Skip to main content
Log in

Influence of process parameters on the yield of Mn3O4 through sonochemical route

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

In the present study, manganese oxide (Mn3O4) was synthesized sonochemically by considering manganese sulphate monohydrate as precursor. Initially, 0.1 M of manganese sulphate monohydrate dissolved in 60 ml of doubly distilled water; subsequently, 400 μl of ammonia solution (30% GR) is added to prepare the solution. The experimental variables selected in this study are sonication, sonication with oxygen bubbling, sonication with argon bubbling, adding H2O2 and butanol externally with mechanical stirring. The obtained samples characterized with XRD, FTIR, SEM and TEM to determine the phase purity, morphology and size of the particles. Yield of the end product is determined by weighing the sample obtained after drying. Yield of the product increased with external addition of H2O2 and oxygen bubbling. Morphology studies show that the product obtained is spherical and cubical in shape. The TEM image shows that particle size lies in the range of 20–50 nm in sonication applied experiments. Particle size reduced with applying sonication when compared to mechanical stirring. XRD studies show that the product obtained is Mn3O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.E. Fischer, A.P. Katherine, R.R. Debra, M.S. Rhonda, W.L. Jeffrey, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 2, 281–286 (2007)

    Article  Google Scholar 

  2. Y. Zeheng, Z. Yuancheng, Z. Weiin, W. Xue, Q. Yitai, W. Xiaogang, Y. Shine, Nanorods of manganese oxides: synthesis, characterization and catalytic application. J. Solid State Chem. 179, 679–684 (2006)

    Article  Google Scholar 

  3. J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, J.B. Li, Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv. Mater. 20, 452–456 (2008)

    Article  Google Scholar 

  4. Z.Y. Yuan, Z. Zaolo, D. Gaohui, T.-Z. Ren, B.-L. Su, A simple method to synthesize single-crystalline manganese oxide nanowires. Chem. Phys. Lett. 378, 349–353 (2003)

    Article  Google Scholar 

  5. M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Manganese oxide catalysts for NOX reduction with NH3 at low temperatures. Appl. Catal. A Gen. 327, 261–269 (2007)

    Article  Google Scholar 

  6. Y.-F. Han, F. Chen, Z. Zhong, K. Ramesh, L. Chen, E. Widjaja, Controlled synthesis, characterization and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. J. Phys. Chem. B 110, 24450–24456 (2006)

    Article  Google Scholar 

  7. G. Laugel, J. Arichi, M. Moliere, A. Kiennemann, F. Garin, B. Louis, Metal oxides nanoparticles on SBA-15: efficient catalyst for methane combustion. Catal. Today 138, 38–42 (2008)

    Article  Google Scholar 

  8. E.J. Grootendorst, Y. Verbeek, V. Ponec, The role of the mars and van krevelen mechanism in the selective oxidation of nitrosobenzene and the deoxygenation of nitrobenzene on oxidic catalysts. J. Catal. 157, 706–712 (1995)

    Article  Google Scholar 

  9. L. Sanchez, J. Farcy, J.P.P. Ramos, L. Hernan, J. Morales, J.L. Tirado, Low-temperature mixed spinel oxide as lithium insertion compounds. J. Mater. Chem. 6, 37–39 (1996)

    Article  Google Scholar 

  10. Z.W. Chen, S.Y. Zhang, S. Tan, J. Wang, S.Z. Jin, Dependence of electronic structure on the grain size in Mn2O3 nanocrystals. Appl. Phys. A 78, 581–584 (2004)

    Article  Google Scholar 

  11. S.-N. Masoud, F. Davar, M. Mazaheri, Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato)manganese(II)] complex. Polyhedron 27, 3467–3471 (2008)

    Article  Google Scholar 

  12. E. Finocchio, G. Busca, Characterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/Al2O3. Catal. Today 70, 213–225 (2001)

    Article  Google Scholar 

  13. Z.W. Chen, J.K.L. Lai, C.H. Shek, Shape-controlled synthesis and nanostructure evolution of single-crystal Mn3O4 nanocrystals. Scripta Mater. 55, 735–738 (2006)

    Article  Google Scholar 

  14. H. Dhaouadi, A. Madani, F. Touati, Synthesis and spectroscopic investigations of Mn3O4 nanoparticles. Mater. Lett. 64, 2395–2398 (2010)

    Article  Google Scholar 

  15. L.-X. Yang, Y. Liang, H. Chen, Y.-F. Meng, W. Jiang, Controlled synthesis of Mn3O4 and MnCO3 in a solvothermal system. Mater. Res. Bull. 44, 1753–1759 (2009)

    Article  Google Scholar 

  16. A. Askarinezad, A. Morsali, Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem. 16, 124–131 (2009)

    Article  Google Scholar 

  17. V. Ganesh Kumar, D. Aurbuch, A. Gedanken, A comparison between hot-hydrolysis and sonolysis of various Mn(II) salts. Ultrason. Sonochem. 10, 17–23 (2003)

    Article  Google Scholar 

  18. V. Ganesh Kumar, D. Aurbuch, A. Gedanken, Influence of pH on the structure of the aqueous sonolysis products of manganese (III) acetylacetonate. J. Mater. Res. 17, 1706–1710 (2002)

    Article  Google Scholar 

  19. I.K. Gopalakrishnan, N. Bagkar, R. Ganguly, S.K. Kulshreshtha, Synthesis of superparamagnetic Mn3O4 nanocrystallites by ultrasonic irradiation. J. Cryst. Growth 280, 436–441 (2005)

    Article  Google Scholar 

  20. T.R. Bastami, M.H. Entezari, Sono-synthesis of Mn3O4 nanoparticles in different media without additives. Chem. Eng. J. 164, 261–266 (2010)

    Article  Google Scholar 

  21. J.P. Park, S.K. Kim, J.-Y. Park, C.H. Hwang, C. Myung-ho, E.K. Jee, M.O. Kang, K. Ho-Young, W. Shim-II, Synthesis of Mn3O4 and LiMn2O4 nanoparticles by a simple sonochemical method. Mater. Lett. 63, 2201–2204 (2009)

    Article  Google Scholar 

  22. D. Chen, B. Yang, Y. Jiang, Y.-Z. Zhang, Synthesis of Mn3O4 nanoparticles for catalytic application via ultrasound-assisted ball milling. Chem. Select 3, 3904–3908 (2018)

    Google Scholar 

  23. A.B. Pandit, A. Badnore, Effect of pH on sonication assisted synthesis of ZnO nanostructures: process details. Chem. Eng. Process. 122, 235–244 (2017)

    Article  Google Scholar 

  24. M. Ashokkumar, R. Hall, P. Mulvaney, F. Grieser, Sonoluminescence from aqueous alcohol and surfactant solutions. J. Phys. Chem. B 101, 10845–10850 (1997)

    Article  Google Scholar 

  25. S.W. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, T.J. Park, Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. 43, 1115–1117 (2004)

    Article  Google Scholar 

  26. X. Hao, J. Zhao, Y. Li, Y. Zhao, D. Ma, L. Li, Mild aqueous synthesis of octahedral Mn3O4 nanocrystals with varied oxidation states. Colloids Surf. A 374, 42–47 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge IIT Guwahati and VFSTR Deemed to be University for providing facilities to carry the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Swamy Nalajala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr. Venkata Swamy Nalajala is an assistant professor in the Department of Chemical Engineering, Vignan’s foundation for Science, Technology and Research, Vadlamudi (Deemed to be University).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalajala, V.S., Khan, A.A., Tondepu, S. et al. Influence of process parameters on the yield of Mn3O4 through sonochemical route. J. Inst. Eng. India Ser. D 100, 211–215 (2019). https://doi.org/10.1007/s40033-019-00193-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-019-00193-2

Keywords

Navigation