Skip to main content
Log in

Single-cell capacitance analysis of NIH/3T3 cells using an impedance biosensor

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Biosensors have emerged as promising tools for the analysis of single-cell growth. This study focuses on the fabrication of an impedance biosensor to monitor the growth of NIH/3T3 cells by measuring changes in their capacitance over time. The results showed an increase in capacitance corresponding to the growth of the cells. However, it was observed that the capacitance behaved differently in the early (0–2.33 h) and late (2.33–48 h) stages of cell growth. In the early stage, the cells in the medium were still in a sinking state, whereas in the late stage, most of the cells were in contact with the sensor surface, undergoing growth and division. As a result, the late-stage capacitance was higher than the early stage capacitance. The average capacitance values of a single cell were recorded at different frequencies and showed the same phenomenon at all frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.A. Polshettiwar, C.D. Deshmukh, A.M. Baheti, M.S. Wani, E. Bompilwar, D. Jambhekar, S. Choudhari, A. Tagalpallewar, Int. J. Pharm. Investig. 11, 131 (2021)

    Article  Google Scholar 

  2. N. Gupta, V. Renugopalakrishnan, D. Liepmann, R. Paulmurugan, B.D. Malhotra, Biosens. Bioelectron. 141, 1 (2019). https://doi.org/10.1016/j.bios.2019.111435

    Article  Google Scholar 

  3. I. Park, Y. Hong, H. Jun, E. Cho, S. Cho, Biochip J. 12, 18 (2018). https://doi.org/10.1007/s13206-017-2103-1d

    Article  Google Scholar 

  4. C. Xiao, B. Lachance, G. Sunahara, G. Luong, H.T. John, Anal. Chem. 74, 1333 (2002). https://doi.org/10.1021/ac011104a

    Article  Google Scholar 

  5. I. Giaever, C.R. Keese, Proc. Natl. Acad. Sci. U.S.A. 81, 3761 (1984). https://doi.org/10.1073/pnas.81.12.3761

    Article  ADS  Google Scholar 

  6. I. Giaever, C.R. Keese, Proc. Natl. Acad. Sci. U.S.A. 88, 7896 (1991). https://doi.org/10.1073/pnas.88.17.7896

    Article  ADS  Google Scholar 

  7. S. Ramasamy, D. Bennet, S. Kim, Int. J. Nanomed. 9, 5789 (2014). https://doi.org/10.2147/IJN.S71128

    Article  Google Scholar 

  8. M.A. Nahid, C.E. Campbell, K.S.K. Fong, J.C. Barnhill, M.A. Washington, J. Microbiol. Methods 169, 105833 (2020). https://doi.org/10.1016/j.mimet.2020.105833

    Article  Google Scholar 

  9. C. Honrado, P. Bisegna, N.S. Swami, F. Caselli, Lap Chip. 21, 22 (2021). https://doi.org/10.1039/D0LC00840K

    Article  Google Scholar 

  10. A. Schulte, W. Schuhmann, Chem. Int. Ed. 46, 8760 (2007). https://doi.org/10.1002/anie.200604851

    Article  Google Scholar 

  11. Z. Zhang, X. Huang, K. Liu, T. Lan, Z. Wang, Z. Zhu, Biosensors 11, 470 (2021). https://doi.org/10.3390/bios11110470

    Article  Google Scholar 

  12. L.L. Sohn, O.A. Saleh, G.R. Facer, A.J. Beavis, R.S. Allan, D.A. Notterman, Proc. Natl. Acad. Sci. U.S.A. 97, 10687 (2000). https://doi.org/10.1073/pnas.200361297

    Article  ADS  Google Scholar 

  13. Y. Zheng, E. Shojaei-Baghini, C. Wang, Y. Sun, in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), p. 1105 (2013). https://doi.org/10.1109/MEMSYS.2013.6474443

  14. S. Cho, S. Kim, T. Kang, H. Kim, K. Kim, Y. Hwang, Sens. Actuators B Chem. 321, 1 (2020). https://doi.org/10.1016/j.snb.2020.128512

    Article  Google Scholar 

  15. T. Yoo, K. Lim, M.T. Sultan, J.S. Lee, J. Park, H.W. Ju, C. Park, M. Jang, Sens. Actuators B Chem. 291, 17 (2019). https://doi.org/10.1016/j.snb.2019.03.145

    Article  Google Scholar 

  16. J. Hong, K. Kandasamy, M. Marimuthu, C. Choi, S. Kim, Analyst 136, 237 (2011). https://doi.org/10.1039/C0AN00560F

    Article  ADS  Google Scholar 

  17. E. Sabri, S. Lasquellec, C. Brosseau, Appl. Phys. Lett. 117, 043701 (2020). https://doi.org/10.1063/5.0015967

    Article  ADS  Google Scholar 

  18. H.R. Siddiquei, A.N. Nordin, M.I. Ibrahimy, M.A. Arifin, N.H. Sulong, M. Mel, I. Voiculescu, International Conference on Computer and Communication Engineering (ICCCE 2010), p. 1 (2010). https://doi.org/10.1109/ICCCE.2010.5556772

  19. J.L. Jainchill, S.A. Aaronson, G.J. Todaro, J. Virol. 4, 549 (1969). https://doi.org/10.1128/jvi.4.5.549-553.1969

    Article  Google Scholar 

  20. A.M. Rahimi, M. Cai, S. Hoyer-Fender, Cells 11, 2677 (2022). https://doi.org/10.3390/cells11172677

    Article  Google Scholar 

  21. R. Aviner, Comput. Struct. Biotechnol. J. 18, 1074 (2020). https://doi.org/10.1016/j.csbj.2020.04.014

    Article  Google Scholar 

  22. G.A. Brar, J.S. Weissman, Nat. Rev. Mol. Cell Biol. 16, 651 (2015). https://doi.org/10.1038/nrm4069

    Article  Google Scholar 

  23. C.J. Goodwin, S.J. Holt, S. Downes, N.J. Marshall, J. Immunol. Methods 179, 95 (1995). https://doi.org/10.1016/0022-1759(94)00277-4

    Article  Google Scholar 

  24. S. Kamiloglu, G. Sari, T. Ozdal, E. Capanoglu, Food Front. 1, 332 (2020). https://doi.org/10.1002/fft2.44

    Article  Google Scholar 

  25. Y. Okada, E. Maeno, T. Shimizu, K. Manabe, S. Mori, T. Nabekura, Pflügers Arch. Eur. J. Physiol. 448, 287 (2004). https://doi.org/10.1007/s00424-004-1276-3

    Article  Google Scholar 

  26. N.S. Mazlan, M.M. Ramli, M.M.A.B. Abdullah, D.S.C. Halin, S.S.M. Isa, L.F.A. Talip, N.S. Danial, S.A.Z. Murad. in AIP Conference Proceedings, 26 September 2017, 020276 (2017). https://doi.org/10.1063/1.5002470

  27. G. Ivar, C.R. Keese, Nature 336, 591 (1993). https://doi.org/10.1038/366591a0

    Article  Google Scholar 

  28. G. Lee, J. Jeong, Y. Kim, D. Kang, S. Shin, J. Lee, S.H. Jeon, M. Jang, Micromachines 12, 1 (2021). https://doi.org/10.3390/mi12101248

    Article  Google Scholar 

  29. L.D. Robilliard, D.T. Kho, R.H. Johnson, A. Anchan, S.J. O’Carroll, E.S. Graham, Biosensors 8, 1 (2018). https://doi.org/10.3390/bios8030064

    Article  Google Scholar 

  30. L.Y. Zhang, C.B.M. du Puch, C. Dalmay, A. Lacroix, A. Landoulsi, J. Leroy, C. Mélin, F. Lalloué, S. Battu, C. Lautrette, S. Giraud, A. Bessaudou, P. Blondy, M.O. Jauberteau, A. Pothier, Sens. Actuators A Phys. 216, 405 (2014). https://doi.org/10.1016/j.sna.2014.03.022

    Article  Google Scholar 

  31. L. Rosenberg, M. Hammick, S. Sladen, T. Wang. J. Wu, Y. Sun, in 42nd Annual Northeast Bioengineering Conference, p. 5 (2016)

Download references

Acknowledgements

This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0023521, HRD Program for Industrial Innovation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moongyu Jang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, D., Kim, Y., Lee, G. et al. Single-cell capacitance analysis of NIH/3T3 cells using an impedance biosensor. J. Korean Phys. Soc. 83, 890–897 (2023). https://doi.org/10.1007/s40042-023-00940-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00940-5

Keywords

Navigation