Skip to main content
Log in

Effect of temperature on elastic, mechanical and thermophysical properties of VNx (0.76 ≤ x ≤ 1.00) epitaxial layers

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The effect of temperature on the elastic, thermophysical and mechanical properties of VNx (0.76 ≤ x ≤ 1.00) epitaxial layers has been investigated using Coulomb and Born–Mayer potentials approach up to second nearest neighbor. The elastic constants and its allied properties (Bulk, Shear, Poisson's ratio and Young’s modulus) are analyzed to provide insights into the mechanical behavior of VNx (0.76 ≤ x ≤ 1.00) transition-metal nitrides using second-order elastic constants (SOECs). SOECs are used to measure the temperature deviation of ultrasonic velocities along the crystal’s z axis. The temperature variation of Debye average velocity and thermal relaxation time are calculated along same orientation. Thermal conductivity has been observed to be the main contributing factor to the temperature-dependent behavior of ultrasonic attenuations with phonon–phonon interaction. Depending on G/B ratios, the nitride groups are attributed to brittle and ductile behavior in the future. Including all epitaxial layers, the estimated melting temperatures are in better agreement with those calculated with B and C11 and have highest strength and highest harness. Transition metal nitrides have unusual chemical and physical properties, which are commonly used in industrial fields that require working at temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.D. Sproul, Surf. Coat. Technol. 86, 170 (1996)

    Article  Google Scholar 

  2. G.M. Matenoglu, L.E. Koutsokeras, Ch.E. Lekka, G. Abadias, C. Kosmidis, G.A. Evangelakis, P. Patsalas, Surf. Coat. Technol. 204, 911 (2009)

    Article  Google Scholar 

  3. N. J. Ashley, E. Robin, and W. Grimes E. Ken, J. McClellan J. Mater Sci.42, 1884 (2007).

  4. C. Sarioglu, Surf. Coat. Technol. 201(3–4), 707 (2006)

    Article  Google Scholar 

  5. M. B. TakeyamaT. Itoi,cK. SatohM. Sakagamiand A. Noya, J. Vacuum. Sci. Technol. B 22, 2542 (2004).

  6. X.P. Qu, M. Zhou, T. Chen, Q. Xie, G.P. Ru, B.Z. Li, Microelectron. Eng. 83, 236 (2006)

    Article  Google Scholar 

  7. Q. Sun, Z.W. Fu, Electro. Chim. Acta. 54, 403 (2008)

    Article  Google Scholar 

  8. X. Chu, S.A. Barnett, M.S. Wong, W.D. Sproul, J. Vacuum Sci. Technol. A 14, 3124 (1996)

    Article  ADS  Google Scholar 

  9. M. Hebbache, Solid State Commun. 113, 427 (2000)

    Article  ADS  Google Scholar 

  10. Z. Ding, S. Zhou, Y. Zhao, Phys. Rev. B 70, 184117 (2004)

    Article  ADS  Google Scholar 

  11. S. Ganeshan, S.L. Shang, Y. Wang, Z.-K. Liu, J. Alloys Compound 498, 191 (2010)

    Article  Google Scholar 

  12. M. B. Kanoun, S. Goumri- Said, and A. H. Reshak, Comput. Mater Sci. 47,491 (2009).

  13. B.D. Fulcher, X.Y. Cui, B. Delley, C. Stampfl, Phys. Rev. B 85, 184106 (2012)

    Article  ADS  Google Scholar 

  14. R. Sanjines, C. Wiemer, P. Hones, F. Levy, J. Appl. Phys. 83, 1396 (1998)

    Article  ADS  Google Scholar 

  15. C. Stampfl, W. Mannstadt, R. Asahi, A.J. Freeman, Phys. Rev. B 63, 155106 (2001)

    Article  ADS  Google Scholar 

  16. S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Thin Solid Films 476, 1 (2005)

    Article  ADS  Google Scholar 

  17. S. Veprek, M. Haussmann, S. Reiprich, L. Shizhi, J. Dian, Surf. Coat. Technol. 86–87, 394 (1996)

    Article  Google Scholar 

  18. N. Hirashita, J.E. Greene, U. Helmersson, J. Birch, J.-E. Sundgren, J. Appl. Phys. 70, 4963 (1991)

    Article  ADS  Google Scholar 

  19. A.B. Mei, H. Kindlund, E. Broitman, L. Hultm, I. Petrovd, J.E. Greene, D.G. Sangiovanni, Acta Mater. 192, 78 (2020)

    Article  ADS  Google Scholar 

  20. K. Brugger, Phys. Rev. 133, A1611 (1964)

    Article  ADS  Google Scholar 

  21. P.B. Ghate, Phys. Rev. 139, A1666 (1965)

    Article  ADS  Google Scholar 

  22. S. Mori, Y. Hiki, J. Phys. Soc. Jpn. 45, 1449 (1975)

    Article  ADS  Google Scholar 

  23. P.K. Yadawa, R.R. Yadav, Multidiscip. Model. Mater. Struct. 5, 59 (2009)

    Google Scholar 

  24. R. Hill, Proc. Phys. Soc., Sec. A 65, 349 (1952).

  25. D. Singh, S. Kaushik, S. Tripathi, V. Bhalla, A.K. Gupta, Arab J. Sci Eng. 39, 485 (2014)

    Article  Google Scholar 

  26. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  27. S. Bhajanker, V. Srivastava, G. Pagare, S.P. Sanyal, J. Phys.: Conf. Ser. 377, 01208037 (2012)

    Google Scholar 

  28. X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011)

    Article  Google Scholar 

  29. M.E. Fine, L.D. Brown, H.L. Marcus, Scripta Metall. 18, 951 (1984)

    Article  Google Scholar 

  30. V. Bhalla, D. Singh, S.K. Jain, International Journal of Computational. Mater. Sci. Eng. 5(3), 1650012 (2016)

    Google Scholar 

  31. W. P. Mason, Academic Press Inc. (1965), p. 237.

  32. W.P. Mason, T.B. Bateman, J. Acoust. Soc. 40, 852 (1966)

    Article  ADS  Google Scholar 

  33. D.E. Gray (ed.), AIP Handbook (Mc Graw Hill Co., Inc., New York, IIIrd edition, 1956), p.4

    Google Scholar 

  34. C. Oligschleger, R.O. Jones, S.M. Reimann, H.R. Schober, Phys. Rev. 53(10), 6165 (1996)

    Article  ADS  Google Scholar 

  35. Q. Zheng, A.B. Mei, M. Tuteja, D.G. Sangiovanni, L. Hultman, I. Petrov, J.E. Greene, D.G. Cahill, Phys. Rev. Mater. 1, 065002 (2017)

    Article  Google Scholar 

  36. M. Landa, V. Novak, P. Sedlak, P. Sittner, Ultrasonics 42, 519 (2004)

    Article  Google Scholar 

  37. A.B. Mei, R.B. Wilson, D. Li, D.G. Cahill, A. Rockett, J. Birch, L. Hultman, J.E. Greene, I. Petrov, J. Appl. Phys. 115, 214908 (2014)

    Article  ADS  Google Scholar 

  38. S.P. Singh, P.K. Yadawa, P.K. Dhawan, A.K. Verma, R.R. Yadav, Cryogenics 100, 105 (2019)

    Article  ADS  Google Scholar 

  39. P.K. Yadawa, J. Theor. Appl. Phys. 10, 203 (2016)

    Article  ADS  Google Scholar 

  40. D. Singh, P.K. Yadawa, S.K. Sahu, Cryogenics 50, 476 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod K. Yadawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S., Prajapati, A.K. & Yadawa, P.K. Effect of temperature on elastic, mechanical and thermophysical properties of VNx (0.76 ≤ x ≤ 1.00) epitaxial layers. J. Korean Phys. Soc. 82, 46–56 (2023). https://doi.org/10.1007/s40042-022-00643-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00643-3

Keywords

Navigation