Skip to main content

Computational Analysis of Sensible Energy Storage for Low-Temperature Application

  • Conference paper
  • First Online:
Advances in Mechanical Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 2167 Accesses

Abstract

A computational model of regenerator-type sensible energy storage (SES) is developed for 1 MJ storage capacity for low-temperature application. Water and concrete are selected as the heat transfer fluid (HTF) and the material to store energy, respectively. Effects of tube diameter and pitch circle diameter (PCD) on the charging time, discharging time, charging efficiency, discharging efficiency are investigated in the present study. The software named COMSOL Multiphysics, works on finite element method (FEM), is used to carry out the computational work. The computational model is found to be well-matched with the available literature. The effective charging and discharging time decrease with the increasing tube diameter and PCD. The charging efficiencies with PCD 4 cm, 5 cm, and 6 cm are 0.75, 0.89, and 0.93, respectively and with 1.03, 1.37, and 1.71 cm tube diameter are 0.79, 0.89, and 0.93, respectively, at the effective charging time. Further, variations of discharging efficiencies are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

c p :

Specific heat (J/kgK)

D :

Diameter of the storage bed (cm)

do :

Tube’s outside diameter (cm)

k :

Thermal conductivity (W/mK)

L :

Length of storage bed (cm)

n :

Number of tubes (Dimensionless)

Q :

Energy (J)

T :

Temperature (°C)

\( \rho \) :

Density (kg/m3)

\( \eta \) :

Efficiency (Dimensionless)

ch :

Charging

con :

Concrete

dis :

Discharging

initial :

Initial condition

inlet :

Inlet condition

st :

Storage

References

  1. Khare, S., DellAmico, M., Knight, C., McGarry, S.: Selection of materials for high temperature sensible energy storage. Sol. Energy Mater. Sol. Cells 115, 114–122 (2013). https://doi.org/10.1016/j.solmat.2013.03.009

    Article  Google Scholar 

  2. Tamme, R., Laing, D., Steinmann, W.D.: Advanced thermal energy storage technology for parabolic trough. J. Sol. Energy Eng. 126, 794–800 (2004). https://doi.org/10.1115/ISEC2003-44033

    Article  Google Scholar 

  3. Laing, D., Steinmann, W., Tamme, R., Richter, C.: Solid media thermal storage for parabolic trough power plants. Sol. Energy 86, 1283–1289 (2006). https://doi.org/10.1016/j.solener.2006.06.003

    Article  Google Scholar 

  4. Laing, D., Bahl, C., Steinmann, W.: Thermal energy storage for direct steam generation. Sol. Energy 85, 627–633 (2011). https://doi.org/10.1016/j.solener.2010.08.015

    Article  Google Scholar 

  5. Rao, C.R.C., Niyas, H., Muthukumar, P.: Performance tests on lab–scale sensible heat storage prototypes. Appl. Therm. Eng. 129, 953–967 (2018). https://doi.org/10.1016/j.applthermaleng.2017.10.085

    Article  Google Scholar 

  6. Prasad, L., Muthukumar, P.: Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application. Sol. Energy 97, 217–229 (2013). https://doi.org/10.1016/j.solener.2013.08.022

    Article  Google Scholar 

  7. Liu, M., Saman, W., Bruno, F.: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sust. Energ. Rev. 16, 2118–2132 (2012). https://doi.org/10.1016/j.rser.2012.01.020

    Article  Google Scholar 

  8. Boonsu, R., Sukchai, S., Hemavibool, S., Somkun, S.: Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. J. Clean Energy Technol. 4, 101–106 (2016). https://doi.org/10.7763/JOCET.2016.V4.261

    Article  Google Scholar 

  9. Agyenim, F., Eames, P., Smyth, M.: Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew. Energy 35, 198–207 (2010). https://doi.org/10.1016/j.renene.2009.03.010

    Article  Google Scholar 

  10. Rathod, M.K., Banerjee, J.: Numerical investigation on latent heat storage unit of different configurations. Int. J. Mech. Mechatron. Eng. 5, 652–657 (2011)

    Google Scholar 

  11. Niyas, H., Prasad, L., Muthukumar, P.: Performance investigation of high-temperature sensible heat thermal energy storage system during charging and discharging cycles. Clean Techn. Environ. Policy 17, 501–513 (2015). https://doi.org/10.1007/s10098-014-0807-7

    Article  Google Scholar 

  12. Roy, S., Debnath, B.K.: Heat transfer enhancement of sensible energy storage for low temperature application. In: 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum, pp. V001T06A010–V001T06A010. American Society of Mechanical Engineers (2018). https://doi.org/10.1115/power2018-7271

  13. Mahanta, P., Saha, U.K., Dewan, A., Kalita, P.: The influence of temperature and total solid concentration on the gas production rate of a biogas digester. J. Energy South. Afr. 15(4), 112–117 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to TEQIP III for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, S., Das, B., Biswas, A., Debnath, B.K. (2020). Computational Analysis of Sensible Energy Storage for Low-Temperature Application. In: Biswal, B., Sarkar, B., Mahanta, P. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0124-1_116

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0124-1_116

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0123-4

  • Online ISBN: 978-981-15-0124-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics