Skip to main content
Log in

Study of particle correlations in heavy-ion collisions at the LHC

  • Review - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Particle correlations at high energies are used to explore a local space-time emission region. In relativistic heavy-ion physics, the Quark–Gluon Plasma (QGP) as an emitting source can be investigated using the method of particle correlations. Heavy-ion experiments at LHC were completed its programme from 2009 to 2018 and are entered its new data taking with experimental set-up upgrades starting in 2022. This document highlights the results analysed with the method of particle correlations at LHC and discusses the current understanding of the properties of the QCD matter achieved by LHC at the highest centre-of-mass energy ever.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E895 Collaboration, M. A. Lisa et al.,Bombarding energy dependence of pi-minus interferometry at the Brookhaven AGS, Phys. Rev. Lett. 84 2798–2802 (2000)

  2. NA49 Collaboration, S. V. Afanasiev et al.,Energy dependence of pion and kaon production in central Pb + Pb collisions, Phys. Rev. C 66, 054902 (2002). arXiv:nucl-ex/0205002

  3. NA49 Collaboration, C. Alt et al., Bose–Einstein correlations of pi–pi-pairs in central Pb+Pb collisions at A-20, A-30, A-40, A-80, and A-158 GeV, Phys. Rev. C 77, 064908 (2008). arXiv:0709.4507 [nucl-ex]

  4. CERES Collaboration, D. Adamová et al.,Beam energy and centrality dependence of two pion Bose–Einstein correlations at SPS energies, Nucl. Phys. A 714, 124–144 (2003). arXiv:nucl-ex/0207005

  5. STAR Collaboration, B.I. Abelev et al., Systematic Measurements of Identified Particle Spectra in \(p p, d^+\) Au and Au + Au Collisions from STAR. Phys. Rev. C 79, 034909 (2009). arXiv:0808.2041 [nucl-ex]

  6. STAR Collaboration, B.I. Abelev et al., Pion Interferometry in Au+Au and Cu+Cu Collisions at RHIC. Phys. Rev. C 80, 024905 (2009). arXiv:0903.1296 [nucl-ex]

  7. PHOBOS Collaboration, B. B. Back et al.,Transverse momentum and rapidity dependence of HBT correlations in Au + Au collisions at s(NN)**(1/2) = 62.4-GeV and 200-GeV, Phys. Rev. C 73, 031901 (2006). arXiv:nucl-ex/0409001

  8. PHOBOS Collaboration, B. B. Back et al., Charged-particle pseudorapidity distributions in Au+Au collisions at \(s(NN) ^{1/2}\) = 62.4-GeV, Phys. Rev. C 74, 021901 (2006). arXiv:nucl-ex/0509034

  9. B.B. Back et al., The significance of the fragmentation region in ultrarelativistic heavy ion collisions. Phys. Rev. Lett. 91, 052303 (2003). arXiv:nucl-ex/0210015

    Article  ADS  Google Scholar 

  10. ALICE Collaboration, K. Aamodt et al.,Two-pion Bose–Einstein correlations in central Pb-Pb collisions at \(\sqrt{{s}_{NN}} =\) 2.76 TeV, Phys. Lett. B 696, 328–337 (2011). arXiv:1012.4035 [nucl-ex]

  11. ALICE Collaboration, J. Adam et al.,Centrality dependence of pion freeze-out radii in Pb-Pb collisions at \(\sqrt{s}_{NN}=\) 2.76 TeV, Phys. Rev. C 93(2), 024905 (2016). arXiv:1507.06842 [nucl-ex]

  12. M. A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Femtoscopy in relativistic heavy ion collisions, Ann. Rev. Nucl. Part. Sci. 55 357–402(2005). arXiv:nucl-ex/0505014

  13. R. H. Brown , R. Twiss,Lxxiv. a new type of interferometer for use in radio astronomy, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(366), 663–682 (1954). https://doi.org/10.1080/14786440708520475

  14. R. Hanbury, Brown, R. Q. Twiss, A Test of a new type of stellar interferometer on Sirius, Nature 178, 1046–1048 (1956)

  15. A.N. Makhlin, Y.M. Sinyukov, Hydrodynamics of hadron matter under pion interferometric microscope. Z. Phys. C 39, 69 (1988)

    Article  ADS  Google Scholar 

  16. U. A. Wiedemann, P. Scotto, U. W. Heinz, Transverse momentum dependence of Hanbury-Brown-Twiss correlation radii, Phys. Rev. C 53, 918–931 (1996). arXiv:nucl-th/9508040

  17. BRAHMS Collaboration, I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment, Nucl. Phys. A 757, 1–27 (2005). arXiv:nucl-ex/0410020

  18. PHOBOS Collaboration, B. B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757, 28–101 (2005). arXiv:nucl-ex/0410022

  19. STAR Collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). arXiv:nucl-ex/0501009

  20. PHENIX Collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757, 184–283 (2005). arXiv:nucl-ex/0410003

  21. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). arXiv:hep-th/0405231

    Article  ADS  Google Scholar 

  22. P. B. Arnold, G. D. Moore, L. G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log, JHEP 05, 051 (2003). arXiv:hep-ph/0302165

  23. P.B. Arnold, C. Dogan, G.D. Moore, The Bulk viscosity of high-temperature QCD. Phys. Rev. D 74, 085021 (2006). arXiv:hep-ph/0608012

    Article  ADS  Google Scholar 

  24. H.B. Meyer, A calculation of the shear viscosity in SU(3) gluodynamics. Phys. Rev. D 76, 101701 (2007). arXiv:0704.1801 [hep-lat]

    Article  ADS  Google Scholar 

  25. G. S. Denicol, T. Kodama, T. Koide, P. Mota, Effect of bulk viscosity on Elliptic Flow near QCD phase transition, Phys. Rev. C 064901 (2009). arXiv:0903.3595 [hep-ph]

  26. R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha, C. Ratti, Dynamical versus equilibrium properties of the QCD phase transition: a holographic perspective. Phys. Rev. D 96(1), 014032 (2017). arXiv:1704.05558 [hep-ph]

    Article  ADS  Google Scholar 

  27. R. Stock, ed., Relativistic Heavy Ion Physics, vol. 23 of Landolt-Boernstein—Group I Elementary Particles, Nuclei and Atoms. Springer (2010)

  28. FOPI Collaboration, A. Andronic et al., Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state. Phys. Lett. B 612, 173–180 (2005). arXiv:nucl-ex/0411024

  29. ALICE Collaboration, K. Aamodt et al., Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 252302 (2010). arXiv:1011.3914 [nucl-ex]

  30. ALICE Collaboration, J. Adam et al., Anisotropic flow of charged particles in Pb-Pb collisions at \(\sqrt{s_{\rm NN}}=5.02\) TeV, Phys. Rev. Lett. 116(13), 132302 (2016). arXiv:1602.01119 [nucl-ex]

  31. H. Niemi, K. J. Eskola, R. Paatelainen, and K. Tuominen, Predictions for 5.023 TeV Pb + Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 93(1), 014912 (2016). arXiv:1511.04296 [hep-ph]

  32. J. Noronha-Hostler, M. Luzum, J.-Y. Ollitrault, Hydrodynamic predictions for 5.02 TeV Pb-Pb collisions, Phys. Rev. C 93 (3), 034912 (2016). arXiv:1511.06289 [nucl-th]

  33. S. Voloshin, Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions. Z. Phys. C 70, 665–672 (1996). arXiv:hep-ph/9407282

    Article  Google Scholar 

  34. N. Borghini, P.M. Dinh, J.-Y. Ollitrault, Flow analysis from multiparticle azimuthal correlations. Phys. Rev. C 64, 054901 (2001). arXiv:nucl-th/0105040

    Article  ADS  Google Scholar 

  35. ATLAS Collaboration, G. Aad et al., Measurement of the azimuthal anisotropy for charged particle production in \(\sqrt{s_{NN}}=2.76\) TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86, 014907 (2012). arXiv:1203.3087 [hep-ex]

  36. ALICE Collaboration, K. Aamodt et al., Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at \(\sqrt{s_{NN}}\)=2.76 TeV, Phys. Rev. Lett. 107, 032301 (2011). arXiv:1105.3865 [nucl-ex]

  37. CMS Collaboration, S. Chatrchyan et al., Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon-nucleon center of mass energy of 2.76 TeV, JHEP 07 076, (2011). arXiv:1105.2438 [nucl-ex]

  38. CMS Collaboration, A. M. Sirunyan et al., Measurement of prompt \(D^0\) meson azimuthal anisotropy in Pb-Pb collisions at \(\sqrt{{s}_{NN}}\) = 5.02 TeV, Phys. Rev. Lett. 120(20), 202301 (2018). arXiv:1708.03497 [nucl-ex]

  39. CMS Collaboration, A. M. Sirunyan et al., Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at \(\sqrt{s_{\rm NN}} =\) 8.16 TeV, Phys. Rev. Lett. 121(8), 082301 (2018). arXiv:1804.09767 [hep-ex]

  40. ALICE Collaboration, B. B. Abelev et al., Elliptic flow of identified hadrons in Pb-Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV, JHEP 06, 190 (2015). arXiv:1405.4632 [nucl-ex]

  41. ALICE Collaboration, S. Acharya et al., Anisotropic flow of identified particles in Pb-Pb collisions at \({\sqrt{s}}_{\rm NN}=5.02\) TeV, JHEP 09, 006 (2018). arXiv:1805.04390 [nucl-ex]

  42. ALICE Collaboration, S. Acharya et al., Non-linear flow modes of identified particles in Pb-Pb collisions at \(\sqrt{s_{\rm NN}}\) = 5.02 TeV, JHEP 06, 147 (2020). arXiv:1912.00740 [nucl-ex]

  43. ALICE Collaboration, J. Adam et al.,Higher harmonic flow coefficients of identified hadrons in Pb-Pb collisions at \(\sqrt{s_{\rm NN}}\) = 2.76 TeV, JHEP 09 164 (2016). arXiv:1606.06057 [nucl-ex]

  44. T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Mass ordering of differential elliptic flow and its violation for phi mesons. Phys. Rev. C 77, 044909 (2008). arXiv:0710.5795 [nucl-th]

    Article  ADS  Google Scholar 

  45. STAR Collaboration, B.I. Abelev et al., Measurements of phi meson production in relativistic heavy-ion collisions at RHIC. Phys. Rev. C 79, 064903 (2009). arXiv:0809.4737 [nucl-ex]

  46. H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions, Phys. Rev. C 87(5), 054901 (2013) arXiv:1212.1008 [nucl-th]

  47. A. Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen, Y. Zhou, Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations. Phys. Rev. C 89(6), 064904 (2014). arXiv:1312.3572 [nucl-ex]

    Article  ADS  Google Scholar 

  48. ATLAS Collaboration, G. Aad et al., Measurement of the correlation between flow harmonics of different order in lead-lead collisions at \(\sqrt{s_{NN}}\)=2.76 TeV with the ATLAS detector, Phys. Rev. C 92(3), 034903 (2015) arXiv:1504.01289 [hep-ex]

  49. J. Qian, U. Heinz, Hydrodynamic flow amplitude correlations in event-by-event fluctuating heavy-ion collisions, Phys. Rev. C 94 (2), 024910 (2016). arXiv:1607.01732 [nucl-th]

  50. L. Yan, J.-Y. Ollitrault, \(\nu _4, \nu _5, \nu _6, \nu _7\): nonlinear hydrodynamic response versus LHC data, Phys. Lett. B 744 82–87 (2015). arXiv:1502.02502 [nucl-th]

  51. G.-Y. Qin, H. Petersen, S.A. Bass, B. Muller, Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions. Phys. Rev. C 82, 064903 (2010). arXiv:1009.1847 [nucl-th]

    Article  ADS  Google Scholar 

  52. Z. Qiu, U.W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs. Phys. Rev. C 84, 024911 (2011). arXiv:1104.0650 [nucl-th]

    Article  ADS  Google Scholar 

  53. P.F. Kolb, v(4): a small, but sensitive observable for heavy ion collisions. Phys. Rev. C 68, 031902 (2003). arXiv:nucl-th/0306081

    Article  ADS  Google Scholar 

  54. C. Mordasini, A. Bilandzic, D. Karakoç, S.F. Taghavi, Higher order symmetric cumulants. Phys. Rev. C 102(2), 024907 (2020). arXiv:1901.06968 [nucl-ex]

    Article  ADS  Google Scholar 

  55. ALICE Collaboration, J. Adam et al., Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions at \(\sqrt{s_{_{\rm NN}}}=2.76\) TeV, Phys. Rev. Lett. 117 182301, (2016). arXiv:1604.07663 [nucl-ex]

  56. ALICE Collaboration, S. Acharya et al., Systematic studies of correlations between different order flow harmonics in Pb-Pb collisions at \(\sqrt{s_{\rm NN}}\) = 2.76 TeV, Phys. Rev. C 97(2), 024906 (2018). arXiv:1709.01127 [nucl-ex]

  57. J.E. Bernhard, J.S. Moreland, S.A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma. Nat. Phys. 15(11), 1113–1117 (2019)

    Article  Google Scholar 

  58. H. Niemi, K.J. Eskola, R. Paatelainen, Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions. Phys. Rev. C 93(2), 024907 (2016). arXiv:1505.02677 [hep-ph]

    Article  ADS  Google Scholar 

  59. Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). arXiv:nucl-th/0411110

    Article  ADS  Google Scholar 

  60. S. Jeon, S. Pratt, Balance functions, correlations, charge fluctuations and interferometry. Phys. Rev. C 65, 044902 (2002). arXiv:hep-ph/0110043

    Article  ADS  Google Scholar 

  61. S. A. Bass, P. Danielewicz, and S. Pratt, Clocking hadronization in relativistic heavy ion collisions with balance functions, Phys. Rev. Lett. 85, 2689–2692 (2000). arXiv:nucl-th/0005044

  62. P. Bozek, The Balance functions in azimuthal angle is a measure of the transverse flow, Phys. Lett. B 609 247–251 (2005). arXiv:nucl-th/0412076

  63. STAR Collaboration, J. Adams et al., Narrowing of the balance function with centrality in au + au collisions at (S(NN))**1/2 = 130-GeV. Phys. Rev. Lett. 90, 172301 (2003). arXiv:nucl-ex/0301014

  64. NA49 Collaboration, C. Alt et al., System size and centrality dependence of the balance function in A + A collisions at s(NN)**(1/2) = 17.2-GeV, Phys. Rev. C 71, 034903 (2005). arXiv:hep-ex/0409031

  65. NA49 Collaboration, C. Alt et al., Rapidity and energy dependence of the electric charge correlations in A + A collisions at the SPS energies, Phys. Rev. C 76 024914 (2007). arXiv:0705.1122 [nucl-ex]

  66. STAR Collaboration, M.M. Aggarwal et al., Balance Functions from Au\(+\)Au, \(d+\)Au, and \(p+p\) Collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Phys. Rev. C 82, 024905 (2010). arXiv:1005.2307 [nucl-ex]

  67. ALICE Collaboration, B. Abelev et al., Charge correlations using the balance function in Pb-Pb collisions at \(\sqrt{s_{NN}}\) = 2.76 TeV, Phys. Lett. B 723 267–279 (2013). arXiv:1301.3756 [nucl-ex]

  68. ALICE Collaboration, J. Adam et al., Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p–Pb, and Pb–Pb collisions at the LHC, Eur. Phys. J. C 76 (2), 86 (2016). arXiv:1509.07255 [nucl-ex]

  69. ALICE Collaboration, S. Acharya et al., Global polarization of \(\Lambda \bar{\Lambda }\) hyperons in Pb-Pb collisions at \(\sqrt{s_{NN}}\) = 2.76 and 5.02 TeV, Phys. Rev. C 101(4) 044611 (2020). arXiv:1909.01281 [nucl-ex]

  70. STAR Collaboration, L. Adamczyk et al., Global \(\Lambda\) hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature 548, 62–65 (2017). arXiv:1701.06657 [nucl-ex]

  71. STAR Collaboration, J. Adam et al., Global polarization of \(\Lambda\) hyperons in Au+Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV. Phys. Rev. C 98, 014910 (2018). arXiv:1805.04400 [nucl-ex]

  72. Z.-T. Liang, X.-N. Wang, Globally polarized quark-gluon plasma in non-central A+A collisions. Phys. Rev. Lett. 94, 102301 (2005). arXiv:nucl-th/0410079. [Erratum: Phys. Rev. Lett. 96, 039901 (2006)]

    Article  ADS  Google Scholar 

  73. S. A. Voloshin, Polarized secondary particles in unpolarized high energy hadron-hadron collisions?. arXiv:nucl-th/0410089

  74. Z.-T. Liang, X.-N. Wang, Spin alignment of vector mesons in non-central A+A collisions, Phys. Lett. B 629 20–26 (2005). arXiv:nucl-th/0411101

  75. J.-H. Gao, S.-W. Chen, W.-T. Deng, Z.-T. Liang, Q. Wang, X.-N. Wang, Global quark polarization in non-central A+A collisions. Phys. Rev. C 77, 044902 (2008). arXiv:0710.2943 [nucl-th]

    Article  ADS  Google Scholar 

  76. F. Becattini, G. Inghirami, V. Rolando, A. Beraudo, L. Del Zanna, A. De Pace, M. Nardi, G. Pagliara, and V. Chandra, A study of vorticity formation in high energy nuclear collisions, Eur. Phys. J. C 75(9), 406 (2015). arXiv:1501.04468 [nucl-th]. [Erratum: Eur.Phys.J.C 78, 354 (2018)]

  77. S.A. Voloshin, Vorticity and particle polarization in heavy ion collisions (experimental perspective). EPJ Web Conf. 171, 07002 (2018). arXiv:1710.08934 [nucl-ex]

    Article  Google Scholar 

  78. ATLAS Collaboration, G. Aad et al., Observation of Long-Range Elliptic Azimuthal Anisotropies in \(\sqrt{s}=\)13 and 2.76 TeV \(pp\) Collisions with the ATLAS Detector, Phys. Rev. Lett. 116(17), 172301 (2016). arXiv:1509.04776 [hep-ex]

  79. ALICE Collaboration, B. Abelev et al., Long-range angular correlations on the near and away side in \(p\)-Pb collisions at \(\sqrt{s_{NN}}=5.02\) TeV, Phys. Lett. B 719 29–41 (2013). arXiv:1212.2001 [nucl-ex]

  80. CMS Collaboration, V. Khachatryan et al., Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. JHEP 09, 091 (2010). arXiv:1009.4122 [hep-ex]

  81. ATLAS Collaboration, G. Aad et al., Measurement of long-range pseudorapidity correlations and azimuthal harmonics in \(\sqrt{s_{NN}}=5.02\) TeV proton-lead collisions with the ATLAS detector, Phys. Rev. C 90 (4), 044906 (2014). arXiv:1409.1792 [hep-ex]

  82. ALICE Collaboration, J. Adam et al., Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions, Nature Phys. 13 535–539 (2017). arXiv:1606.07424 [nucl-ex]

  83. CMS Collaboration, S. Chatrchyan et al., Multiplicity and Transverse Momentum Dependence of Two- and Four-Particle Correlations in pPb and PbPb Collisions. Phys. Lett. B 724, 213–240 (2013). arXiv:1305.0609 [nucl-ex]

  84. CMS Collaboration, V. Khachatryan et al., Measurement of long-range near-side two-particle angular correlations in pp collisions at \(\sqrt{s} =\)13 TeV. Phys. Rev. Lett. 116(17), 172302 (2016). arXiv:1510.03068 [nucl-ex]

  85. ALICE Collaboration, S. Acharya et al., Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at \(\varvec {\sqrt{{\mathit{s}}}}=13\) TeV, JHEP 05 290 (2021). arXiv:2101.03110 [nucl-ex]

  86. ATLAS Collaboration, G. Aad et al., Observation of Associated Near-Side and Away-Side Long-Range Correlations in \(\sqrt{s_{NN}}\)=5.02 TeV Proton-Lead Collisions with the ATLAS Detector, Phys. Rev. Lett. 110 (18), 182302 (2013). arXiv:1212.5198 [hep-ex]

  87. CMS Collaboration, S. Chatrchyan et al., Observation of Long-Range Near-Side Angular Correlations in Proton-Lead Collisions at the LHC. Phys. Lett. B 718, 795–814 (2013). arXiv:1210.5482 [nucl-ex]

  88. ALICE Collaboration, S. Acharya et al., Investigations of Anisotropic Flow Using Multiparticle Azimuthal Correlations in pp, p-Pb, Xe-Xe, and Pb-Pb Collisions at the LHC, Phys. Rev. Lett. 123 (14), 142301 (2019). arXiv:1903.01790 [nucl-ex]

  89. ALICE Collaboration, B. B. Abelev et al., Multiparticle azimuthal correlations in p -Pb and Pb-Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 90 (5), 054901 (2014). arXiv:1406.2474 [nucl-ex]

  90. CMS Collaboration, V. Khachatryan et al., Evidence for Collective Multiparticle Correlations in p-Pb Collisions. Phys. Rev. Lett. 115(1), 012301 (2015). arXiv:1502.05382 [nucl-ex]

  91. CMS Collaboration, V. Khachatryan et al., Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 765, 193–220 (2017). arXiv:1606.06198 [nucl-ex]

  92. ATLAS Collaboration, M. Aaboud et al., Measurement of multi-particle azimuthal correlations in \(pp\), \(p+\)Pb and low-multiplicity Pb\(+\)Pb collisions with the ATLAS detector, Eur. Phys. J. C 77 (6), 428 (2017). arXiv:1705.04176 [hep-ex]

  93. ATLAS Collaboration, M. Aaboud et al., Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in \(pp\) and \(p + Pb\) collisions with the ATLAS detector at the CERN Large Hadron Collider, Phys. Rev. C 97 (2), 024904 (2018). arXiv:1708.03559 [hep-ex]

  94. P. Bozek ,W. Broniowski, Correlations from hydrodynamic flow in p-Pb collisions, Phys. Lett. B718 1557–1561 (2013). arXiv:1211.0845 [nucl-th]

  95. K. Dusling ,R. Venugopalan, Explanation of systematics of CMS p+Pb high multiplicity di-hadron data at \(\sqrt{s}_{\rm NN} = 5.02\) TeV, Phys. Rev. D 87 (5), 054014 (2013). arXiv:1211.3701 [hep-ph]

  96. A. Dumitru, T. Lappi, L. McLerran, Are the angular correlations in \(pA\) collisions due to a Glasmion or Bose condensation? Nucl. Phys. A 922, 140–149 (2014). arXiv:1310.7136 [hep-ph]

    Article  ADS  Google Scholar 

  97. ALICE Collaboration, S. Acharya et al., Search for a common baryon source in high-multiplicity pp collisions at the LHC, Phys. Lett. B 811 135849 (2020). arXiv:2004.08018 [nucl-ex]

  98. ALICE Collaboration, A. Collaboration et al., Unveiling the strong interaction among hadrons at the LHC, Nature 588 232–238 (2020). arXiv:2005.11495 [nucl-ex]. [Erratum: Nature 590, E13 (2021)]

  99. ALICE Collaboration, S. Acharya et al., First Observation of an Attractive Interaction between a Proton and a Cascade Baryon, Phys. Rev. Lett. 123 (11), 112002 (2019). arXiv:1904.12198 [nucl-ex]

  100. HAL QCD Collaboration, T. Iritani et al., \(N\Omega\) dibaryon from lattice QCD near the physical point, Phys. Lett. B 792 284–289 (2019). arXiv:1810.03416 [hep-lat]

  101. HAL QCD Collaboration, K. Sasaki et al., \(\Lambda \Lambda\) and N\(\Xi\) interactions from lattice QCD near the physical point, Nucl. Phys. A 998 121737 (2020) arXiv:1912.08630 [hep-lat]

  102. LHCb Collaboration, R. Aaij et al., Observation of an exotic narrow doubly charmed tetraquark, Nat. Phys. 18(7), 751–754 (2022) arXiv:2109.01038 [hep-ex]

  103. LHCb Collaboration, R. Aaij et al., Study of the doubly charmed tetraquark \(T_{cc}^{+}\), Nat. Commun. 13(1), 3351 (2022) arXiv:2109.01056 [hep-ex]

  104. LHCb Collaboration, R. Aaij et al., Observation of \(J/\psi p\) Resonances Consistent with Pentaquark States in \(\Lambda _b^0 \rightarrow J/\psi K^- p\) Decays, Phys. Rev. Lett. 115 072001 (2015) arXiv:1507.03414 [hep-ex]

  105. LHCb Collaboration, R. Aaij et al., Observation of a narrow pentaquark state, \(P_c(4312)^+\), and of two-peak structure of the \(P_c(4450)^+\), Phys. Rev. Lett. 122 (22), 222001,(2019) arXiv:1904.03947 [hep-ex]

  106. CMS Collaboration, A. M. Sirunyan et al., Evidence for X(3872) in Pb-Pb Collisions and Studies of its Prompt Production at \(\sqrt{s_{NN}}\)=5.02 TeV, Phys. Rev. Lett. 128 (3), 032001,(2022) arXiv:2102.13048 [hep-ex]

  107. ALICE Collaboration, S. Acharya et al., First study of the two-body scattering involving charm hadrons, Phys. Rev. D 106 (5), 052010,(2022) arXiv:2201.05352 [nucl-ex]

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2008-00458). We appreciate APCTP for its hospitality during completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beomkyu Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B. Study of particle correlations in heavy-ion collisions at the LHC. J. Korean Phys. Soc. 82, 557–568 (2023). https://doi.org/10.1007/s40042-023-00717-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00717-w

Keywords

Navigation