Skip to main content
Log in

A one-step ultrasound-assisted synthesis of erbium-substituted nanocrystalline Mn2O3 and sonocatalytic degradation of azo dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the effective degradation of methyl orange as a model of azo dyes which are the common industrial pollutants by Er-doped Mn2O3 nanomaterials was introduced. Erbium (Er3+)-substituted nanocrystalline Mn2O3 (Mn2−xErxO3) was obtained by oxidation of Mn(NO3)2 at ambient conditions under ultrasound sonication in basic solution. Er3+ substitution into the structure of Mn2O3 resulted in a material with new physical properties, composition and morphology. The SEM, XRD, EDX, TEM, HRTEM, XPS techniques were used for characterization of prepared material. Increasing the amount of Er3+ ions during synthesis did not increase significantly the percent substitution in the final product beyond 6%. The influence of substitution of Er3+ ions into Mn2O3 caused a red shift in the absorbance and a decrease in the band gap from 2.01 to 1.92 eV in the case of 6% Er-doped Mn2O3. The as-synthesized compounds were used for sonocatalytic degradation of Methyl Orange (MO). 6% Er-doped Mn2O3 displayed the elevated sonocatalytic activity considering various amounts of erbium. Considering radical scavengers, the sequence of inhibitory effect was 1, 4 Benzoquinone > I > SO32− > t-BuOH > C2O42−. The influence of various specifications like catalyst amount, primary dye concentration, and ultrasonic power was explored. Furthermore, 92% degradation of the dye in 70 min under ultrasonic irradiation suggests that 6% Er-doped Mn2O3 is a promising sonocatalyst for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Tachikawa, T. Ishigaki, J.G. Li, M. Fujitsuka, T. Majima, Defect-mediated photoluminescence dynamics of Eu3+-doped TiO2 nanocrystals revealed at the single-particle or single-aggregate level. Angew. Chem. Int. Ed. 47, 5348–5352 (2008)

    Article  Google Scholar 

  2. F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010)

    Article  Google Scholar 

  3. Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, Q. Zeng, Y. Zhang, H. Zhang, Morphology-dependent upconversion luminescence of ZnO: Er3+ nanocrystals. J. Lumin. 128, 15–21 (2008)

    Article  Google Scholar 

  4. A. Alemi, Y. Hanifehpour, S.W. Joo, B.-K. Min, Synthesis of novel LnxSb2–xSe3 (Ln: Lu3+, Ho3+, Nd3+) nanomaterials via co-reduction method and investigation of their physical properties. Colloids Surf. A 390, 142–148 (2011)

    Article  Google Scholar 

  5. A. Alemi, Y. Hanifehpour, S.W. Joo, A. Khandar, A. Morsali, B.-K. Min, Co-reduction synthesis of new LnxSb2–xS3 (Ln: Nd3+, Lu3+, Ho3+) nanomaterials and investigation of their physical properties. Phys. B 406, 2801–2806 (2011)

    Article  Google Scholar 

  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Article  Google Scholar 

  7. M. Batzill, E.H. Morales, U. Diebold, Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. Lett. 96, 026103 (2006)

    Article  Google Scholar 

  8. A. Khataee, Y. Hanifehpour, M. Safarpour, M. Hosseini, S. Joo, Synthesis and characterization of ErxZn1–xSe nanoparticles: a novel visible light responsive photocatalyst. Sci. Adv. Mater. 5, 1074–1082 (2013)

    Article  Google Scholar 

  9. S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)

    Article  Google Scholar 

  10. M. Eghbali-Arania, A. Sobhani-Nasabb, M. Rahimi-Nasrabadic, F. Ahmadid, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)

    Article  Google Scholar 

  11. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol-gel method. J. Mater. Sci.: Mater. Electron. 28, 14965–14973 (2017)

    Google Scholar 

  12. A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12– xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43, 6155–6165 (2017)

    Article  Google Scholar 

  13. S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 16459–16466 (2017)

    Google Scholar 

  14. A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499 (1996)

    Article  Google Scholar 

  15. S.L. Brock, N. Duan, Z.R. Tian, O. Giraldo, H. Zhou, S.L. Suib, A review of porous manganese oxide materials. Chem. Mater. 10, 2619–2628 (1998)

    Article  Google Scholar 

  16. Q. Feng, H. Kanoh, K. Ooi, Manganese oxide porous crystals. J. Mater. Chem. 9, 319–333 (1999)

    Article  Google Scholar 

  17. M. Baldi, V.S. Escribano, J.M.G. Amores, F. Milella, G. Busca, Appl. Catal. B 17, L175–L182 (1998)

    Article  Google Scholar 

  18. J. Zhao, J. Nan, Z. Zhao, N. Li, Facile fabrication of novel Mn2O3 nanocubes with superior light-harvesting for ciprofloxacin degradation. Catal. Commun. 102, 5–8 (2017)

    Article  Google Scholar 

  19. L. Michalowsky, H. Baumgartner, W. Ernst, Microstructure of manganese-zinc ferrites. Ceram. Int. 19, 77–85 (1993)

    Article  Google Scholar 

  20. J.G. McCarty, Novel oxygen storage components for advanced catalysts for emission control in natural gas fueled vehicles. Catal. Today 30, 163–170 (1996)

    Article  Google Scholar 

  21. D. Golden, C. Chen, J. Dixon, Synthesis of todorokite, Science 231, 717–719 (1986)

    Article  Google Scholar 

  22. S. Suib, Formation and transformation of mesoporous and layered manganese oxides in the presence of long-chain ammonium hydroxides, Chem. Commun. 1031–1032 (1997).

  23. J. Cai, J. Liu, S.L. Suib, Preparative parameters and framework dopant effects in the synthesis of layer-structure birnessite by air oxidation. Chem. Mater. 14, 2071–2077 (2002)

    Article  Google Scholar 

  24. G.L. Clark, W.S. Coe, Photochemical reduction with X-rays and effects of addition agents. J. Chem. Phys. 5, 97–105 (1937)

    Article  Google Scholar 

  25. M.A. Cheney, P.K. Bhowmik, S. Moriuchi, M. Villalobos, S. Qian, S.W. Joo, The effect of stirring on the morphology of birnessite nanoparticles. J. Nanomater. 2008, 10 (2008)

    Google Scholar 

  26. S. Rehman, R. Ullah, A. Butt, N. Gohar, Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 170, 560–569 (2009)

    Article  Google Scholar 

  27. N. Hamnabard, Y. Hanifehpour, B. Khomami, S.W. Joo, Synthesis, characterization and photocatalytic performance of Yb-doped CdTe nanoparticles. Mater. Lett. 145, 253–257 (2015)

    Article  Google Scholar 

  28. M. Wang, C. Huang, Z. Huang, W. Guo, J. Huang, H. He, H. Wang, Y. Cao, Q. Liu, J. Liang, Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method. Opt. Mater. 31, 1502–1505 (2009)

    Article  Google Scholar 

  29. X. Chen, Y.-F. Shen, S.L. Suib, C. O’Young, Characterization of manganese oxide octahedral molecular sieve (M–OMS-2) materials with different metal cation dopants. Chem. Mater. 14, 940–948 (2002)

    Article  Google Scholar 

  30. M.K. Gulbinska, S. Suib, Vanadium-substituted porous manganese oxides with Li-ion intercalation properties. J. Power Sources 196, 2149–2154 (2011)

    Article  Google Scholar 

  31. L. Zhu, Z.-D. Meng, C.-Y. Park, T. Ghosh, W.-C. Oh, Characterization and relative sonocatalytic efficiencies of a new MWCNT and CdS modified TiO2 catalysts and their application in the sonocatalytic degradation of rhodamine B. Ultrason. Sonochem. 20, 478–484 (2013)

    Article  Google Scholar 

  32. M. Polverejan, J.C. Villegas, S.L. Suib, Higher valency ion substitution into the manganese oxide framework. J. Am. Chem. Soc. 126, 7774–7775 (2004)

    Article  Google Scholar 

  33. C.N.R. Rao, A. Raychaudhuri, Colossal magnetoresistance, charge ordering and other novel properties of manganates and related materials, in: Advances In Chemistry: A Selection of CNR Rao’s Publications World Scientific (2003), pp. 133–174

  34. Z.-R. Tian, W. Tong, J.-Y. Wang, N.-G. Duan, V.V. Krishnan, S.L. Suib, Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 276, 926–930 (1997)

    Article  Google Scholar 

  35. Y. Hanifehpour, B. Soltani, A.R. Amani-Ghadim, B. Hedayati, B. Khomami, S.W. Joo, Synthesis and characterization of samarium-doped ZnS nanoparticles: a novel visible light responsive photocatalyst. Mater. Res. Bull. 76, 411–421 (2016)

    Article  Google Scholar 

  36. J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu, Y. Kong, B. Wang, Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes. Ultrason. Sonochem. 18, 177–183 (2011)

    Article  Google Scholar 

  37. M. Zhou, H. Yang, T. Xian, R. Li, H. Zhang, X. Wang, Sonocatalytic degradation of RhB over LuFeO3 particles under ultrasonic irradiation. J. Hazard. Mater. 289, 149–157 (2015)

    Article  Google Scholar 

  38. M. Madkour, Y.K. Abdel-Monem, F. Al Sagheer, Controlled synthesis of NiO and Co3O4 nanoparticles from different coordinated precursors: impact of precursor’s geometry on the nanoparticles characteristics. Ind. Eng. Chem. Res. 55(50), 12733–12741 (2016)

    Article  Google Scholar 

  39. Y.K. Abdel-Monem, S.M. Emam, H.M.Y. Okda, Solid state thermal decomposition synthesis of CuO nanoparticles from coordinated pyrazolopyridine as novel precursors. J. Mater. Sci.: Mater. Electron. 28, 2923–2934 (2017)

    Google Scholar 

  40. A. Bumajdad, M. Madkour, Y.K. Abdel-Moneam, M. El-Kemary, Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J. Mater. Sci. 49, 1743–1754 (2014)

    Article  Google Scholar 

  41. Y.K. Abdel-Monem, Efficient nanophotocatalyt of hydrothermally synthesized Anatase TiO2 nanoparticles from its analogue metal coordinated precursor. J. Mater. Sci.: Mater. Electron. 27, 5723–5728 (2016)

    Google Scholar 

  42. M.-J. Kim, Y.I. Choi, S.W. Joo, M. Kang, Y. Sohn, Synthesis of Er and Yb-doped cubic and hexagonal phase ZnSe nano-assembled microspheres and their photocatalytic activities. Ceram. Int. 40, 16051–16059 (2014)

    Article  Google Scholar 

  43. Y.L. Pang, A.Z. Abdullah, S. Bhatia, Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination 277, 1–14 (2011)

    Article  Google Scholar 

  44. J. Weaver, H. Frederikse, Crc handbook of chemistry and physics. J. Am. Chem. Soc. 129, 724 (2007)

    Article  Google Scholar 

  45. X. Dongdong, L. Xiaoni, L. Juan, L. Huang, Synthesis and photocatalytic performance of europium-doped graphitic carbon nitride. J. Rare Earths 31, 1085–1091 (2013)

    Article  Google Scholar 

  46. A.R. Khataee, A. Karimi, S. Arefi-Oskoui, R.D.C. Soltani, Y. Hanifehpour, B. Soltani, S.W. Joo, Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrason. Sonochem. 22, 371–381 (2015)

    Article  Google Scholar 

  47. A. Khataee, A. Karimi, R.D.C. Soltani, M. Safarpour, Y. Hanifehpour, S.W. Joo, Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis, characterization and response surface modeling of photocatalytic process. Appl. Catal. A 488, 160–170 (2014)

    Article  Google Scholar 

  48. M. Qamar, M. Saquib, M. Muneer, Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide. Dyes Pigm. 65, 1–9 (2005)

    Article  Google Scholar 

  49. A. Khataee, S. Fathinia, M. Fathinia, Y. Hanifehpour, S.W. Joo, B. Soltani, Synthesis, characterization and photocatalytic properties of nanostructured Sm-doped CdSe. Curr. Nanosci. 9, 780–786 (2013)

    Article  Google Scholar 

  50. Y. Hanifehpour, B. Soltani, A.R. Amani-Ghadim, B. Hedayati, B. Khomami, S.W. Joo, Praseodymium-doped ZnS nanomaterials: hydrothermal synthesis and characterization with enhanced visible light photocatalytic activity. J. Ind. Eng. Chem. 34, 41–50 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Grant NRF-2018R1A2B3001246 of the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Younes Hanifehpour or Sang Woo Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanifehpour, Y., Joo, S.W. & Min, BK. A one-step ultrasound-assisted synthesis of erbium-substituted nanocrystalline Mn2O3 and sonocatalytic degradation of azo dye. J Mater Sci: Mater Electron 29, 13667–13680 (2018). https://doi.org/10.1007/s10854-018-9495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9495-0

Navigation