Skip to main content

Advertisement

Log in

A Review of Bone Regeneration Mechanisms and Bone Scaffold Fabrication Techniques (Conventional and Non-Conventional)

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Bone is presently one of the most transplanted tissues with about 15 million fracture cases annually. Bone repair options include Human bone materials (allografts), animal bone materials (xenografts). However, issues such as pain, infection, and immunological rejection have aided in the development of artificial scaffolds such as bone. Autographs and allographs have been utilized for some time in clinical practice; however, they do have problems. The consequences of bone surgical operations may be suboptimal due to intrinsic limitations in the precision and replicability of traditional scaffolding techniques. Despite advancements in bone tissue technology, which provide an impressive instrument for bone replacement, this remains a challenge. Rapid prototyping technologies are an alternative and widely utilized in bone tissue procedures, boosting mechanical strength, porosity geometry, and bioactive components of tissue regeneration while removing some of the drawbacks of previous technologies. This paper discusses the fundamental principles and characteristics of various bone tissue repair mechanisms, as well as traditional and non-traditional fabrication technologies such as freeze-drying procedures, gases foaming, stereolithography, selective laser sintering, and fused deposition modeling, as well as challenges encountered during RPs methods. Tissue scaffolds made with rapid prototyping technologies could be a viable treatment option for bone abnormalities in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. S. Gómez, M.D. Vlad, J. López, E. Fernández, Design and properties of 3d scaffolds for bone tissue engineering. Acta biomaterialia. 42, 341–350 (2016)

    Google Scholar 

  2. A. Boccaccio, M. Fiorentino, M. Gattullo, V.M. Manghisi, G. Monno, A computational mechanobiological approach geometry modelling of regular scaffolds for bone tissue engineering (Springer, Cham, 2019)

    Google Scholar 

  3. J. A. Leboucher, C. R. Van Donkelaar, B. Van Rietbergen, J. Donners, and R. Huiskes, “Design and characterization of a scaffold for bone tissue engineering,” pp. 1–46, 2020

  4. L. Polo-Corrales, M. Latorre-Esteves, J.E. Ramirez-Vick, Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 14(1), 15–56 (2014). https://doi.org/10.1166/jnn.2014.9127

    Article  Google Scholar 

  5. T. Tariverdian, F. Sefat, M. Gelinsky, M. Mozafari, Scaffold for bone tissue engineering, in Handbook of tissue engineering Scaffolds. (Elsevier, 2019), pp.189–209. https://doi.org/10.1016/B978-0-08-102563-5.00010-1

    Chapter  Google Scholar 

  6. M. Ansari, Bone tissue regeneration: biology, strategies and interface studies. Prog. Biomater. 8(4), 223–237 (2019). https://doi.org/10.1007/s40204-019-00125-z

    Article  Google Scholar 

  7. R. Florencio-Silva, G. Rodrigues, Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res. Int. 2015, 1–17 (2015). https://doi.org/10.1155/2015/421746

    Article  Google Scholar 

  8. J.M. Kim, C. Lin, Z. Stavre, M.B. Greenblatt, J.H. Shim, Osteoblast-osteoclast communication and bone homeostasis. Cells 9(9), 1–14 (2020). https://doi.org/10.3390/cells9092073

    Article  Google Scholar 

  9. C. Vrahnas, N.A. Sims, Basic Aspects of Osteoblast Function, in Osteoporosis: pathophysiology and clinical management. ed. by B.Z. Leder, M.N. Wein (Springer, Cham, 2020), pp.1–16. https://doi.org/10.1007/978-3-319-69287-6_1

    Chapter  Google Scholar 

  10. H.K. Väänänen, H. Zhao, M. Mulari, J.M. Halleen, The cell biology of osteoclast function. J. Cell Sci. 113(3), 377–381 (2000). https://doi.org/10.1242/jcs.113.3.377

    Article  Google Scholar 

  11. K. Henriksen, J. Bollerslev, V. Everts, M.A. Karsdal, Osteoclast activity and subtypes as a function of physiology and pathology: implications for future treatments of osteoporosis. Endocr. Rev. 32(1), 31–63 (2011). https://doi.org/10.1210/er.2010-0006

    Article  Google Scholar 

  12. J. S. Broderick and L. Bone, “Biology of Bone Repair Types of Bone canal Lamellar Bone Woven Bone,” no. March 2004, pp. 1–14, 2005

  13. B. Repair, “Cellular Repair,” pp. 77–86, 1997

  14. H. Schell, G.N. Duda, A. Peters, S. Tsitsilonis, K.A. Johnson, K. Schmidt-Bleek, The haematoma and its role in bone healing. J. Exp. Orthopaed. (2017). https://doi.org/10.1186/s40634-017-0079-3

    Article  Google Scholar 

  15. T.A. Einhorn, L.C. Gerstenfeld, Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 11(1), 45–54 (2015). https://doi.org/10.1038/nrrheum.2014.164

    Article  Google Scholar 

  16. J.H. Zeng et al., Scaffolds for the repair of bone defects in clinical studies: A systematic review. J. Orthop. Surg. Res. 13(1), 1–14 (2018). https://doi.org/10.1186/s13018-018-0724-2

    Article  Google Scholar 

  17. P. Lichte, H.C. Pape, T. Pufe, P. Kobbe, H. Fischer, Scaffolds for bone healing: concepts, materials and evidence. Injury 42(6), 569–573 (2011). https://doi.org/10.1016/j.injury.2011.03.033

    Article  Google Scholar 

  18. E. Sachlos, J.T. Czernuszka, S. Gogolewski, M. Dalby, Making tissue engineering scaffolds work. review on the application ofsolid freeform fabrication technology to the production of tissue engineeringscaffolds. Eur. Cells Mater. 5, 29–40 (2003). https://doi.org/10.22203/ecm.v005a03

    Article  Google Scholar 

  19. Z. Yang, H. Peng, W. Wang, T. Liu, Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116(5), 2658–2667 (2010). https://doi.org/10.1002/app

    Article  Google Scholar 

  20. F. Shapiro, Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cells Mater. 15, 53–76 (2008). https://doi.org/10.22203/eCM.v015a05

    Article  Google Scholar 

  21. Q. Lv, Q.L. Feng, Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J. Mater. Sci. Mater. Med. 17(12), 1349–1356 (2006). https://doi.org/10.1007/s10856-006-0610-z

    Article  Google Scholar 

  22. P. Carter, N. Bhattarai, Bioscaffolds: fabrication and performance, in Engineered Biomimicry. (Elsevier, 2013), pp.161–188. https://doi.org/10.1016/B978-0-12-415995-2.00007-6

    Chapter  Google Scholar 

  23. F. Dehghani, N. Annabi, Engineering porous scaffolds using gas-based techniques. Curr. Opin. Biotechnol. 22(5), 661–666 (2011). https://doi.org/10.1016/j.copbio.2011.04.005

    Article  Google Scholar 

  24. A.D. Bagde et al., State of the art technology for bone tissue engineering and drug delivery. Irbm 40(3), 133–144 (2019). https://doi.org/10.1016/j.irbm.2019.03.001

    Article  Google Scholar 

  25. A. Eltom, G. Zhong, A. Muhammad, Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv. Mater. Sci. Eng. 2019, 1–13 (2019). https://doi.org/10.1155/2019/3429527

    Article  Google Scholar 

  26. S. Taherkhani, F. Moztarzadeh, Fabrication of a poly(ε-caprolactone)/starch nanocomposite scaffold with a solvent-casting/salt-leaching technique for bone tissue engineering applications. J. Appl. Polym. Sci. 133(23), 19–21 (2016). https://doi.org/10.1002/app.43523

    Article  Google Scholar 

  27. E. Yilmaz and M. Soylak, Functionalized nanomaterials for sample preparation methods. Elsevier Inc., 2019.

  28. S.W. Suh et al., Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J. 48(5), 460–464 (2002). https://doi.org/10.1097/00002480-200209000-00003

    Article  Google Scholar 

  29. N.F.M. Nasir, S.F. Khan, E.M. Cheng, J.S. Baling, N.A.M. Amin, M.S.A. Majid, Preliminary study of trong clay – ha bone scaffold fabrication using solvent casting/particulate leaching method and indirect 3d-printing technique. J. Eng. Res. Educ. 10, 83–90 (2018)

    Google Scholar 

  30. M. Mehrabanian, M. Nasr-Esfahani, HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties. Int. J. Nanomedicine 6, 1651–1659 (2011)

    Google Scholar 

  31. J. Kundu, F. Pati, Y. Hun Jeong, and D. W. Cho, Biomaterials for Biofabrication of 3D Tissue Scaffolds, First Edit. Elsevier Inc., 2013.

  32. J. Alvarado, R. Maldonado, J. Marxuach, and R. Otero, “Biomechanics of the hip and knee prosthesis,” Appl. Eng. Mech. Med., no. December, pp. 6–22, 2003.

  33. V. Melčová et al., Fdm 3d printed composites for bone tissue engineering based on plasticized poly(3-hydroxybutyrate)/poly(d, l-lactide) blends. Polymers (Basel) 12(12), 1–19 (2020). https://doi.org/10.3390/polym12122806

    Article  Google Scholar 

  34. S.A. Poursamar, J. Hatami, A.N. Lehner, C.L. Da Silva, F.C. Ferreira, A.P.M. Antunes, Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment. Mater. Sci. Eng. C 48, 63–70 (2015). https://doi.org/10.1016/j.msec.2014.10.074

    Article  Google Scholar 

  35. T. Lu, Y. Li, T. Chen, Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomed. 8, 337–350 (2013). https://doi.org/10.2147/IJN.S38635

    Article  Google Scholar 

  36. T. L. Landsman, A. C. Weems, S. M. Hasan, R. S. Thompson, T. S. Wilson, and D. J. Maitland, Embolic Applications of Shape Memory Polyurethane Scaffolds. Elsevier Ltd, 2016

  37. Hale Karakaş, “electrospinning of nanofibers and their applications - PDF Drive,” MDT “Electrospinning,” vol. 3, pp. 1–35, 2012, [Online]. Available: http://www.pdfdrive.net/electrospinning-of-nanofibers-and-their-applications-e34353447.html.

  38. A. Chanthakulchan, P. Koomsap, K. Auyson, P. Supaphol, Development of an electrospinning-based rapid prototyping for scaffold fabrication. Rapid Prototyp. J. 21(3), 329–339 (2015). https://doi.org/10.1108/RPJ-11-2013-0119

    Article  Google Scholar 

  39. B. Arifvianto, J. Zhou, Fabrication of metallic biomedical scaffolds with the space holder method: a review. Materials (Basel) 7(5), 3588–3622 (2014). https://doi.org/10.3390/ma7053588

    Article  Google Scholar 

  40. L. F. Francis, Powder Processes. 2016

  41. A. Chládová, J. Wiener, J.M. Luthuli, V. Zajícová, Dyeing of glass fibres by the sol gel method. Autex Res. J. 11(1), 18–23 (2011)

    Google Scholar 

  42. Barby D., Haq Z., inventors. Tough reinforced open porous polymer foams via concentrated emulsion templating,1982. European patent 60138

  43. K. Dixit, A. Raichur, N. Sinha, Polymer coated and nanofiber reinforced functionally graded bioactive glass scaffolds fabricated using additive manufacturing. IEEE Trans. Nanobiosci. 434, 1–33 (2021)

    Google Scholar 

  44. G. Turnbull et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2018). https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  Google Scholar 

  45. M. Saman Naghieh, M.K.R. Sarker, A. McInnes, X. Chen, Modeling of the mechanical behavior of 3D bioplotted scaffolds considering the penetration in interlocked strands. Appl. Sci.nces 8(9), 1422 (2018). https://doi.org/10.3390/app8091422

    Article  Google Scholar 

  46. A.V. Do, B. Khorsand, S.M. Geary, A.K. Salem, 3D Printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 4(12), 1742–1762 (2015). https://doi.org/10.1002/adhm.201500168

    Article  Google Scholar 

  47. J. An, J.E.M. Teoh, R. Suntornnond, C.K. Chua, Design and 3D printing of scaffolds and tissues. Engineering 1(2), 261–268 (2015). https://doi.org/10.15302/J-ENG-2015061

    Article  Google Scholar 

  48. S. Lohfeld, M.A. Tyndyk, S. Cahill, N. Flaherty, V. Barron, P.E. McHugh, A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J. Biomed. Sci. Eng. 03(02), 138–147 (2010). https://doi.org/10.4236/jbise.2010.32019

    Article  Google Scholar 

  49. P. Rider, Ž Kačarević, S. Alkildani, S. Retnasingh, R. Schnettler, M. Barbeck, Additive manufacturing for guided bone regeneration: a perspective for alveolar ridge augmentation. Int. J. Mol. Sci. 19(11), 3308 (2018). https://doi.org/10.3390/ijms19113308

    Article  Google Scholar 

  50. K.W. Lee, S. Wang, B.C. Fox, E.L. Ritman, M.J. Yaszemski, L. Lu, Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: Effects of resin formulations and laser parameters. Biomacromol 8(4), 1077–1084 (2007). https://doi.org/10.1021/bm060834v

    Article  Google Scholar 

  51. E.N. Antonov et al., Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv. Mater. 17(3), 327–330 (2005). https://doi.org/10.1002/adma.200400838

    Article  Google Scholar 

  52. F.N. Alaribe, S.L. Manoto, S.C.K.M. Motaung, Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia (Bratisl) 71(4), 353–366 (2016). https://doi.org/10.1515/biolog-2016-0056

    Article  Google Scholar 

  53. C.S. Ranucci, A. Kumar, S.P. Batra, P.V. Moghe, Control of hepatocyte function on collagen foams: Sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials 21(8), 783–793 (2000). https://doi.org/10.1016/S0142-9612(99)00238-0

    Article  Google Scholar 

  54. K.H. Bouhadir, D.D.J. Mooney, Promoting angiogenesis in engineered tissues. J. Drug Target. 9(6), 397–406 (2001). https://doi.org/10.3109/10611860108998775

    Article  Google Scholar 

  55. R.K. Birla, S.K. Williams, 3D bioprinting and its potential impact on cardiac failure treatment: an industry perspective. APL Bioeng. 4(1), 010903 (2020). https://doi.org/10.1063/1.5128371

    Article  Google Scholar 

  56. W. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60, 613–621 (2002)

    Google Scholar 

  57. K. Dixit, P. Gupta, S. Kamle, N. Sinha, Structural analysis of porous bioactive glass scaffolds using micro-computed tomographic images. J. Mater. Sci. 55(27), 12705–12724 (2020)

    Google Scholar 

  58. J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Electrospinning of collagen nanofibers. Biomacromol 3, 232–238 (2002)

    Google Scholar 

  59. S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Silk fibroin nanofiber. Electrospinning, properties, and structure. Polym. J. 35(2), 185–190 (2003). https://doi.org/10.1295/polymj.35.185

    Article  Google Scholar 

  60. W.J. Li, R.S. Tuan, Fabrication and application of nanofibrous scaffolds in tissue engineering. Curr. Protocols Cell Biol. (2009). https://doi.org/10.1002/0471143030.cb2502s42

    Article  Google Scholar 

  61. D. Liang, B.S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Delivery Rev. 59(14), 1392–1412 (2007). https://doi.org/10.1016/j.addr.2007.04.021

    Article  Google Scholar 

  62. M.F. Leong, M.Z. Rasheed, T.C. Lim, K.S. Chian, Invitro cell infiltration and invivo cell in filtration and vascularization in fibrous highly porous poly (D, L-Lactic acid) scaffold fabrication by electrospinning technique. J Biomed Res A. 91, 231–240 (2008)

    Google Scholar 

  63. B.M. Baker, A.O. Gee, R.B. Metter, A.S. Nathan, R.A. Marklein, J.A. Burdick, R.L. Mauck, The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29, 2348–2358 (2008)

    Google Scholar 

  64. Z.R. Domingues, M.E. Cortés, T.A. Gomes, H.F. Diniz, C.S. Freitas, J.B. Gomes, A.M. Faria, R.D. Sinisterra, Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with bcyclodextrin. Biomaterials 25, 327–333 (2004)

    Google Scholar 

  65. A. Ulatowski-Jarza, D. Andrzejewski, H. Podbielska, K. Maruszewski, W. Strek, Advantages of sol-gel technologies for biomedical applications. Proc SPIE. 3567, 50 (1999)

    Google Scholar 

  66. S. Di Nunzio, C. Vitale-Brovarone, S. Spriano, D. Milanese, E. Verne, V. Bergo, G. Maina, P. Spinelli, Silver containing bioactive glasses prepared by molten salt ionexchange. J. Eur. Ceram. Soc. 24, 2935–2942 (2004)

    Google Scholar 

  67. S. Kimakhe, S. Bohic, C. Larosse, A. Reynaud, P. Pilet, B. Giumelli, D. Heymann, G. Daculsi, Biological activities of sustained polymixin B release from calcium phosphate biomaterial prepared by dynamic compaction: an in vitro study. J. Biomed. Mater. Res. 47, 18–27 (1999)

    Google Scholar 

  68. Y.S. Nam, T.G. Park, Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20, 1783–1790 (1999)

    Google Scholar 

  69. L.A. Smith, J.A. Beck, P.X. Ma, Nano fibrous scaffolds and their biological effects, in Tissue, cell and organ engineering. ed. by C. Kumar (Wiley-VCH, Weinheim, 2006), p.195

    Google Scholar 

  70. P.X. Ma, R. Zhang, Microtubular architecture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. 56(4), 469–477 (2001)

    Google Scholar 

  71. A.R. Boccaccini, I. Notingher, V. Maquet, R. Jerome, Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass particles for tissue engineering application. J. Mater. Sci. Mater. Med. 14, 443–450 (2003)

    Google Scholar 

  72. Y.S. Nam, T.G. Park, Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res. 47, 8–17 (1999)

    Google Scholar 

  73. R.C. Thompson, M.C. Wake, M.J. Yasemski, A.G. Mikos, Adv. Polym. Sci. 122, 245–274 (1995)

    Google Scholar 

  74. B. Kim, D.J. Mooney, Engineering smooth muscle tissue with a predefined structure. J. Biomed. Mater. Res. 41, 322–332 (1998)

    Google Scholar 

  75. L.G. Cima, J.P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, R. Langer, Tissue engineering by cell transplantation using degradable polymer substrates. J. Biomech. Eng. 113(2), 143–151 (1991)

    Google Scholar 

  76. A.G. Mikos, Y. Bao, L.G. Cima, D.E. Ingber, J.P. Vacanti, R. Langer, Preparation of poly (glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res. 27(2), 183–189 (1993)

    Google Scholar 

  77. D. Eberli, F.L. Freitas, A. Atala, J.J. Yoo, Composite scaffolds for the engineering of hollow organs and tissues. Methods 47(2), 109–115 (2009)

    Google Scholar 

  78. L. Moroni, D. Hamann, L. Paoluzzi, J. Pieper, J.R. de Wijn, C.A. Van Blitterswijk, Regenerating articular tissue by converging technologies. PLoS ONE 3(8), e3032 (2008)

    Google Scholar 

  79. A.M. Martins, Q.P. Pham, P.B. Malafaya, R.A. Sousa, M.E. Gomes, R.M. Raphael, F.K. Kapser, R.L. Reis, A.G. Mikos, The role of lipase and alpha-amylase in the degradation of starch/poly(varepsilon- caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells. Tissue Eng. Part A. 15(2), 295–305 (2009)

    Google Scholar 

  80. Y. Ikada, Scope of tissue engineering, in Tissue Engineering, fundamental and applications. ed. by Y. Ikada (Academic Press, Waltham, 2006), p.29

    Google Scholar 

  81. G. Chen, T. Ushida, T. Tateishi, Development of biodegradable porous scaffolds for tissue engineering. Mater. Sci. Eng. C. 17, 63–69 (2002)

    Google Scholar 

  82. T.M.G. Chu, D.G. Orton, S.J. Hollister, S.E. Feinberg, J.W. Halloran, Mechanical and in vivo performance of Hydroxyapatite implants with controlled architectures. Biomaterials 23, 1283–1293 (2002)

    Google Scholar 

  83. Hollister S. J., Chu T. M., Halloran J. W., Feinberg SE. Design and manufacture of bone replacement scaffolds. In: Cowen S (ed.), Bone Mechanics. Boca Raton, FL: CRC Press, 2000, in press

  84. S.J. Hollister, R.D. Maddox, J.M. Taboas, Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20), 4095–4103 (2002)

    Google Scholar 

  85. D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000)

    Google Scholar 

  86. S. Yang, K.F. Leong, D. Zhaohui, C.K. Chua, The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8(1), 1–11 (2002). https://doi.org/10.1089/107632702753503009

    Article  Google Scholar 

  87. E. Sachlos, J.T. Czernuszka, Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cells Mater. 5, 29–40 (2003). https://doi.org/10.22203/eCM.v005a03

    Article  Google Scholar 

  88. C.M. Cheah, C.K. Chua, K.F. Leong, S.W. Chua, Development of a tissue engineering scaffold structure library for rapid prototyping.Part 1: investigation and classification. Int. J. Adv. Manuf. Technol. 21(4), 291–301 (2003)

    Google Scholar 

  89. D.W. Hutmacher, M. Sittinger, M.V. Risbud, Scaffold-based tissue engineering: rationale for computeraided design and solid free-form fabrication systems. Trends Biotechnol. 22(7), 354–362 (2004)

    Google Scholar 

  90. M. Vladimir, B. Thomas, T. Thomas, F. Gabor, R.M. Roger, Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21(4), 157–161 (2003)

    Google Scholar 

  91. V. Maquet, R. Jerome, Design of macroporous biodegradable polymer scaffolds for cell transplantations. Mater Sci Forum. 250, 15–24 (1997)

    Google Scholar 

  92. D.W. Hutmacher, Scaffold in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000)

    Google Scholar 

  93. D.W. Hutmacher, Scaffold design and fabrication technologies for engineering tissues: state of the art and future perspectives. J. Biomat. Sci. Polym. 12, 107–124 (2001)

    Google Scholar 

  94. S. Partap, J.A. Darr, I.U. Rehman, J.R. Jones, Supercritical carbon dioxide in water emulsion-templated synthesis of porous calcium alginate hydrogels. Adv. Mater. 18, 501–504 (2006)

    Google Scholar 

  95. K. Dixit, N. Sinha, Compressive strength enhancement of carbon nanotube reinforced 13–93B1 bioactive glass scaffolds. J. Nanosci. Nanotechnol. 19, 2738–2746 (2019)

    Google Scholar 

  96. B. Thavornyutikarn, N. Chantarapanich, K. Sitthiseripratip, G.A. Thouas, Q. Chen, Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog. Biomater. 3(2–4), 61–102 (2014). https://doi.org/10.1007/s40204-014-0026-7

    Article  Google Scholar 

  97. B. Subia, J. Kundu, Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications, in Tissue Engineering. ed. by D. Eberli (InTech, 2010). https://doi.org/10.5772/8581

    Chapter  Google Scholar 

  98. H.A. Declercq, T. Desmet, P. Dubruel, M.J. Cornelissen, The role of scaffold architecture and composition on the bone formation by adipose-derived stem cells. Tissue Eng. - Part A 20(1–2), 434–444 (2014). https://doi.org/10.1089/ten.tea.2013.0179

    Article  Google Scholar 

  99. N. Poomathi et al., 3D printing in tissue engineering: a state of the art review of technologies and biomaterials. Rapid Prototyp. J. 26(7), 1313–1334 (2020). https://doi.org/10.1108/RPJ-08-2018-0217

    Article  Google Scholar 

  100. R. Singh, S. Singh, and M. S. J. Hashmi, Implant Materials and Their Processing Technologies. Elsevier Ltd., 2016.

  101. W. Liu et al., Low-temperature deposition manufacturing: a novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. Mater. Sci. Eng. C 70, 976–982 (2017). https://doi.org/10.1016/j.msec.2016.04.014

    Article  Google Scholar 

  102. Y. Liu, S. Fang, Z. Han, D. Liu, Y. Liu, Q. Hu, The research on a new feeding device of low-temperature deposition for fabricating tissue engineering scaffolds. Key Eng. Mater. 522, 92–96 (2012). https://doi.org/10.4028/www.scientific.net/KEM.522.92

    Article  Google Scholar 

  103. C. Liu, J. Tong, J. Ma, D. Wang, X. Feng, Y. Liu, Z. Chen, C. Lao, Low-temperature deposition manufacturing: a versatile material extrusion-based 3D printing technology for fabricating hierarchically porous materials. J. Nanomater. 2019, 1–14 (2019). https://doi.org/10.1155/2019/1291067

    Article  Google Scholar 

  104. W.Y. Yeong, C.K. Chua, K.F. Leong, M. Chandrasekaran, Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22(12), 643–652 (2004). https://doi.org/10.1016/j.tibtech.2004.10.004

    Article  Google Scholar 

  105. T. Phattanaphibul, P. Koomsap, I. Idram, S. Nachaisit, Development of SVM rapid prototyping for scaffold fabrication. Rapid Prototyp. J. 20(2), 90–104 (2014). https://doi.org/10.1108/RPJ-05-2012-0042

    Article  Google Scholar 

  106. P. Koomsap and T. Phattanaphibul, “Exploring SVM Rapid Prototyping in Scaffold Fabrication,” vol. 4, pp. 71–76, 2011

  107. T.B.F. Woodfield, J. Malda, J. De Wijn, F. Péters, J. Riesle, C.A. Van Blitterswijk, Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18), 4149–4161 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.056

    Article  Google Scholar 

  108. F. Wang et al., Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds. Rapid Prototyp. J. 10(1), 42–49 (2004). https://doi.org/10.1108/13552540410512525

    Article  Google Scholar 

  109. G. Vozzi, C. Flaim, A. Ahluwalia, S. Bhatia, Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24(14), 2533–2540 (2003). https://doi.org/10.1016/S0142-9612(03)00052-8

    Article  Google Scholar 

  110. G. Vozzi, A. Previti, D. De Rossi, A. Ahluwalia, Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 8(6), 1089–1098 (2002). https://doi.org/10.1089/107632702320934182

    Article  Google Scholar 

  111. A. Neto, J. Ferreira, Synthetic and marine-derived porous scaffolds for bone tissue engineering. Materials 11(9), 1702 (2018). https://doi.org/10.3390/ma11091702

    Article  Google Scholar 

  112. K. Dixit, N. Sinha, “Additive manufacturing of carbon nanotube reinforced bioactive glass scaffolds for bone tissue engineering,” ASME. J. Eng. Sci. Med. Diagnostics Ther. 4(4), 1–8 (2021)

    Google Scholar 

Download references

Funding

This research received no financial support by any funding organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Imran Ansari.

Ethics declarations

Conflict of interest

The authors dont have any conflict of interest nor have any conflict between any institution and between, both the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.I., Sheikh, N.A. A Review of Bone Regeneration Mechanisms and Bone Scaffold Fabrication Techniques (Conventional and Non-Conventional). J. Inst. Eng. India Ser. C 103, 1485–1513 (2022). https://doi.org/10.1007/s40032-022-00880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-022-00880-2

Keywords

Navigation