Skip to main content
Log in

Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5–10 bars instead of 25–30 bars) and the radial injection of powder instead of axial injection with the particle range (1–50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

LPGDS:

Low pressure gas dynamic spray

FEM:

Finite element modeling

CGDS:

Cold gas dynamic spray

CFD:

Computational fluid dynamics

Di :

Inlet diameter

De :

Outlet diameter

Dt :

Throat diameter

Lu :

Convergent length

Ld :

Divergent section length

A, B, C, D, E, F, G, H:

Key points for nozzle

Ωf :

Fluid region

Ωe :

Typical element

ρ g :

Density of the gas

δij :

Components of the identity tensor (Kronecker delta)

v j :

Velocity vector in the jth direction

τ ij :

The stress

g i :

The gravitational acceleration

μ t :

The turbulent viscosity

μ :

The molecular viscosity

k t :

The kinetic energy of turbulence

ε :

The dissipation of kinetic energy of turbulence

ωi :

The weight function

Pi :

Pressure applied at the inlet of the nozzle MPa

x1, x2 :

Variable functions of the position at the axis

χ, α, Ψ :

(Column) vectors of interpolation (shape) functions

References

  1. A.O. Tokarev, Structure of aluminum powder coatings prepared by cold gas dynamic spraying. Met. Sci. Heat Treat. 38(3), 136–139 (1996)

    Article  Google Scholar 

  2. R.C. McCune, A.N. Papyrin, J.N. Hall, W.L. Riggs, P.H. Zajchowski, C.C. Berndt, S. Sampath, An exploration of the cold gas-dynamic spray method for several material systems”, Thermal Spray Science and Technology; ASM International, pp. 1–5 1995

  3. J. Vlcek, A systematic approach to material eligibility for the cold spray process, International Thermal Spray Conference and Exhibition, Orlando, Florida, 5–8 May 2003

  4. D.G. McCartney, Particle-substrate interactions in cold gas dynamic spraying, International Thermal Spray Conference and Exhibition, Orlando, Florida, 5–8 May 2003

  5. H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Bonding mechanism in cold gas spraying. Acta Mater. 51, 4379–4394 (2003)

    Article  Google Scholar 

  6. F. Gärtner Numerical and microstructural investigations of the bonding mechanisms in cold spraying, International Thermal Spray Conference and Exhibition, Orlando, Florida, 5–8 May 2003

  7. R.G.R. Maev, V. Leshchynsky, Introduction to Low Pressure Gas Dynamic Spray Physics and Technology (Wiley2VCH, Weinheim, 2008)

    Google Scholar 

  8. A.P. Alkhimov, A.N. Papyrin, V.F. Dosarev, N.I. Nestorovich, M.M. Shuspanov, Gas dynamic spraying method for applying a coating, U.S Patent 5, 302,414-12, April 1994

  9. R.C. Dykhuizen, M.F. Smith, Gas dynamic principles of cold spray. J. Therm. Spray Technol. 7(2), 205–212 (1998)

    Article  Google Scholar 

  10. A.P. Alkhimov, V.F. Kosarev, S.V. Klinkov, The features of cold spray nozzle design. J. Therm. Spray Technol. 10(2), 375–381 (2001)

    Article  Google Scholar 

  11. M. Grujicic, W.S. DeRosset, D. Helfritch, Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process, in Proceedings of Institution of Mechanical Engineers Vol. 217 Part B: J. Engineering Manufacture

  12. W.-Y. Li, C.J. Li, Optimal design of a novel cold spray gun nozzle at a limited space. J. Therm. Spray Technol. 14(3), 391–396 (2005)

    Article  Google Scholar 

  13. T.-C. Jen, L. Li, W. Cui, Q. Chen, X. Zhang, Numerical investigations on cold gas dynamic spray process with nano and micro size particles. Int. J. Heat Mass Trans. 48, 4384–4396 (2005)

    Article  MATH  Google Scholar 

  14. F. Raletz, M. Vardelle, G. Ezo’o, Critical particle velocity under cold spray conditions. J. Surf. Coat. Technol. 201, 1942–1947 (2006)

    Article  Google Scholar 

  15. W.-Y. Li, Optimal design of a convergent-barrel cold spray nozzle by numerical method. Appl. Surf. Sci. 253, 708–713 (2006)

    Article  Google Scholar 

  16. B. Jodoin, F. Raletz, M. Vardelle, Cold spray modeling and validation using an optical diagnostic method. Surf. Coat. Technol. 200(14–15), 4424–4432 (2006)

    Article  Google Scholar 

  17. Wen-Ya. Li, Optimal design of a cold spray nozzle by numerical analysis of particle velocity. Mater. Des. 28, 2129–2137 (2007)

    Article  Google Scholar 

  18. S.P. Pardhasaradhi, V. Venkatachalapathy, S.V. Joshi, S. Govindan, Optical diagnostics study of gas particle transport phenomena in cold gas dynamic spraying and comparison with model predictions. J. Therm. Spray Technol. 17(4), 551–563 (2008)

    Article  Google Scholar 

  19. R. Lupoi, W.O’Neill, An investigation on powder stream in Cold Gas Spray (CGS) nozzles, V. European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, J.C.F.Pereira and A. Sequeira (Eds), Lisbon, Portugal, 14–17 June 2010

  20. N. Rajaratnam, Turbulent Jets (Elsevier, Amsterdam, 1976)

    Google Scholar 

  21. J.N. Reddy, D.K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics (CRC Press, London, 1994)

    MATH  Google Scholar 

  22. H.C. Huang, Z.H. Li, A.S. Usmani, Finite Element Analysis of Non-Newtonian Flow Theory and Software (Springer, London, 1999)

    Book  MATH  Google Scholar 

  23. FLUENT 12.0

  24. ANSYS 12.0 software

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, T., Walia, R.S., Sharma, P. et al. Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process. J. Inst. Eng. India Ser. C 97, 331–344 (2016). https://doi.org/10.1007/s40032-016-0234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-016-0234-0

Keywords

Navigation