Then d1Zn and d2Zn are adjacent if and

only if pa1

1 � � � pass divides p
2a1�ðb1þc1Þ
1 � � � p2as�ðbsþcsÞ

s which

implies that ai � bi þ ci, for i ¼ 1; . . .; s. Also, if ðd1; d2Þ ¼
1 then d1Zn and d2Zn are adjacent.

Lemma 4 If d ¼ p
b1

1 � � � pbss , then
Qs

i¼1ðai � bi þ 1Þ �
2� degðdZnÞ�

Qs
i¼1ðai � bi þ 1Þ � 1.

Proof If p
c1

1 � � � pcss Zn and dZn are adjacent, then by

Remark 2, 0� ci � ai � bi. On the other hand, p
c1

1 � � � pcss 62
f1; dg which implies that degðdZnÞ 2 f

Qs
i¼1ðai � bi þ 1Þ

�2;
Qs

i¼1ðai � bi þ 1Þ � 1g. h

Next, we study the girth of GðZnÞ.

Theorem 10 Let n be a positive integer number. Then

grðGðZnÞÞ 2 f3;1g. Moreover, GðZnÞ is a tree if and

only if n 2 fp2
1; p

3
1; p1p2; p

2
1p2g.

Proof If s > 3, then p1Zn � p2Zn � p3Zn � p1Zn is a

3-cycle in GðZnÞ. Therefore grðGðZnÞÞ ¼ 3. Now, con-

sider two following cases:
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Case 1 s ¼ 1. If a1 > 4, then it is easy to see that p1Zn �
p2

1Zn � p3
1Zn � p1Zn is a triangle in GðZnÞ and so

grðGðZnÞÞ ¼ 3. Also, it is clear that if n ¼ p2
1 or n ¼ p3

1,

then grðGðZnÞÞ ¼ 1.

Case 2 s ¼ 2. If a1 > 3, then p1Zn � p2Zn � p2
1Zn �

p1Zn is a 3-cycle in GðZnÞ. This yields that grðGðZnÞÞ ¼ 3.

Now, suppose that a1; a2 2 f1; 2g. Whit out lose of gen-

erality we may assume the following three subcases:

Subcase 1 n ¼ p1p2. Then GðZnÞ ffi K2 and

grðGðZnÞÞ ¼ 1.

Subcase 2 n ¼ p2
1p2. Then GðZnÞ ffi P4 and so

grðGðZnÞÞ ¼ 1. Note that, p1p2Zn � p1Zn� p2Zn � p2
1Zn.

Subcase 3 n ¼ p2
1p

2
2. Then p1Zn � p1p2Zn � p2Zn �

p1Zn is a triangle in GðZnÞ. Hence grðGðZnÞÞ ¼ 3. h

Now, we compute some numerical invariants of GðZnÞ,
namely domination number and clique number.

Theorem 11 If n is a positive integer number, then

cðGðZnÞÞ ¼ s.

Proof We note that MaxðZnÞ ¼ fp1Zn; . . .; psZng. Hence

by Theorem 1, we find that cðGðZnÞÞ� s. Next, we prove

that cðGðZnÞÞ� s. Let D be a smallest dominating set for

GðZnÞ and let Ij ¼ p
aj�1
j

Q
i 6¼j p

ai
i Zn, for j ¼ 1; . . .; s. We

have NðIjÞ ¼ fpjZng. This implies that fIj; pjZng\ D 6¼ £,

for every j, 1� j� s. Therefore jDj � s and so

cðGðZnÞÞ ¼ s. h

Theorem 12 If n ¼ pa, then xðGðZnÞÞ ¼
a
2
; if a iseven;

aþ 1

2
; otherwise:

8
><

>:

Proof First suppose that a is even. By Remark 2, prZn

and pr
0
Zn are adjacent, where 1� r; r0 � a=2. This yields

that A ¼ fprZn : r ¼ 1; . . .; a=2g is a clique in GðZnÞ. We

claim that A is a maximum clique in GðZnÞ. By contra-

diction, suppose that fpr1Zn; . . .; p
ra=2þ1Zng is a clique in

GðZnÞ. Clearly, 1� ri � a, for i ¼ 1; . . .; a=2 þ 1. With no

loss of generality, we may assume that r1 � a=2 þ 1. By

Remark 2, we conclude that degðpr1ZnÞ� a=2, a contra-

diction. Therefore fprZn : r ¼ 1; . . .; a=2g is a maximum

clique in GðZnÞ and xðGðZnÞÞ ¼ a=2. Similarly, fprZn :

r ¼ 1; . . .; ðaþ 1Þ=2g is a maximum clique in GðZnÞ,
where a is odd. This completes the proof. h

Theorem 13 GðZnÞ is a complete graph if and only if

n 2 fp2
1; p

3
1; p1p2g.

Proof One side is obvious. For the other side assume that

GðZnÞ is a complete graph. By Theorem 9, we find that

s ¼ 1; 2. For the case s ¼ 1, we have MaxðZnÞ ¼ fp1Zng.

Hence by Theorem 9, a1 ¼ 2; 3. Also, if s ¼ 2, then The-

orem 9 implies that a1 ¼ a2 ¼ 1. Therefore n ¼ p1p2. h

If n ¼ p3
1p

2
2 and v1 ¼ p1p2Zn; v2 ¼ p1p

2
2Zn; v3 ¼

p1Zn; v4 ¼ p2
1p2Zn; v5 ¼ p2

1Zn; v6 ¼ p2
2Zn; v7 ¼ p2

1p
2
2Zn;

v8 ¼ p2
1p

2
2Zn; v9 ¼ p2Zn; v10 ¼ p3

1p2Zn, then we have the

following graph (Fig. 1):

Also, if n ¼ p2
1p2p3 and v1 ¼ p1Zn; v2 ¼ p1p2Zn; v3 ¼

p1p3Zn; v4 ¼ p2Zn; v5 ¼ p2
1Zn; v6 ¼ p2p3Zn; v7 ¼ p3Zn; v8

¼ p1p2p3Zn; v9 ¼ p2
1p2Zn; v10 ¼ p2

1p3Zn, then we have the

following graph (Fig. 2):

Now, we investigate the planarity of GðZnÞ. We will

frequently need a celebrated theorem due to Kuratowski.

Proposition 1 [7, Theorem 10.30] A graph is planar if

and only if it contains no subdivision of either K5 or K3;3.

v5 v9

v2

v7

v6

v3
v4

v10

v1

v8

Fig. 1 GðZp3
1
p2

2
Þ

v2 v7

v9

v5

v6

v3

v4

v10

v1

v8

Fig. 2 GðZp2
1
p2p3

Þ
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Theorem 14 GðZnÞ is a planar graph if and only if n 2
fp1; p

2
1; . . .; p

8
1; p1p2; p

2
1p2; p

3
1p2; p

3
1p

2
2; p

4
1p2; p

2
1p

2
2; p1p2p3;

p2
1p2p3g.

Proof One side is obvious. For the other side assume that

GðZnÞ is a planar graph. If s� 5, then fp1Zn; . . .; p5Zng is a

clique, a contradiction. Therefore s� 4. Consider two fol-

lowing cases:

Case 1 s ¼ 1. If a1 � 9, then fp1Zn; p
2
1Zn; . . .; p

5
1Zng is a

clique, a contradiction. Hence a1 � 8. It is clear that if

a1 � 5, then jVðGðZnÞÞj � 4 and so GðZnÞ is a planar

graph. If a1 ¼ 6, then jVðGðZnÞÞj ¼ 5. On the other hand

p4
1Zn and p5

1Zn are two non adjacent vertices. Now, by

Theorem 1, we find that GðZnÞ is a planar graph. If a1 ¼ 7,

then jVðGðZnÞÞj ¼ 6. Also, Nðp6
1ZnÞ ¼ fp1Zng. Therefore

by Theorem 1, GðZnÞ is a planar graph. If a1 ¼ 8, then

jVðGðZnÞÞj ¼ 7. It is easy to see that Nðp7
1ZnÞ ¼ fp1Zng,

Nðp6
1ZnÞ ¼ fp1Zn; p

2
1Zng and Nðp5

1ZnÞ ¼ fp1Zn; p2
1Zn;

p3
1Zng. Hence GðZnÞ contains no subdivision of either K5

or K3;3. Therefore by Theorem 1, GðZnÞ is a planar graph.

Case 2 2� s� 4. If a1; a2 � 3, then vertices of the set

fp1Zn; p
2
1Zn; p

3
1Zng are adjacent to the vertices of the set

fp2Zn; p
2
2Zn; p

3
2Zng, and so K3;3 is a subgraph of GðZnÞ, a

contradiction. Hence we may assume that a2; . . .; as � 2. If

a1 � 5, then two sets fp1Zn; p
2
1Zn; p

3
1Zng and fp2Zn;

p1p2Zn; p
2
1p2Zng imply that GðZnÞ contains K3;3, a contra-

diction. Therefore a1 � 4. There are three following

subcases:

Subcase 1 s ¼ 2. Since a1 � 4 and a2 � 2, n 2 fp1p2;

p2
1p2; p

3
1p2; p

4
1p2; p1p

2
2; p

2
1p

2
2; p

3
1p

2
2; p

4
1p

2
2g. With no loss of

generality we may assume that n 2 fp1p2; p
2
1p2; p

3
1

p2; p
4
1p2; p

2
1p

2
2; p

3
1p

2
2; p

4
1p

2
2g. It is clear that if n 2 fp1p2;

p2
1p2g, then jVðGðZnÞÞj � 4 and so GðZnÞ is a planar graph.

If n ¼ p3
1p2, then jVðGðZnÞÞj ¼ 6. Clearly, Nðp3

1ZnÞ ¼
fp2Zng and Nðp2

1p2ZnÞ ¼ fp1Zng. This implies that GðZnÞ
contains no subdivision of either K5 or K3;3. Therefore by

Theorem 1, GðZnÞ is a planar graph. If n ¼ p4
1p2, then

jVðGðZnÞÞj ¼ 8. Clearly, Nðp4
1ZnÞ ¼ fp2Zng, Nðp3

1p2ZnÞ
¼ fp1Zng and Nðp2

1p2ZnÞ ¼ fp1Zn; p
2
1Zng. Hence GðZnÞ

contains no subdivision of either K5 or K3;3. Therefore by

Theorem 1, GðZnÞ is a planar graph. If n ¼ p2
1p

2
2, then

jVðGðZnÞÞj ¼ 7. Clearly, Nðp2
1p2ZnÞ ¼ fp2Zng,

Nðp1p
2
2ZnÞ ¼ fp1Zng and Nðp1p2ZnÞ ¼ fp1Zn; p2Zng.

Hence GðZnÞ contains no subdivision of either K5 or

K3;3. Therefore by Theorem 1, GðZnÞ is a planar graph. If

n ¼ n ¼ p3
1p

2
2, then by Fig.1, we find that GðZnÞ is planar.

If n ¼ p4
1p

2
2, then two sets fp1Zn; p

2
1Zn; p

3
1Zng and

fp2Zn; p
2
2Zn; p1p2Zng imply that K3;3 is a subgraph of

GðZnÞ, a contradiction.

Subcase 2 s ¼ 3. If a1 � 3, then two sets

fp1Zn; p
2
1Zn; p

3
1Zng and fp2Zn; p3Zn; p2p3Zng imply that

K3;3 is a subgraph of GðZnÞ, a contradiction. Hence a1 � 2

and n 2 fp1p2p3; p
2
1p2p3; p1p

2
2p3; p1p2p

2
3; p

2
1p

2
2p3; p2

1p2p
2
3;

p1p
2
2p

2
3; p

2
1p

2
2p

2
3g. With no loss of generality we may assume

that n 2 fp1p2p3; p
2
1p2p3; p

2
1p

2
2p3; p

2
1p

2
2p

2
3g. If n ¼ p1p2p3,

then degðp1p2ZnÞ ¼ degðp1p3ZnÞ ¼ degðp2p3ZnÞ ¼ 1 and

degðp1ZnÞ ¼ degðp2ZnÞ ¼ degðp3ZnÞ ¼ 2. This yields that

GðZnÞ is a planar graph. If n ¼ p2
1p2p3, then by Fig.2, we

conclude that GðZnÞ is planar. If n 2 fp2
1p

2
2p3; p

2
1p

2
2p

2
3g,

then two sets fp1Zn; p2Zn; p1p2Zng and fp3Zn; p2p3Zn;

p1p2p3Zng imply that K3;3 is a subgraph of GðZnÞ, a

contradiction.

Subcase 3 s ¼ 4. If a2; a3 � 2, then fp1Zn; p1p2Zn;

p1p3Zn; p1p4Zn; p1p5Zng is a clique, a contradiction. Sim-

ilarly, we conclude that at most one of the element of the

set fa2; a3; a4g can be more than 2. Therefore with no loss

of generality we may assume that a3 ¼ a4 ¼ 1. If a1 � 3

and a2 ¼ 1, then fp1Zn; p2Zn; p3Zn; p4Zn; p
2
1Zng is a

clique, a contradiction. Otherwise, two sets fp1Zn; p2

Zn; p1p2Zng and fp3Zn; p4Zn; p3p4Zng imply that K3;3 is a

subgraph of GðZnÞ, a contradiction. h
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