Skip to main content

Advertisement

Log in

Energy and Exergy Analysis of a Concrete-Based Thermal Energy Storage System

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Thermal energy storage system became an answer to store the intermittent solar energy in the recent time. In this study, regenerator-type sensible energy storage (SES) of 1 MJ capacity is developed for its application in the low-temperature region and hilly region like Meghalaya. Concrete and water are chosen as the substance to store energy and heat transfer fluid, respectively, owing to their suitable thermophysical properties. The influences of embedded tube diameter and pitch circle diameter (PCD) on the heat storage ratio and heat release ratio are investigated in the present study. Computational work is carried out using COMSOL Multiphysics software, and validation results show a good match with the published results in the literature. Upon optimizing the number of tubes in the preliminary study, 25 embedded tubes are considered for the further analysis. It is found that both the heat storage ratio and heat release ratio increase with increasing pitch circle diameter and embedded tubes diameter. At the same time, both the effective charging time and effective discharging time decrease with increasing pitch circle diameter and embedded tubes diameter. Finally, exergy analysis is performed for SES system. Maximum exergy factor is found in the case of tube arrangement at 6 cm PCD with 1.71 cm embedded tube diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

c p :

Specific heat (J/kgK)

D :

Diameter of the storage bed (cm)

d o :

Outside diameter of the tubes (cm)

k :

Thermal conductivity (W/mK)

L :

Length of storage bed (cm)

n :

Number of tubes (dimensionless)

Q :

Energy (J)

T :

Temperature (°C)

\(\rho\) :

Density (kg/m3)

\(\eta\) :

Efficiency (dimensionless)

ch:

Charging

con:

Concrete

dis:

Discharging

initial:

Initial condition

inlet:

Inlet condition

st:

Storage

References

  1. M. Hamed, A. Fallah, A.B. Brahim, Numerical analysis of an integrated storage solar heater. Int. J. Hydrog. Energy 42(13), 8721–8732 (2017)

    Article  Google Scholar 

  2. S. Khedache, S. Makhlouf, D. Djefel, G. Lefebvre, L. Royon, Preparation and thermal characterization of composite “Paraffin/Red Brick” as a novel form-stable of phase change material for thermal energy storage. Int. J. Hydrog. Energy 40(39), 13771–13776 (2015)

    Article  Google Scholar 

  3. D. Djefel, S. Makhlouf, S. Khedache, G. Lefebvre, L. Royon, Preparation and characterization of stearic acid/olive pomace powder composite as form-stable phase change material. Int. J. Hydrog. Energy 40(39), 13764–13770 (2015)

    Article  Google Scholar 

  4. M. Bhouri, I. Burger, M. Linder, Feasibility analysis of a novel solid-state H2 storage reactor concept based on thermochemical heat storage: MgH2 and Mg (OH)2 as reference materials. Int. J. Hydrog. Energy 41(45), 20549–20561 (2016)

    Article  Google Scholar 

  5. S. Khare, M. DellAmico, C. Knight, S. McGarry, Selection of materials for high temperature sensible energy storage. Sol. Energy Mater. Sol. Cells 115, 114–122 (2013)

    Article  Google Scholar 

  6. R. Tamme, D. Laing, W.D. Steinmann, Advanced thermal energy storage technology for parabolic trough. J. Sol. Energy Eng. 126, 794–800 (2004)

    Article  Google Scholar 

  7. D. Laing, W. Steinmann, R. Tamme, C. Richter, Solid media thermal storage for parabolic trough power plants. Sol. Energy 86, 1283–1289 (2006)

    Article  Google Scholar 

  8. D. Laing, C. Bahl, W. Steinmann, Thermal energy storage for direct steam generation. Sol. Energy 85, 627–633 (2011)

    Article  Google Scholar 

  9. F. Bai, Z. Wang, X. Liye, Numerical simulation of flow and heat transfer process of solid media thermal energy storage unit, in Proceedings of ISES World Congress 2007, Springer, Berlin, pp. 2711–2715 (2008)

  10. C.R.C. Rao, H. Niyas, P. Muthukumar, Performance tests on lab–scale sensible heat storage prototypes. Appl. Therm. Eng. 129, 953–967 (2018)

    Article  Google Scholar 

  11. L. Prasad, P. Muthukumar, Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application. Sol. Energy 97, 217–229 (2013)

    Article  Google Scholar 

  12. M. Liu, W. Saman, F. Bruno, Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sust. Energ. Rev. 16, 2118–2132 (2012)

    Article  Google Scholar 

  13. A.I. Fernandez, M. Martínez, M. Segarra, I. Martorell, L.F. Cabeza, Selection of materials with potential in sensible thermal energy storage. Sol. Energy Mater. Sol. Cells 94(10), 1723–1729 (2010)

    Article  Google Scholar 

  14. R. Boonsu, S. Sukchai, S. Hemavibool, S. Somkun, Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. J. Clean Energy Technol. 4, 101–106 (2016)

    Article  Google Scholar 

  15. F. Agyenim, P. Eames, M. Smyth, Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew. Energy 35, 198–207 (2010)

    Article  Google Scholar 

  16. M.K. Rathod, J. Banerjee, Numerical investigation on latent heat storage unit of different configurations. Int. J. Mech. Mechatron. Eng. 5, 652–657 (2011)

    Google Scholar 

  17. H. Niyas, L. Prasad, P. Muthukumar, Performance investigation of high temperature sensible heat thermal energy storage system during charging and discharging cycles. Clean Technol. Environ. Policy 17, 501–513 (2015)

    Article  Google Scholar 

  18. S. Roy, B.K. Debnath, Heat transfer enhancement of sensible energy storage for low temperature application, in Proceedings of 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum, V001T06A010–V001T06A010 (2018)

  19. M. Eslami, M.A. Bahrami, Sensible and latent thermal energy storage with constructal fins. Int. J. Hydrog. Energy 42(28), 17681–17691 (2017)

    Article  Google Scholar 

  20. R. Lugolole, A. Mawire, K.A. Lentswe, D. Okello, K. Nyeinga, Thermal performance comparison of three sensible heat thermal energy storage systems during charging cycles. Sustain. Energy Technol. Assess. 30, 37–51 (2018)

    Google Scholar 

  21. M.M. Sorour, Performance of a small sensible heat energy storage unit. Energy Convers. Manage. 28(3), 211–217 (1988)

    Article  Google Scholar 

  22. L. Doretti, F. Martelletto, S. Mancin, A simplified analytical approach for concrete sensible thermal energy storages simulation. J. Energy Storage 22, 68–79 (2019)

    Article  Google Scholar 

  23. E. Ozrahat, S. Unalan, Thermal performance of a concrete column as a sensible thermal energy storage medium and a heater. Renew. Energy 111, 561–579 (2017)

    Article  Google Scholar 

  24. V.A. Salomoni, C.E. Majorana, G.M. Giannuzzi, A. Miliozzi, R. Di Maggio, F. Girardi, D. Mele, M. Lucentini, Thermal storage of sensible heat using concrete modules in solar power plants. Sol. Energy 103, 303–315 (2014)

    Article  Google Scholar 

  25. K. Bataineh, A. Gharaibeh, Optimal design for sensible thermal energy storage tank using natural solid materials for a parabolic trough power plant. Sol. Energy 171, 519–525 (2018)

    Article  Google Scholar 

  26. K. Vigneshwaran, G.S. Sodhi, P. Muthukumar, V.K. Arvind, G. Balamurugan, S. Sriram, S. Senthilmurugan, Experimental investigation of a cast-steel based thermal energy storage system. Energy Procedia 158, 4664–4670 (2019)

    Article  Google Scholar 

  27. R. Domanski, G. Fellah, Thermoeconomic analysis of sensible heat, thermal energy storage systems. Appl. Therm. Eng. 18(8), 693–704 (1998)

    Article  Google Scholar 

  28. P. Mahanta, U.K. Saha, A. Dewan, P. Kalita, The influence of temperature and total solid concentration on the gas production rate of a biogas digester. J. Energy S. Afr. 15(4), 112–117 (2004)

    Google Scholar 

  29. R. Nandan, G.G. Roy, T.J. Lienert, T. Debroy, Three dimensional heat and material flow during friction stir welding of mild steel. Acta Mater. 55, 883–895 (2007)

    Article  Google Scholar 

  30. C.O. Popiel, J. Wojtkowiak, Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0 °C to 150 °C). Heat Transf. Eng. 19, 87–101 (1998)

    Article  Google Scholar 

  31. M.A. Rosen, The exergy of stratified thermal energy storages. Sol. Energy 71(3), 173–185 (2001)

    Article  Google Scholar 

  32. G. Li, Sensible heat thermal storage energy and exergy performance evaluations. Renew. Sustain. Energy Rev. 53, 897–923 (2016)

    Article  Google Scholar 

  33. A. Mawire, Performance of sunflower oil as a sensible heat storage medium for domestic applications. J. Energy Storage 5, 1–9 (2016)

    Article  Google Scholar 

  34. S. Debnath, B. Das, P.R. Randive, K.M. Pandey, Performance analysis of solar air collector in the climatic condition of North Eastern India. Energy 165, 281–298 (2018)

    Article  Google Scholar 

  35. B. Das, A. Giri, Combined energy and exergy analysis of a nonisothermal fin array with non-Boussinésq variable property fluid. J. Therm. Sci. Eng. Appl. 8(3), 031010 (2016)

    Article  Google Scholar 

  36. H.H. Ozturk, A. Başcentincelik, Energy and exergy efficiency of a packed-bed heat storage unit for greenhouse heating. Biosyst. Eng. 86, 231–245 (2003)

    Article  Google Scholar 

  37. S. Jegadheeswaran, S.D. Pohekar, T. Kousksou, Exergy based performance evaluation of latent heat thermal storage system: a review. Renew. Sustain. Energy Rev. 14, 2580–2595 (2010)

    Article  Google Scholar 

  38. V.V. Tyagi, A.K. Pandey, D. Buddhi, S.K. Tyagi, Exergy and energy analyses of two different types of PCM based thermal management systems for space air conditioning applications. Energy Convers. Manage. 69, 1–8 (2013)

    Article  Google Scholar 

  39. A. Mawire, M. McPherson, R.R.J. Van den Heetkamp, J.S.P. Mlatho, Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems. Appl. Energy 86, 1246–1252 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a revised and expanded version of an article entitled, “Computational Analysis of Sensible Energy Storage for Low Temperature Application,” Paper No., “128” of the conference “Recent Innovations and Developments in Mechanical Engineering” organized by Mechanical Engineering Department, NIT Meghalaya, Shillong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biplab Kumar Debnath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Das, B., Biswas, A. et al. Energy and Exergy Analysis of a Concrete-Based Thermal Energy Storage System. J. Inst. Eng. India Ser. C 101, 517–529 (2020). https://doi.org/10.1007/s40032-020-00564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-020-00564-9

Keywords

Navigation