Skip to main content
Log in

Stationary measures for stochastic differential equations with degenerate damping

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

A variety of physical phenomena involve the nonlinear transfer of energy from weakly damped modes subjected to external forcing to other modes which are more heavily damped. In this work we explore this in (finite-dimensional) stochastic differential equations in \({\mathbb {R}}^n\) with a quadratic, conservative nonlinearity B(xx) and a linear damping term—Ax which is degenerate in the sense that \(\textrm{ker} A \ne \emptyset \). We investigate sufficient conditions to deduce the existence of a stationary measure for the associated Markov semigroups. Existence of such measures is straightforward if A is full rank, but otherwise, energy could potentially accumulate in \(\textrm{ker} A\) and lead to almost-surely unbounded trajectories, making the existence of stationary measures impossible. We give a relatively simple and general sufficient condition based on time-averaged coercivity estimates along trajectories in neighborhoods of \(\textrm{ker} A\) and many examples where such estimates can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Athreya, A., Kolba, T., Mattingly, J.: Propagating Lyapunov functions to prove noise-induced stabilization. Electron. J. Probab. 17, 1–38 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bakry, D., Cattiaux, P., Guillin, A.: Rate of convergence for ergodic continuous Markov processes: Lyapunov versus poincaré. J. Funct. Anal. 254(3), 727–759 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: The Batchelor spectrum of passive scalar turbulence in stochastic fluid mechanics at fixed reynolds number. To appear in Comm. Pure Appl, Math (2019)

  4. Bedrossian, J., Liss, K.: Quantitative spectral gaps for hypoelliptic stochastic differential equations with small noise. Probab. Math. Phys. 2(3), 477–532 (2021)

    Article  MathSciNet  Google Scholar 

  5. Birrell, J, Herzog, D., JWehr: Transition from ergodic to explosive behavior in a family of stochastic differential equations. Available on math. arXiv:1105.2378

  6. Bohr, T., Jensen, M.H., Paladin, G.: Dynamical Systems Approach to Turbulence. Cambridge University Press, Vulpiani (2005)

  7. Camrud, E. T.: On the Stochastically-Induced Exponential Stability of Two Nonlinear Dynamics Exhibiting Energy Conservation. Iowa State University (2022)

  8. Cañizo, J.A., Cao, C., Evans, J., Yoldaş, H.: Hypocoercivity of linear kinetic equations via Harris’s theorem. Kinetic Relat. Models 13(1), 97 (2020)

    Article  MathSciNet  Google Scholar 

  9. Coti Zelati, M., Hairer, M.: A noise-induced transition in the Lorenz system. Commun. Math. Phys. 383(3), 2243–2274 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cuneo, N., Eckmann, J.P., Hairer, M., Rey-Bellet, L.: Non-equilibrium steady states for networks of oscillators (2018)

  11. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  12. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Note Series, Cambridge University Press (1996)

    Book  Google Scholar 

  13. Ditlevsen, P.D.: Turbulence and Shell Models. Cambridge University Press (2010)

  14. Douc, R., Fort, G., Guillin, A.: Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Process. Appl. 119(3), 897–923 (2009)

    Article  MathSciNet  Google Scholar 

  15. Földes, J., Glatt-Holtz, N. E., Herzog, D. P.: Sensitivity of steady states in a degenerately damped stochastic Lorenz system. Stoch. Dyn. 21(08), 2150055 (2021)

    Article  MathSciNet  Google Scholar 

  16. Friedlander, S., Glatt-Holtz, N., Vicol, V.: Inviscid limits for a stochastically forced shell model of turbulent flow. Ann. Inst. Henri Poincaré Probab. Stat. 52(3), 1217–1247 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Frisch, U.: Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press (1995)

  18. Glatt-Holtz, N.E., Herzog, D.P., Mattingly, J.C.: Scaling and saturation in infinite-dimensional control problems with applications to stochastic partial differential equations. Ann. PDE 4, 1–103 (2018)

    Article  MathSciNet  Google Scholar 

  19. Gledzer, E.B.: System of hydrodynamic type admitting two quadratic integrals of motion. Sov. phys. dokl., pp. 216–217 (1973)

  20. Hérau, F., Nier, F.: Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171(2), 151–218 (2004)

    Article  MathSciNet  Google Scholar 

  21. Herzog, D., Mattingly, J.: Noise-induced stabilization of planar flows i. Electron. J. Probab. 20, 1–43 (2015)

    MathSciNet  Google Scholar 

  22. Herzog, D.P., Mattingly, J.C.: A practical criterion for positivity of transition densities. Nonlinearity 28(8), 2823 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Herzog, D.P., Mattingly, J.C.: Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials. Commun. Pure Appl. Math. 72(10), 2231–2255 (2019)

    Article  MathSciNet  Google Scholar 

  24. Karimi, A., Paul, M. R.: Extensive chaos in the Lorenz-96 model. Chaos Interdiscip. J. Nonlinear Sci. 20(4), 043105 (2010)

    Article  CAS  Google Scholar 

  25. Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics (1984)

  26. Lorenz, E.N.: Predictability: a problem partly solved. Proc. Semin. Predict. (1996)

  27. Lorenz, E.N.: The nature and theory of the general circulation of the atmosphere, Vol. 218, World Meteorological Organization Geneva (1967)

  28. Lorenz, E.N., Emanuel, K.A.: Optimal sites for supplementary weather observations: simulation with a small model. J. Atmos. Sci. 55(3), 399–414 (1998)

    Article  ADS  Google Scholar 

  29. L’vov, V.S., Podivilov, E., Pomyalov, A., Procaccia, I., Vandembroucq, D.: Improved shell model of turbulence. Phys. Rev. E 58(2), 1811 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  30. Majda, A.J.: Introduction to Turbulent Dynamical Systems in Complex Systems. Springer (2016)

  31. Mattingly, J.C., Suidan, T., Vanden-Eijnden, E.: Simple systems with anomalous dissipation and energy cascade. Commun. Math. Phys. 276(1), 189–220 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Maurelli, M.: Non-explosion by Stratonovich noise for odes. Electron. Commun. Probab. 25, 1–10 (2020)

    Article  MathSciNet  Google Scholar 

  33. Meshalkin, L., Sinai, I.G.: Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid. J. Appl. Math. Mech. 25(6), 1700–1705 (1961)

    Article  MathSciNet  Google Scholar 

  34. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25(3), 518–48 (1993)

    Article  MathSciNet  Google Scholar 

  35. Scheutzow, M.: Stabilization and destabilization by noise in the plane. Stoch. Anal. Appl. 11(1), 97–113 (1993)

    Article  MathSciNet  Google Scholar 

  36. Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14(2), 249–275 (1985)

    Article  MathSciNet  Google Scholar 

  37. Villani, C.: Hypocoercivity. American Mathematical Society (2009)

  38. Williamson, B.: On sdes with partial damping inspired by the Navier–Stokes equations. Ph.D. Thesis, Duke University (2019). https://hdl.handle.net/10161/187732019

  39. Yamada, M., Ohkitani, K.: Lyapunov spectrum of a chaotic model of three-dimensional turbulence. J. Phys. Soc. Jpn. 56(12), 4210–4213 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Liss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.B. was supported by NSF CAREER Grant DMS-1552826 and NSF Award DMS-2108633. K.L was supported by NSF Award No. DMS-2038056 and DMS-1552826.

A A basic energy estimate

A A basic energy estimate

The following lemma quantifies how \(B(x,x) \cdot x = 0\) and the additive nature of the noise imply that the energy level of a trajectory can only change a small amount in a short time.

Lemma A.1

Fix \(\epsilon \in (0,1)\). There exist \(K_*(\epsilon )\ge 1\), \(\tau _*(\epsilon ) \le 1\), and \(C > 0\) (which does not depend on \(\epsilon \)) such that for \(0 \le \tau \le \tau _*\) and any \(x_0 \in {\mathbb {R}}^n\) with \(|x_0| = K \ge K_*\) there holds

$$\begin{aligned} {\textbf{P}}\left( \sup _{0\le t \le \tau } \left| |x_{t}|^2 - K^2\right| \ge \epsilon K^2 \right) \le \frac{C\tau }{\epsilon ^2 K^2}. \end{aligned}$$
(A.1)

Proof

It suffices to show

$$\begin{aligned} {\textbf{P}}\left( \sup _{0 \le t \le \tau } |x_t|^2 \ge (1+\epsilon /2)|x_0|^2 + R^2 \right) \le C \frac{\tau |x_0|^2}{R^4} \end{aligned}$$
(A.2)

and

$$\begin{aligned} {\textbf{P}}\left( \inf _{0 \le t \le \tau }|x_t|^2 \le (1-\epsilon /2)|x_0|^2 - R^2\right) C \frac{\tau |x_0|^2}{R^4} \end{aligned}$$
(A.3)

for some constant C that does not depend on \(\epsilon \). Indeed, the desired result follows immediately by taking \(R = \sqrt{\epsilon /2}|x_0|\) in (A.2) and (A.3).

We begin with the proof of (A.2). By Itô’s formula and \(B(x,x)\cdot x = 0\), we have

$$\begin{aligned} |x_t|^2- |x_0|^2 = 2\int _0^t x_s \cdot \sigma dW_s - 2\int _0^t Ax_s \cdot x_s ds + t \sum _{i,j=1}^n |\sigma _{ij}|^2. \end{aligned}$$
(A.4)

Thus,

$$\begin{aligned} {\textbf{E}}|x_t|^2 \le |x_0|^2 + C_\sigma t, \end{aligned}$$
(A.5)

where we have set \(C_\sigma = \sum _{i,j=1}^n |\sigma _{ij}|^2\). Using the martingale inequality followed by Itô isometry and (A.5) in (A.4) gives

$$\begin{aligned}&{\textbf{P}}\left( \sup _{0 \le t \le \tau } |x_t|^2 - |x_0|^2 - C_\sigma t \ge R^2 \right) \le {\textbf{P}}\left( 2\sup _{0 \le t \le \tau }\left| \int _0^t x_s \cdot \sigma dW_s \right| \ge R^2 \right) \nonumber \\&\qquad \le \frac{4}{R^4}{\textbf{E}}\left| \int _0^\tau x_s \cdot \sigma dW_s\right| ^2 \le \frac{C}{R^4} \int _0^\tau {\textbf{E}}|x_s|^2 ds \le C \frac{\tau |x_0|^2}{R^4}, \end{aligned}$$
(A.6)

where in the last inequality we assume that \(K_*\) is sufficiently large. The bound (A.2) then follows provided \(K_* \ge \sqrt{2C_\sigma /\epsilon }\).

Now we turn to the proof of (A.3). Let \({\tilde{x}}_t = e^{\lambda _A t}x_t\), where \(\lambda _A > 0\) is the largest eigenvalue of A. Then,

$$\begin{aligned} d {\tilde{x}}_t = \lambda _A {\tilde{x}}_t dt + e^{\lambda _A t}B(x_t,x_t)dt - A{\tilde{x}}_t dt + e^{\lambda _A t}\sigma dW_t. \end{aligned}$$
(A.7)

Since \({\tilde{x}}_t \cdot e^{\lambda _A t} B(x_t,x_t) = e^{2\lambda _A t} B(x_t,x_t) \cdot x_t = 0\), another application of Itô’s lemma gives

$$\begin{aligned} d|{\tilde{x}}_t|^2 = 2\lambda _A |\tilde{x_t}|^2 dt - 2 A{\tilde{x}}_t \cdot {\tilde{x}}_t dt + 2 e^{\lambda _A t} {\tilde{x}}_t \cdot \sigma dW_t + C_\sigma e^{2\lambda _A t} dt. \end{aligned}$$
(A.8)

Using \(\lambda _A |{\tilde{x}}_t|^2 \ge A{\tilde{x}}_t \cdot {\tilde{x}}_t\), (A.8) implies

$$\begin{aligned} |{\tilde{x}}_t|^2 \ge |x_0|^2 - 2 \left| \int _0^t e^{\lambda _A s}{\tilde{x}}_s \cdot \sigma dW_s\right| , \end{aligned}$$
(A.9)

and hence for \(0\le t \le \tau \) there holds

$$\begin{aligned} |x_t|^2 \ge e^{-2 \lambda _A \tau }|x_0|^2 - 2\left| \int _0^t e^{2 \lambda _A s}x_s \cdot \sigma dW_s\right| . \end{aligned}$$
(A.10)

Proceeding as in the proof of (A.6) we obtain

$$\begin{aligned} {\textbf{P}}\left( \inf _{0\le t \le \tau } |x_t|^2 \le e^{-2\lambda _A \tau }|x_0|^2 - R^2\right) \le \frac{C}{R^4}\int _0^\tau {\textbf{E}}|x_s|^2 ds \le C \frac{\tau |x_0|^2}{R^4}. \end{aligned}$$
(A.11)

The desired bound follows provided that \(\tau _*\) is small enough so that \(e^{-2\lambda _A \tau _*} \ge 1-\epsilon /2\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedrossian, J., Liss, K. Stationary measures for stochastic differential equations with degenerate damping. Probab. Theory Relat. Fields (2024). https://doi.org/10.1007/s00440-024-01265-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00440-024-01265-5

Mathematics Subject Classification

Navigation