Skip to main content
Log in

The early development of synchrotron white-beam X-ray topography analysis for crystal investigations at Pohang light source-II

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Given the limitations imposed by the physical properties of silicon semiconductors, various wide-bandgap-based semiconductor materials are being actively developed and utilized. Also, the use of crystalline materials such as diamond has been increasing in recent years. An understanding of crystal quality and the extent of internal defects is becoming increasingly important for the development and application of such crystalline materials. X-ray topography (XRT) nondestructively yields information on crystal surfaces and internal defects. In particular, XRT using synchrotron X-rays quickly provides high-resolution images of defects in single crystals. Here, we confirmed the utility of synchrotron white-beam XRT (SWXRT). We established the technique and used it to evaluate the characteristics of a representative, wide-bandgap-based semiconductor material. The SWXRT installed in the 9D beamline of the Pohang accelerator laboratory has an eight-axis sample stage and three-axis detector motion and thus defects in wafers several inches in size in various XRT measurement modes. The SWXRT device not only accepts analog X-ray film, but also yields large-area panel images and data for high-resolution X-ray cameras. We used high-resolution X-ray film and a digital detector to rapidly acquire and analyze the diffraction image of the SiC substrate, which is a representative single-crystal power semiconductor. We expect the quality and defect information of various monocrystalline materials to increase in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Millan et al., IEEE Trans. Power Electron. 29(5), 2155 (2014)

    Article  ADS  Google Scholar 

  2. S. Ji, Z. Zhang, F. Wang, CES Transact Elect Mach Sys 1(3), 254 (2017)

    Article  Google Scholar 

  3. I. Akasaki, J. Cryst. Growth 195, 248 (1998)

    Article  ADS  Google Scholar 

  4. K. Okamoto et al., Jpn. J. Appl. Phys. 45, 1197 (2006)

    Article  Google Scholar 

  5. S. Nakamura, Jpn. J. Appl. Phys. 30, 1705 (1991)

    Article  ADS  Google Scholar 

  6. J. Isberg et al., Diam. Relat. Mater. 13, 320 (2004)

    Article  ADS  Google Scholar 

  7. M. Schreck et al., MRS Bull. 39, 504 (2014)

    Article  Google Scholar 

  8. M. Schreck et al., J. Appl. Phys. 127, 125102 (2020)

    Article  ADS  Google Scholar 

  9. H. Xue et al., Nanoscale Res. Lett. 13, 290 (2018)

    Article  ADS  Google Scholar 

  10. Y. Wang et al., IEEE Electron Device Lett. 41, 131 (2020)

    Article  ADS  Google Scholar 

  11. H. Sheoran, V. Kumar, R. Singh, A.C.S. Appl, Electron. Mater. 4, 2589 (2022)

    Google Scholar 

  12. Z. Qi et al., Appl. Therm. Eng. 177, 115489 (2020)

    Article  Google Scholar 

  13. Y. Han et al., IEEE Transactions on Components. Pack Manufact TechnoL 4, 983 (2014)

    Article  Google Scholar 

  14. V. Ralchenko et al., Phys. Rev. Applied 16, 014049 (2021)

    Article  ADS  Google Scholar 

  15. C. Yi, D. Michael, Appl. Phys. Lett. 91, 141918 (2007)

    Article  Google Scholar 

  16. Y.-Z. Yao et al., Jpn. J. Appl. Phys. 50, 075502 (2011)

    Article  ADS  Google Scholar 

  17. D. Zhuang, J. Edgar, Mater. Sci. Eng. R. Rep. 48, 1 (2005)

    Article  Google Scholar 

  18. K. Adamczyk, G. Stokkan, M. Di Sabatino, MethodsX 5, 1178 (2018)

    Article  Google Scholar 

  19. J.-I. Chikawa, Y. Asaeda, I. Fujimoto, J. Appl. Phys. 41, 1922 (1970)

    Article  ADS  Google Scholar 

  20. B.R. David, L.G. Gabrielle, X-Ray Topograp. 11, 332 (2004)

    Google Scholar 

  21. Y. Ishikawa et al., J. Electron. Mater. 47, 5007 (2018)

    Article  ADS  Google Scholar 

  22. Y. Liu et al., J. Cryst. Growth 551, 125903 (2020)

    Article  Google Scholar 

  23. Y. Kim, B.G. Cho, T.Y. Koo, J. Korean Phys. Soc. 81, 273 (2022)

    Article  ADS  Google Scholar 

  24. B.G. Cho et al., J. Korean Phys. Soc. 78, 467 (2021)

    Article  ADS  Google Scholar 

  25. J. Lee et al., J. Korean Phys. Soc. 80, 859 (2022)

    Article  ADS  Google Scholar 

  26. J. Kim et al., J. Korean Phys. Soc. 9, 53 (2022)

    Article  Google Scholar 

  27. J. Ko et al., J. Korean Phys. Soc. 77, 363 (2020)

    Article  ADS  Google Scholar 

  28. H. Jang et al., J. Korean Phys. Soc. 80, 175 (2022)

    Article  ADS  Google Scholar 

  29. Z. Jiang et al., J. Korean Phys. Soc. 79, 697 (2021)

    Article  ADS  Google Scholar 

  30. K. Park et al., J. Korean Phys. Soc. 77, 802 (2020)

    Article  ADS  Google Scholar 

  31. S. Kawado et al., J. Synchrotron Rad. 9, 166 (2002)

    Article  Google Scholar 

  32. S. Stoupin et al., AIP Conf. Proc. 1, 1741 (2016)

    Google Scholar 

  33. J. Guo et al., ECS Trans. 86, 75 (2018)

    Article  Google Scholar 

  34. R. Barrett et al., J. Phys. D Appl. Phys. 28, 250 (1995)

    Article  ADS  Google Scholar 

  35. W.M. Vetter, M. Dudley, Phil. Mag. 86, 1209 (2006)

    Article  ADS  Google Scholar 

  36. A. Pogany, D. Gao, S.W. Wilkins, Rev. Sci. Instrum. 68, 2774 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Jin-A Kim of Pohang Accelerator Laboratory and Mr. Hyun Wook Park of WIZsystem for conducting the experiments and sharing experience in SWXRT. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2021R1C1C1010187 and No. 2021R1F1A1063106) and experiments at PLS-II 9D beamline were supported in part by MSIT and POSTECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hyun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, H.J., Ahn, K., Lim, JH. et al. The early development of synchrotron white-beam X-ray topography analysis for crystal investigations at Pohang light source-II. J. Korean Phys. Soc. 82, 985–991 (2023). https://doi.org/10.1007/s40042-023-00740-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00740-x

Keywords

Navigation