Skip to main content
Log in

Synthesis of Ni-based fluoroperovskites by solvent-free mechanochemical reaction

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We realized fluoride perovskites ANiF3 (A = Na, K, and Ag) incorporating a transition-metal Ni element using solvent-free mechanochemical reaction processes. Methodologically, two different synthetic routes were devised based on the conventional mechanical grinding and the planetary ball milling techniques. The structural characteristics of the as-synthesized fluoroperovskite powders were determined by powder X-ray diffraction measurements and subsequent Rietveld refinement analyses. The band gaps and the chemical compositions of the ANiF3 powders were also examined by ultraviolet–visible absorption measurements and element-specific energy dispersive X-ray spectroscopy, respectively. The goodness of factors of our refinements revealed that the high-energy planetary ball milling was more beneficial than the conventional grinding method in achieving a perovskite ANiF3 phase mechanically. We found that the degree of mechanochemical reaction to form the perovskite phase depended on the crystal structure. With the fitted lattice parameters of the fluoride perovskites, we discussed how a structural modification induced by cation non-stoichiometry affected the stabilization of the fluoroperovskite materials via the mechanochemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.M. Feng, L.Q. Jiang, M. Zhu, H.B. Liu, X. Zhou, C.H. Li, J. Phys. Chem. Solids 69, 967 (2008)

    Article  ADS  Google Scholar 

  2. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Acta Cryst. B 64, 702 (2008)

    Article  Google Scholar 

  3. T. He, Q. Huang, A.P. Ramirez, Y. Wang, K.A. Regan, N. Rogado, M.A. Hayward, M.K. Haas, J.S. Slusky, K. Inumara, H.W. Zandbergen, N.P. Ong, R.J. Cava, Nature 411, 54 (2001)

    Article  ADS  Google Scholar 

  4. N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.S. Ruetschi, D. Jaccard, M. Gabay, D.A. Muller, J.M. Triscone, J. Mannhart, Science 317, 1196 (2007)

    Article  ADS  Google Scholar 

  5. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  6. J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, C. Niedermayer, Phys. Rev. B Condens. Matter 45, 8209 (1992)

    Article  ADS  Google Scholar 

  7. H.J. Seog, A. Ullah, C.W. Ahn, I.W. Kim, S.Y. Lee, J. Park, H.J. Lee, S.S. Won, S.-H. Kim, J. Korean Phys. Soc. 72, 1467 (2018)

    Article  ADS  Google Scholar 

  8. A. Von Hippel, R. Breckenridge, F. Chesley, L. Tisza, Ind. Eng. Chem. 38, 1097 (1946)

    Article  Google Scholar 

  9. B.T. Nguyen, S.S. Won, B.C. Park, Y.J. Jo, C.W. Ahn, I.W. Kim, T.H. Kim, Curr. Appl. Phys. 20, 1447 (2020)

    Article  ADS  Google Scholar 

  10. H.J. Seog, B.C. Park, S. Cho, T.H. Kim, I.W. Kim, A. Ullah, New Phys. Sae Mulli 70, 220 (2020)

    Article  Google Scholar 

  11. B. Iaffe, R. Roth, S. Marzullo, J. Res. Natl. Bur. Stand. 55, 239 (1955)

    Article  Google Scholar 

  12. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  13. T.K. Song, J.Y. Jo, S.M. Yang, D.H. Kim, S. Park, Y. Jo, J.-G. Yoon, J. Korean Phys. Soc. 56, 503 (2010)

    Article  Google Scholar 

  14. A. Weidenkaff, R. Robert, M. Aguirre, L. Bocher, T. Lippert, S. Canulescu, Renew. Energy 33, 342 (2008)

    Article  Google Scholar 

  15. L. Bocher, M.H. Aguirre, R. Robert, D. Logvinovich, S. Bakardjieva, J. Hejtmanek, A. Weidenkaff, Acta Mater. 57, 5667 (2009)

    Article  ADS  Google Scholar 

  16. A. Ramirez, J. Phys. Condens. Matter 9, 8171 (1997)

    Article  ADS  Google Scholar 

  17. Y. Inaguma, L.Q. Chen, M. Itoh, T. Nakamura, Solid State Ion. 70, 196 (1994)

    Article  Google Scholar 

  18. J. Mizusaki, K. Arai, K. Fueki, Solid State Ion. 11, 203 (1983)

    Article  Google Scholar 

  19. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  20. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, Sci. Rep. 2, 1 (2012)

    Google Scholar 

  21. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat. Chem. 3, 546 (2011)

    Article  Google Scholar 

  22. T. Wang, H. Chen, Z. Yang, J. Liang, S. Dai, J. Am. Chem. Soc. 142, 4550 (2020)

    Article  Google Scholar 

  23. G. Koster, L. Klein, W. Siemons, G. Rijnders, J.S. Dodge, C.-B. Eom, D.H.A. Blank, M.R. Beasley, Rev. Mod. Phys. 84, 253 (2012)

    Article  ADS  Google Scholar 

  24. V.M. Goldschmidt, Berichte der deutschen chemischen Gesellschaft (A and B Series) 60, 1263 (1927)

    Article  Google Scholar 

  25. S. Catalano, M. Gibert, J. Fowlie, J. Iniguez, J.-M. Triscone, J. Kreisel, Rep. Prog. Phys. 81, 046501 (2018)

    Article  ADS  Google Scholar 

  26. Hayatullah, G. Murtaza, R. Khenata, S. Muhammad, A.H. Reshak, K.M. Wong, S.B. Omran, Z.A. Alahmed, Comput. Mater. Sci. 85, 402 (2014)

    Article  Google Scholar 

  27. Shakeel, A.H. Reshak, S. Khan, A. Laref, G. Murtaza, J. Bila, Opt. Mater. 109, 110325 (2020)

    Article  Google Scholar 

  28. S.A. Morley, H. Marquez, D. Lederman, APL Mater. 8, 011101 (2020)

    Article  ADS  Google Scholar 

  29. L. Yuan, L. Ge, X. Sun, J. Zhang, J. Yu, C. Zhang, H. Li, Cryst. Eng. Commun. 22, 6216 (2020)

    Article  Google Scholar 

  30. B.J. Garrard, B.M. Wanklyn, S.H. Smith, J. Cryst. Growth 22, 169 (1974)

    Article  ADS  Google Scholar 

  31. K. Yanagisawa, M. Yoshimura, S. Somiya, J. Mater. Sci. 17, 177 (1982)

    Article  ADS  Google Scholar 

  32. I.D. Gocheva, M. Nishijima, T. Doi, S. Okada, J.I. Yamaki, T. Nishida, J. Power Source 187, 247 (2009)

    Article  ADS  Google Scholar 

  33. M.R. Chierotti, A. Rossin, R. Gobetto, M. Peruzzini, Inorg. Chem. 52, 12616 (2013)

    Article  Google Scholar 

  34. E.C. Gonzalo, M.L. Sanjuan, M. Hoelzel, M.T. Azcondo, U. Amador, I. Sobrados, J. Sanz, F. Garcia-Alvarado, A. Kuhn, Inorg. Chem. 54, 3172 (2015)

    Article  Google Scholar 

  35. Y. Shirako, Y.G. Shi, A. Aimi, D. Mori, H. Kojitani, K. Yamaura, M. Akaogi, J. Solid State Chem. 191, 167 (2012)

    Article  ADS  Google Scholar 

  36. S.K. Valluri, I. Monk, M. Schoenitz, E.L. Dreizin, Int. J. Energ. Mater. Chem. Propuls. 16, 81 (2017)

    Google Scholar 

  37. F.L. Bernal, K.V. Yusenko, J. Sottmann, C. Drathen, J. Guignard, O.M. Lovvik, W.A. Crichton, S. Margadonna, Inorg. Chem. 53, 12205 (2014)

    Article  Google Scholar 

  38. R.M. Gluck, T.H. Lee, F.T.J. Smith, Mater. Res. Bull. 9, 305 (1974)

    Article  Google Scholar 

  39. J. Lee, Q. Zhang, F. Saito, Chem. Lett. 30, 700 (2001)

    Article  Google Scholar 

  40. G. Scholz, ChemTexts 7, 16 (2021)

    Article  Google Scholar 

  41. Faraday Discussion 170, Mechanochemistry: From Functional Solids to Single Molecules (United Kingdom, Oxford, 2014).

  42. P. Bala, Mechanochemistry in Nanoscience and Minerals Engineering (Germany, Berlin, 2008).

  43. G. Kaupp, Cryst. Eng. Commun. 11, 388 (2009)

    Article  Google Scholar 

  44. L. Takacs, Acta Phys. Pol. A 126, 1040 (2014)

    Article  ADS  Google Scholar 

  45. Z. Hong, D. Tan, R.A. John, Y.K.E. Tay, Y.K.T. Ho, X. Zhao, T.C. Sum, N. Mathews, F. García, H.S. Soo, iScience 16, 312 (2019)

    Article  ADS  Google Scholar 

  46. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Crystallogr. 32, 36 (1999)

    Article  Google Scholar 

  47. H.M. Rietveld, Acta Crystallogr. 22, 151 (1967)

    Article  Google Scholar 

  48. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  49. A. Kramida, Y. Ralchenko, J. Reader, N. A. Team, NIST Atomic Spectra Database, National Institute of Standards and Technology. https://physics.nist.gov/asd. Accessed 12 May 2021

  50. A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Synthesis of Inorganic Nanomaterials (England, Cambridge, 2018), Chap. 5, pp. 121–139

  51. S. Körbel, M.A.L. Marques, S. Botti, J. Mater. Chem. C 4, 3157 (2016)

    Article  Google Scholar 

  52. D.E. Newbury, N.W.M. Ritchie, Scanning 35, 141 (2013)

    Article  Google Scholar 

  53. P.J. Statham, J. Res. Natl. Inst. Stand. Technol. 107, 531 (2002)

    Article  Google Scholar 

  54. P.M. Woodward, Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 53, 44 (1997)

    Article  Google Scholar 

  55. M.W. Lufaso, P.M. Woodward, Acta Crystallogr. Sect. B Struct. Sci. 57, 725 (2001)

    Article  Google Scholar 

  56. Y. Tokura, Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999)

    Article  ADS  Google Scholar 

  57. Z. Liao, M. Huijben, Z. Zhong, N. Gauquelin, S. Macke, R.J. Green, S. Van Aert, J. Verbeeck, G. Van Tendeloo, K. Held, G.A. Sawatzky, G. Koster, G. Rijnders, Nat. Mater. 15, 425 (2016)

    Article  ADS  Google Scholar 

  58. D. Kan, R. Aso, R. Sato, M. Haruta, H. Kurata, Y. Shimakawa, Nat. Mater. 15, 432 (2016)

    Article  ADS  Google Scholar 

  59. S. Ogawa, J. Phys. Soc. Jpn. 15, 2361 (1960)

    Article  ADS  Google Scholar 

  60. S.A. Lee, H. Jeong, S. Woo, J.Y. Hwang, S.Y. Choi, S.D. Kim, M. Choi, S. Roh, H. Yu, J. Hwang, S.W. Kim, W.S. Choi, Sci. Rep. 6, 23649 (2016)

    Article  ADS  Google Scholar 

  61. J. Yeog Son, J.-H. Lee, H. Myung Jang, Appl. Phys. Lett. 103, 102901 (2013)

    Article  ADS  Google Scholar 

  62. F. Yang, Q. Zhang, Z. Yang, J. Gu, Y. Liang, W. Li, W. Wang, K. Jin, L. Gu, J. Guo, Appl. Phys. Lett. 107, 082904 (2015)

    Article  ADS  Google Scholar 

  63. U. Aschauer, R. Pfenninger, S.M. Selbach, T. Grande, N.A. Spaldin, Phys. Rev. B 88, 054111 (2013)

    Article  ADS  Google Scholar 

  64. F. Bernardini, V. Olevano, X. Blasé, A. Cano, J. Phys. Mater. 3, 035003 (2020)

    Article  Google Scholar 

  65. A. Okazaki, Y. Suemune, T. Fuchikami, J. Phys. Soc. Jpn. 14, 1823 (1959)

    Article  ADS  Google Scholar 

  66. L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, C.H. Li, J. Phys. Chem. Solids 67, 1531 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2019 Research Fund of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Heon Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 441 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.S., Sheeraz, M., Akram, F. et al. Synthesis of Ni-based fluoroperovskites by solvent-free mechanochemical reaction. J. Korean Phys. Soc. 79, 1042–1050 (2021). https://doi.org/10.1007/s40042-021-00310-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00310-z

Keywords

Navigation