Skip to main content
Log in

Semi-empirical model to determine pre- and post-neutron fission product yields and neutron multiplicity

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Post-neutron emission fission product mass distributions are calculated by using pre-neutron emission fission product yields (FPYs) and neutron multiplicity. A semi-empirical model is used to calculate the pre-neutron FPY, first. Then the neutron multiplicity for each fission fragment mass is used to convert the pre-neutron FPY to the post-neutron FPY. In doing so, assumptions are made for the probability for a pre-emission fission fragment with a mass number \(A^*\) to decay to a post-emission fragment with a mass number A. The resulting post-neutron FPYs are compared with the data available. The systems where the experimental data of not only the pre- and post-neutron FPY but also neutron multiplicity are available are the thermal neutron-induced fission of \(^{233}\)U, \(^{235}\)U and \(^{239}\)Pu. Thus, we applied the model calculations to these systems and compared the calculation results with those from the GEF and the data from the ENDF and the EXFOR libraries. Both the pre- and post-neutron fission product mass distributions calculated by using the semi-empirical model and the neutron multiplicity reproduce the overall features of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  2. A.J.M. Plompen et al., Eur. Phys. J. A 56, 181 (2020)

    Article  ADS  Google Scholar 

  3. H. Goutte, J.F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, 024316 (2005)

    Article  ADS  Google Scholar 

  4. G. Scamps, C. Simenel, D. Lacroix, Phys. Rev. C 92, 011602 (2015)

    Article  ADS  Google Scholar 

  5. D. Regnier, N. Dubray, N. Schunck, M. Verrière, Phys. Rev. C 93, 054611 (2016)

    Article  ADS  Google Scholar 

  6. J. Zhao, J. Xiang, Z.-P. Li, T. Nikšić, D. Vretenar, S.-G Zhou, Phys. Rev. C 99, 054613 (2019)

  7. A.V. Karpov, P.N. Nadtochy, D.V. Vanin, G.D. Adeev, Phys. Rev. C 63, 054610 (2001)

    Article  ADS  Google Scholar 

  8. T. Asano, T. Wada, M. Ohta, T. Ichikawa, S. Yamaji, H. Nakahara, J. Nucl. Radiochem. Sci. 5, 1 (2004)

    Article  Google Scholar 

  9. J. Randrup, P. Möller, A.J. Sierk, Phys. Rev. C 84, 034613 (2011)

    Article  ADS  Google Scholar 

  10. Y. Aritomo, S. Chiba, Phys. Rev. C 88, 044614 (2013)

    Article  ADS  Google Scholar 

  11. K. Mazurek, C. Schmitt, P.N. Nadtochy, Phys. Rev. C 91, 041603 (2015)

    Article  ADS  Google Scholar 

  12. S. Okumura, T. Kawano, P. Jaffke, P. Talou, S. Chiba, J. Nucl. Sci. Technol. 55, 1009 (2018)

    Article  Google Scholar 

  13. J. Lee, C.-S. Gil, Y.-O. Lee, T.-S. Park, S.W. Hong, Eur. Phys. J. A 54, 173 (2018)

    Article  ADS  Google Scholar 

  14. J. Lee, Y.-O. Lee, T.-S. Park, S.W. Hong, J. Korean Phys. Soc. 77, 1082 (2020)

    Article  ADS  Google Scholar 

  15. D.R. Bidinosti, D.E. Irish, R.H. Tomlinson, Can. J. Chem. 39, 628 (1961)

    Article  Google Scholar 

  16. H. Farrar, R.H. Tomlinson, Nucl. Phys. 34, 367 (1962)

    Article  Google Scholar 

  17. H. Thierens, D. de Frenne, E. Jacobs, A. de Clercq, P. D’Hondt, A.J. Deruytter, Nucl. Instrum. Methods 134, 299 (1976)

    Article  ADS  Google Scholar 

  18. G. Diiorio, B.W. Wehring, Nucl. Instrum. Methods 147, 487 (1977)

    Article  ADS  Google Scholar 

  19. C.K. Mathews, Phys. Rev. C 15, 344 (1977)

    Article  ADS  Google Scholar 

  20. H. Wohlfarth, PhD Thesis, Technische Hochschule Darmstadt (1977)

  21. B.W. Wehring, S. Lee, G. Swift, Light fragment independent yields for thermal neutron fission of U-233, UILU-ENG-80-5312 (University of Illinois, Urbana, 1980)

    Google Scholar 

  22. C. Schmitt et al., Nucl. Phys. A 430, 21 (1984)

    Article  ADS  Google Scholar 

  23. U. Quade et al., Nucl. Phys. A 487, 1 (1988)

    Article  ADS  Google Scholar 

  24. A. Bail, PhD Thesis, University of Bordeaux (2009)

  25. Y.K. Gupta et al., Phys. Rev. C 96, 014608 (2017)

    Article  ADS  Google Scholar 

  26. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

  27. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    Article  ADS  Google Scholar 

  28. P. Fong, Phys. Rev. 102, 434 (1956)

    Article  ADS  Google Scholar 

  29. K.-H. Schmidt, A. Kelić, M.V. Ricciardi, Europhys. Lett. 83, 23001 (2008)

    Article  Google Scholar 

  30. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  31. K. Nishio, M. Nakashima, I. Kimura, Y. Nakagome, J. Nucl. Sci. Technol. (Tokyo) 35, 631 (1998)

    Article  Google Scholar 

  32. J.S. Fraser, J.C.D. Milton, Ann. Rev. Nucl. Sci. 16, 379 (1966)

    Article  ADS  Google Scholar 

  33. K. Nishio, Y. Nakagome, H. Yamamoto, I. Kimura, Nucl. Phys. A 632, 540 (1998)

    Article  ADS  Google Scholar 

  34. A.S. Vorobyev, O.A. Shcherbakov, A.M. Gagarski, G.V. Val’ski, G.A. Petrov, EPJ Web Conf. 8, 03004 (2010)

    Article  Google Scholar 

  35. A. Göök, F.-J. Hambsch, S. Oberstedt, M. Vidali, Phys. Rev. C 98, 044615 (2018)

    Article  ADS  Google Scholar 

  36. A. Al-Adili, D. Tarrío, K. Jansson, V. Rakopoulos, A. Solders, S. Pomp, A. Göök, F.-J. Hambsch, S. Oberstedt, M. Vidali, Phys. Rev. C 102, 064610 (2020)

    Article  ADS  Google Scholar 

  37. K. Nishio, Y. Nakagome, I. Kanno, I. Kimura, J. Nucl. Sci. Technol. (Tokyo) 32, 404 (1995)

    Article  Google Scholar 

  38. C. Tsuchiya, Y. Nakagome, H. Yamana, H. Moriyama, K. Nishio, I. Kanno, K. Shin, I. Kimura, J. Nucl. Sci. Technol. (Tokyo) 37, 941 (2000)

    Article  Google Scholar 

  39. J. Benlliure, A. Grewe, M. de Jong, K.-H. Schmidt, S. Zhdanov, Nucl. Phys. A 628, 458 (1998)

    Article  ADS  Google Scholar 

  40. M.G. Itkis, V.N. Okolovich, A.Y. Rusanov, G.N. Smirenkin, Sov. J. Part. Nucl. 19, 301 (1988)

    Google Scholar 

  41. A.S. Iljinov et al., Nucl. Phys. A 543, 517 (1992)

    Article  ADS  Google Scholar 

  42. T. von Egidy, D. Bucurescu, Phys. Rev. C 72, 044311 (2005)

    Article  ADS  Google Scholar 

  43. P. Schillebeeckx, C. Wagemans, A.J. Deruytter, R. Barthélémy, Nucl. Phys. A 545, 623 (1992)

    Article  ADS  Google Scholar 

  44. V.M. Surin, A.I. Sergachev, N.I. Rezchikov, B.D. Kuzminov, Sov. J. Nucl. Phys. 14, 523 (1972)

    Google Scholar 

  45. P. Geltenbort, F. Gönnenwein, A. Oed, Radiat. Effects 93, 57 (1986)

    Article  Google Scholar 

  46. H. Baba et al., J. Nucl. Sci. Technol. (Tokyo) 34, 871 (1997)

    Article  Google Scholar 

  47. E.M. Bohn, B.W. Wehring, M.E. Wyman, Phys. Rev. 188, 1909 (1969)

    Article  ADS  Google Scholar 

  48. P.P. D’yachenko, B.D. Kuz’minov, M.Z. Tarasko, Sov. J. Nucl. Phys. 8, 165 (1969)

  49. G. Simon, J. Trochon, F. Brisard, C. Signarbieux, Nucl. Instrum. Methods Phys. Res. A 286, 220 (1990)

    Article  ADS  Google Scholar 

  50. C. Wagemans, L. Demattè, S. Pommé, P. Schillebeeckx, Nucl. Phys. A 597, 188 (1996)

    Article  ADS  Google Scholar 

  51. S. Zeynalov et al., Investigation of mass-TKE distribution of fission fragments from the \(^{235}\)U(n,f)-reaction in resonances, Conf: International Seminar on Interactions of Neutrons with Nuclei, No.13, p.351 (2006)

  52. N.I. Akimov et al., Sov. J. Nucl. Phys. 13, 272 (1971)

    Google Scholar 

  53. V.V. Zerkin, B. Pritychenko, Nucl. Instrum. Methods Phys. Res. A 888, 31 (2018)

    Article  ADS  Google Scholar 

  54. V.A. Korostylev, D.K. Ryazanov, V.A. Safonov, Proc. Conf. Neutron Phys. 2, 78 (1971)

    Google Scholar 

  55. Y.S. Zamyatnin, B.G. Basova, D.K. Ryazanov, A.D. Rabinovich, V.A. Korostylev, Sov. J. Nucl. Phys. 27, 31 (1978)

    Google Scholar 

  56. V.F. Apalin, Y.N. Gritsyuk, I.E. Kutikov, V.I. Lebedev, L.A. Mikaelian, Nucl. Phys. 71, 553 (1965)

    Article  Google Scholar 

  57. D.C. Hoffman, G.P. Ford, J.P. Balagna, L.R. Veeser, Phys. Rev. C 21, 637 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (NRF-2020R1A2C1102384, NRF-2018M7A1A1072274). TSP acknowledges the support from the IBS grant funded by the Korean government (No. IBS-R031-D1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, YO., Park, TS. et al. Semi-empirical model to determine pre- and post-neutron fission product yields and neutron multiplicity. J. Korean Phys. Soc. 80, 953–963 (2022). https://doi.org/10.1007/s40042-022-00490-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00490-2

Keywords

Navigation