Skip to main content

Advertisement

Log in

Assessment, Categorisation and Prediction of the Landslide-Affected Regions Using Soft Computing and Clustering Techniques

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Landslides are known natural hazard that significantly impacts human lives by damaging assets and infrastructures. It is tough to collect field data due to the non-access of various remote places. Collection of landslide images affected by those faraway places can be a way out for post-landslide assessment. Once a landslide impacts a region, the heavily affected places are more prone to getting affected again in the future. Post-landslide assessment by the proposed model can provide a survey. It contains region-wise, heavily affected, medium-affected landslide accounts and non-affected regions, which can help future decisions like road, building construction, and other socio-economic decisions for the specific regions. Even in the worst landslide again, the region will get minor damage to properties and human lives in the future. The model applies image processing, soft computing, and clustering tools on those collected images and finally produces a prediction, post-assessment and categorisation in terms of heavily affected, medium-affected landslide, and non-affected regions. One hundred fifty statistical features including ripplet coefficient, fractal dimension, autocorrelation coefficient, gray level co-occurrence matrix, gray level run length matrix, Gabor coefficient, moments, histogram, and directional contrast are used in the model. A linear support vector machine for selecting principal features uses seven feature selection methods: Fisher score, FSV, infFS, Laplacian, L0, MCFS, and MUTinfFS. Soft computing models like fuzzy systems, neural networks and genetic algorithms, and hybridisation are applied. Akaike’s information criteria and Bayesian information criteria are used for the best model selection. Classification based on clustering algorithm, viz. partitioning around medoids, K-means, hierarchical single, hierarchical complete, hierarchical centroid, and affinity propagation clustering algorithms, is used. Finally, the optimal number of the clusters is selected based on the values of the Silhouette index, Davies–Bouldin, Calinski–Harabasz, Dunn index, Hubert–Levin, Krzanowski–Lai index. The models’ accuracy (0.88), sensitivity (0.85), specificity (0.91), precision (0.88), G-mean (0.88), and balanced accuracy (0.88) depict a good behaviour. Additionally, the metrics like F1 score (0.86), FMI (0.86), CSI (0.76), kappa (0.76), and MCC (0.76) indicates well balance positive, negative class behaviour and good classification ability of the model. Furthermore, the discriminant power (2.23) also portrays fine positive and negative classes distinguishability and the unbiased models’ classification. The receiver operating characteristic curve (ROC) also indicates the evidence of a better-performing model. Therefore, the model can provide a ready reference for predicting, categorising and assessing landslide-affected regions, which can benefit future planning of the zone concern, which eventually improves the socio-economic condition of the zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Pradhan, S. Lee, M.F. Buchroithner, Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping. Appl. Geomat. 1(1), 3–15 (2009)

    Article  Google Scholar 

  2. B. Pradhan, S. Lee, S. Mansor, M. Buchroithner, N. Jamaluddin, Z. Khujaimah, Utilisation of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. J. Appl. Remote Sens. 2(1), 023542 (2008)

    Article  Google Scholar 

  3. B. Pradhan, S. Lee, Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 25(6), 747–759 (2010)

    Article  Google Scholar 

  4. P. Biswajeet, L. Saro, The utilisation of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model. Earth Sci. Front. 14(6), 143–151 (2007)

    Article  Google Scholar 

  5. G. Martelloni, S. Segoni, R. Fanti, F. Catani, Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9(4), 485–495 (2012)

    Article  Google Scholar 

  6. D.P. Kanungo, S. Sharma, Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas India. Landslides 11(4), 629–638 (2014)

    Article  Google Scholar 

  7. K. Biro, B. Pradhan, M. Buchroithner, F. Makeschin, Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region Sudan. Land Degrad. Develop. 24(1), 90–102 (2013)

    Article  Google Scholar 

  8. M. Mukhlisin, I. Idris, A.S. Salazar, K. Nizam, M.R. Taha, GIS based landslide hazard mapping prediction in Ulu Klang Malaysia. ITB Sci. J. A 42, 163–178 (2010)

    Article  Google Scholar 

  9. E. Psomiadis, A. Papazachariou, K.X. Soulis, D.S. Alexiou, I. Charalampopoulos, Landslide mapping and susceptibility assessment using geospatial analysis and earth observation data. Land 9(5), 133 (2020)

    Article  Google Scholar 

  10. J. Xu, M. Mcpartlon, J. Li, Improved protein structure prediction by deep learning irrespective of co-evolution information. Nat. Mach. Intell. 3(7), 601–609 (2021)

    Article  Google Scholar 

  11. S. Lee, D.G. Evangelista, Earthquake-induced landslide-susceptibility mapping using an artificial neural network. Nat. Hazard. 6(5), 687–695 (2006)

    Article  Google Scholar 

  12. J. Dou, K.-T. Chang, S. Chen, A. Yunus, J.-K. Liu, H. Xia, Z. Zhu, Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm. Remote Sens 7(4), 4318–4342 (2015). https://doi.org/10.3390/rs70404318

    Article  Google Scholar 

  13. A. Akgun, E.A. Sezer, H.A. Nefeslioglu, C. Gokceoglu, B. Pradhan, An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput. Geosci. 38(1), 23–34 (2012)

    Article  Google Scholar 

  14. S. Dimri, R.C. Lakhera, S. Sati, Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4(2), 101–111 (2007)

    Article  Google Scholar 

  15. K. Muthu, M. Petrou, C. Tarantino, P. Blonda, Landslide possibility mapping using fuzzy approaches. IEEE Trans. Geosci. Remote Sens. 46(4), 1253–1265 (2008)

    Article  Google Scholar 

  16. Y. Wu, W. Li, P. Liu, H. Bai, Q. Wang, J. He, Y. Liu, S. Sun, Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu province China. Environ. Earth Sci. 75(5), 422 (2016)

    Article  Google Scholar 

  17. J. Klimeš, Landslide temporal analysis and susceptibility assessment as bases for landslide mitigation, Machu Picchu Peru. Environ. Earth Sci. 70(2), 913–925 (2013)

    Article  Google Scholar 

  18. P.R. Kadavi, C.W. Lee, S. Lee, Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens. 10(8), 1252 (2018)

    Article  Google Scholar 

  19. J. Dou, A.P. Yunus, D.T. Bui, A. Merghadi, M. Sahana, Z. Zhu, C.W. Chen, K. Khosravi, Y. Yang, B.T. Pham, Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island Japan. Sci. Total Environ. 662, 332–346 (2019)

    Article  Google Scholar 

  20. R. Roslee, A.C. Mickey, N. Simon, M.N. Norhisham, Landslide susceptibility analysis (LSA) using weighted overlay method (WOM) along the genting Sempah to Bentong highway Pahang. Malays. J. Geosci. (MJG) 1(2), 13–19 (2017)

    Article  Google Scholar 

  21. X. Chen, W. Chen, GIS-based landslide susceptibility assessment using optimised hybrid machine learning methods. Catena 196, 104833 (2021)

    Article  Google Scholar 

  22. H. Jiang, K. Ting Qiu, D. Thilak, Application of deep learning method in automatic collection and processing of video surveillance data for basketball sports prediction. Arab. J. Sci. Eng. 48(3), 4111–4111 (2021). https://doi.org/10.1007/s13369-021-05884-1

    Article  Google Scholar 

  23. R. Nayak, B.K. Balabantaray, D. Patra, A new single-image super-resolution using efficient feature fusion and patch similarity in non-euclidean space. Arab. J. Sci. Eng. 45(12), 10261–10285 (2020)

    Article  Google Scholar 

  24. R.M. Haralick, Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  25. J. Li, Q. Du, C. Sun, An improved box-counting method for image fractal dimension estimation. Pattern Recogn. 42(11), 2460–2469 (2009)

    Article  MATH  Google Scholar 

  26. M.N. Barros Filho, F.J.A. Sobreira, Accuracy of lacunarity algorithms in texture classification of high spatial resolution images from urban areas. in XXI Congress of the International Society of Photogrammetry and Remote Sensing, (2008) pp. 417–422

  27. B. Fernando, E. Fromont, T. Tuytelaars, Mining mid-level features for image classification. Int. J. Comput. Vis. 108(3), 186–203 (2014)

    Article  MathSciNet  Google Scholar 

  28. M. Mercimek, K. Gulez, T.V. Mumcu, Real object recognition using moment invariants. Sadhana 30(6), 765–775 (2005)

    Article  MATH  Google Scholar 

  29. D.G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  30. A.D. Andrushia, N. Anand, G.P. Arulraj, Evaluation of thermal cracks on fire exposed concrete structures using Ripplet​ transform. Math. Comput. Simul. 180, 93–113 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Ranganath, M.R. Senapati, P.K. Sahu, Estimating the fractal dimension of images using pixel range calculation technique. Vis. Comput. 37(3), 635–650 (2021)

    Article  Google Scholar 

  32. J.C. Brown, O. Houix, S. McAdams, Feature dependence in the automatic identification of musical woodwind instruments. J. Acoust. Soc. Am. 109(3), 1064–1072 (2001)

    Article  Google Scholar 

  33. D.H. Kim, S.Y. Ye, Classification of chronic kidney disease in sonography using the GLCM and artificial neural network. Diagnostics 11(5), 864 (2021)

    Article  Google Scholar 

  34. S. Mushtaq, A.H. Mir, Copy-move detection using gray level run length matrix features, in Optical and Wireless Technologies: Proceedings of OWT 2017. ed. by V. Janyani, M. Tiwari, G. Singh, P. Minzioni (Springer, Singapore, 2018), pp.411–420. https://doi.org/10.1007/978-981-10-7395-3_46

    Chapter  Google Scholar 

  35. V. Mildner, S. Goetze, A. Mertins, Optimisation of gabor features for text-independent speaker identification. in 2007 IEEE International Symposium on Circuits and Systems IEEE (2007) pp. 3932–3935

  36. L.J. Yue, X.S. Wu, Texture feature extraction and classification on contourlet transform and invariant moments. Microelectronics and Computer, (2013) p. 07

  37. H. Zhang, W. Gao, X. Chen, D. Zhao, Learning informative features for spatial histogram-based object detection. in Proceedings 2005 IEEE International Joint Conference on Neural Networks, 2005. vol. 3, IEEE (2005) pp. 1806–1811

  38. G. Srivastava, R. Srivastava, An efficient modification of generalised gradient vector flow using directional contrast for salient object detection and intelligent scene analysis. Multimed. Tools Appl. 79(19), 13599–13619 (2020)

    Article  Google Scholar 

  39. D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data. in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010) pp. 333–342

  40. H. Liu, H. Motoda, Computational methods of feature selection. CRC Press (2007)

  41. J. Wang, S. Zhou, Y. Yi, J. Kong, An improved feature selection based on effective range for classification. Sci. World J. 2014, 1–8 (2014). https://doi.org/10.1155/2014/972125

    Article  Google Scholar 

  42. X. Deng, Y. Li, J. Weng, J. Zhang, Feature selection for text classification: a review. Multimed. Tools Appl. 78(3), 3797–3816 (2019)

    Article  Google Scholar 

  43. J. Wan, Y. Chen, B. Bai, Joint feature extraction and classification in a unified framework for cost-sensitive face recognition. Pattern Recogn. 115, 107927 (2021)

    Article  Google Scholar 

  44. P. Lovato, M. Bicego, M. Cristani, N. Jojic, A. Perina, Feature selection using counting grids: application to microarray data. in Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Springer, Berlin, Heidelberg (2012) pp. 629–637

  45. U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, A.J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumour and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  46. M.A. Shipp, K.N. Ross, P. Tamayo, A.P. Weng, J.L. Kutok, R.C. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G.S. Pinkus, T.S. Ray, Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8(1), 68–74 (2002)

    Article  Google Scholar 

  47. M. Yousef, A. Kumar, B. Bakir-Gungor, Application of biological domain knowledge based feature selection on gene expression data. Entropy 23(1), 2 (2021)

    Article  Google Scholar 

  48. L. Yu, Y. Han, M.E. Berens, Stable gene selection from microarray data via sample weighting. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(1), 262–272 (2011)

    Google Scholar 

  49. W. Duch, T. Wieczorek, J. Biesiada, M. Blachnik, Comparison of feature ranking methods based on information entropy. in 2004 IEEE International Joint Conference on Neural Networks IEEE Cat. No. 04CH37541 vol. 2, IEEE (2004) pp. 1415–1419

  50. I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh, Feature extraction: foundations and applications, vol. 207. (Springer, 2008)

  51. P. Zhu, W. Zuo, L. Zhang, Q. Hu, S.C. Shiu, Unsupervised feature selection by regularised self-representation. Pattern Recogn. 48(2), 438–446 (2015)

    Article  MATH  Google Scholar 

  52. M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering. In Nips 14(14), 585–591 (2001)

    Google Scholar 

  53. A. Kenney, F. Chiaromonte, G. Felici, MIP-BOOST: efficient and effective L0 feature selection for linear regression. J. Comput. Gr. Stat. 30(3), 566–577 (2021). https://doi.org/10.1080/10618600.2020.1845184

    Article  MATH  Google Scholar 

  54. L. Hussain, W. Aziz, I.R. Khan, M.H. Alkinani, J.S. Alowibdi, Machine learning based congestive heart failure detection using feature importance ranking of multimodal features. Math. Biosci. Eng. 18(1), 69–91 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Kullback, Information theory and statistics. Courier Corporation (1997)

  56. Q. Gu, Z. Li, J. Han, Generalised fisher score for feature selection. arXiv preprint arXiv:1202.3725 (2012)

  57. P.S. Bradley, O.L. Mangasarian, Feature selection via concave minimisation and support vector machines. In ICML, vol. 98 (1998) pp. 82–90

  58. G.L. Grinblat, J. Izetta, P.M. Granitto, SVM based feature selection: Why are we using the dual?. in Ibero-American Conference on Artificial Intelligence, (Springer, Berlin, Heidelberg, 2010) pp. 413–422

  59. P. Bonacich, Power and centrality: a family of measures. Am. J. Soc. 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  60. X. Zhu, A.B. Goldberg, J. Van Gael, D. Andrzejewski, Improving diversity in ranking using absorbing random walks. in Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, (2007) pp. 97–104

  61. X. He, P. Niyogi, Locality preserving projections, advances in neural information processing systems16, Vancouver. British Columbia, Canada (2003)

  62. X. He, D. Cai, P. Niyogi, Laplacian score for feature selection. Adv. Neural. Inf. Process. Syst. 18, 507–514 (2005)

    Google Scholar 

  63. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1), 389–422 (2002)

    Article  MATH  Google Scholar 

  64. Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning. in Proceedings of the 24th international conference on Machine learning (2007) pp. 1151–1157

  65. M. Zaffalon, M. Hutter, Robust feature selection using distributions of mutual information. in Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence (UAI-2002) (2002) pp. 577–584

  66. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, NY, 1991), pp.33–36

    Book  MATH  Google Scholar 

  67. E.S. Soofi, Principal information theoretic approaches. J. Am. Stat. Assoc. 95(452), 1349–1353 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  68. E. Hosseini, A.S. Sadiq, K.Z. Ghafoor, D.B. Rawat, M. Saif, X. Yang, Volcano eruption algorithm for solving optimisation problems. Neural Comput. Appl. 33(7), 2321–2337 (2021)

    Article  Google Scholar 

  69. E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines. in Neural networks for signal processing VII. Proceedings of the 1997 IEEE signal processing society workshop, IEEE (1997), pp. 276–285

  70. C.J. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)

    Article  Google Scholar 

  71. V. Vapnik, S.E. Golowich, A. Smola, Support vector method for function approximation, regression estimation, and signal processing. Adv. Neural Inform. Proc. Syst. 9, 281–287 (1997)

    Google Scholar 

  72. Y. Li, M. Jia, X. Han, X.S. Bai, Towards a comprehensive optimisation of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA). Energy 225, 120331 (2021)

    Article  Google Scholar 

  73. R. Janarthanan, R. Balamurali, A. Annapoorani, V. Vimala, Prediction of rainfall using fuzzy logic. Mater. Today Proc. 37, 959–963 (2021)

    Article  Google Scholar 

  74. K.M. Hamdia, X. Zhuang, T. Rabczuk, An efficient optimisation approach for designing machine learning models based on genetic algorithm. Neural Comput. Appl. 33(6), 1923–1933 (2021)

    Article  Google Scholar 

  75. S. Wang, R.V. Rao, P. Chen, Y. Zhang, A. Liu, L. Wei, Abnormal breast detection in mammogram images by feed-forward neural network trained by Jaya algorithm. Fund. Inform. 151(1–4), 191–211 (2017)

    MathSciNet  Google Scholar 

  76. S. Duan, J.C. Principe, Training Deep Architectures Without End-to-End Backpropagation: A Brief Survey. arXiv preprint arXiv:2101.03419 (2021)

  77. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  78. G. Batchuluun, J.H. Kim, H.G. Hong, J.K. Kang, K.R. Park, Fuzzy system based human behaviour recognition by combining behaviour prediction and recognition. Exp. Syst. Appl. 81, 108–133 (2017)

    Article  Google Scholar 

  79. M.S. Chen, S.W. Wang, Fuzzy clustering analysis for optimising fuzzy membership functions. Fuzzy Sets Syst. 103(2), 239–254 (1999)

    Article  Google Scholar 

  80. J. Łȩski, E. Czogała, A new artificial neural network based fuzzy inference system with moving consequents in if–then rules and selected applications. Fuzzy Sets Syst. 108(3), 289–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  81. D. Sinha, E.R. Dougherty, Fuzzification of set inclusion: theory and applications. Fuzzy Sets Syst. 55(1), 15–42 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  82. W. Van Leekwijck, E.E. Kerre, Defuzzification: criteria and classification. Fuzzy Sets Syst. 108(2), 159–178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  83. U. Mehboob, J. Qadir, S. Ali, A. Vasilakos, Genetic algorithms in wireless networking: techniques, applications, and issues. Soft. Comput. 20(6), 2467–2501 (2016)

    Article  Google Scholar 

  84. Z. Michalewicz, Genetic algorithms+ data structures= evolution programs. Springer Science and Business Media (2013)

  85. H. Akaike, Information theory and an extension of the maximum likelihood principle. in: B.N. Pertaran, F. Csaaki, (Eds.), International Symposium on Information Theory, 2nd ed. Acadeemiai Kiadi, Budapest, Hungary, (1973), pp. 267–281

  86. M.D. Adkison, R.M. Peterman, M.F. Lapointe, D.M. Gillis, J. Korman, Alternative models of climatic effects on sockeye salmon, Oncorhynchus nerka, productivity in Bristol Bay, Alaska, and the Fraser River British Columbia. Fish. Oceanogr. 5, 137–152 (1996)

    Article  Google Scholar 

  87. Y. Sakamoto, M. Ishiguro, G. Kitagawa, Akaike Information Statistics (KTK Scientific Publishers/D. Reidel Publishing, Tokyo/Dordrecht, 1986)

    MATH  Google Scholar 

  88. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  89. M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation techniques. J. Intell. Inform. Syst. 17(2), 107–145 (2001)

    Article  MATH  Google Scholar 

  90. T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  MATH  Google Scholar 

  91. K.P. Sinaga, M.S. Yang, Unsupervised K-means clustering algorithm. IEEE Access 8, 80716–80727 (2020)

    Article  Google Scholar 

  92. J. Zhang, Functional clustering based on weighted partitioning around medoid algorithm with estimation of number of clusters. in 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). IEEE (2021), pp. 200–204

  93. S. Chakraborty, D. Paul, S. Das, Hierarchical clustering with optimal transport. Statist. Probab. Lett. 163, 108781 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  94. V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, C. Mathieu, Hierarchical clustering: objective functions and algorithms. J. ACM (JACM) 66(4), 1–42 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  95. P. Govender, V. Sivakumar, Application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980–2019). Atmos. Pollut. Res. 11(1), 40–56 (2020)

    Article  Google Scholar 

  96. E. Fluck, Tangles and single linkage hierarchical clustering. in 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

  97. C.K. Reddy, B. Vinzamuri, A survey of partitional and hierarchical clustering algorithms. in Data clustering. Chapman and Hall/CRC (2018), pp. 87–110

  98. A. Kobren, N. Monath, A. Krishnamurthy, A. McCallum, A hierarchical algorithm for extreme clustering. in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017) pp. 255–264

  99. S. Subedi, H.S. Gang, N.Y. Ko, S.S. Hwang, J.Y. Pyun, Improving indoor fingerprinting positioning with affinity propagation clustering and weighted centroid fingerprint. IEEE Access 7, 31738–31750 (2019)

    Article  Google Scholar 

  100. Z. Wei, Y. Wang, S. He, J. Bao, A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection. Knowl. Based Syst. 116, 1–12 (2017)

    Article  Google Scholar 

  101. B.J. Frey, D. Dueck, Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  102. K. Wang, B. Wang, L. Peng, CVAP: validation for cluster analyses. Data Sci. J. 8, 88–93 (2009). https://doi.org/10.2481/dsj.007-020

    Article  Google Scholar 

  103. N. Bolshakova, F. Azuaje, Cluster validation techniques for genome expression data. Signal Process. 83(4), 825–833 (2003)

    Article  MATH  Google Scholar 

  104. E. Dimitriadou, S. Dolničar, A. Weingessel, An examination of indexes for determining the number of clusters in binary data sets. Psychometrika 67(1), 137–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  105. A.R. Mamat, F.S. Mohamed, M.A. Mohamed, N.M. Rawi, M.I. Awang, Silhouette index for determining optimal k-means clustering on images in different color models. Int. J. Eng. Technol. 7(2.14), 105–109 (2018)

    Article  Google Scholar 

  106. D.K. Yadav, R. Shukla, V. Yadav, An efficient collaborative recommender system for textbooks using silhouette index and K-means clustering technique. Int. J. Adv. Intell. Paradig. 19(2), 233–242 (2021)

    Google Scholar 

  107. G. Chen, S.A. Jaradat, N. Banerjee, T.S. Tanaka, M.S. Ko, M.Q. Zhang, Evaluation and comparison of clustering algorithms in analysing ES cell gene expression data. Stat. Sinica, (2002) pp. 241–262

  108. S. Dudoit, J. Fridlyand, A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 3(7), 1–21 (2002)

    Article  Google Scholar 

  109. M. Misuraca, M. Spano, S. Balbi, BMS: an improved dunn index for document clustering validation. Commun. Stat.Theory Methods 48(20), 5036–5049 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  110. M. Mughnyanti, S. Efendi, M. Zarlis, Analysis of determining centroid clustering x-means algorithm with davies-bouldin index evaluation. in IOP Conference Series: Materials Science and Engineering vol. 725, No. 1. (IOP Publishing, 2020), p. 012128

  111. S. Petrovic, A comparison between the silhouette index and the davies-bouldin index in labelling ids clusters. in Proceedings of the 11th Nordic Workshop of Secure IT Systems vol. (2006), pp. 53–64

  112. J. Kasturi, R. Acharya, M. Ramanathan, An information theoretic approach for analysing temporal patterns of gene expression. Bioinformatics 19(4), 449–458 (2003)

    Article  Google Scholar 

  113. M.N. Simmons, C.B. Ching, M.K. Samplaski, C.H. Park, I.S. Gill, Kidney tumor location measurement using the C index method. J. Urol. 183(5), 1708–1713 (2010)

    Article  Google Scholar 

  114. N. Bolshakova, F. Azuaje, Estimating the number of clusters in DNA microarray data. Methods Inform. Med. 45(2), 153–157 (2006)

    Article  Google Scholar 

  115. P. Keerin, W. Kurutach, T. Boongoen, A cluster-directed framework for neighbour based imputation of missing value in microarray data. Int. J. Data Min. Bioinform. 15(2), 165–193 (2016)

    Article  Google Scholar 

  116. W.J. Krzanowski, Y.T. Lai, A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics 44(1), 23–34 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  117. U. Maulik, S. Bandyopadhyay, Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–1654 (2002)

    Article  Google Scholar 

  118. X. Wang, Y. Xu, An improved index for clustering validation based on silhouette index and Calinski–Harabasz index. In IOP Conference Series: Materials Science and Engineering, vol. 569, No. 5 (IOP Publishing, 2019) p. 052024

  119. G. Shu, B. Zeng, Y.P. Chen, O.H. Smith, Performance assessment of kernel density clustering for gene expression profile data. Comp. Funct. Genomics 4(3), 287–299 (2003)

    Article  Google Scholar 

  120. Y. Zhao, G. Karypis, Data clustering in life sciences. Mol. Biotechnol. 31(1), 55–80 (2005)

    Article  Google Scholar 

  121. I. Quraishi, A. Hasnat, J.P. Choudhury, Selection of optimal pixel resolution for landslide susceptibility analysis within the Bukit Antarabangsa, Kuala Lumpur, by using image processing and multivariate statistical tools. EURASIP J. Image Video Process. 2017(1), 1–12 (2017)

    Article  Google Scholar 

  122. M.A. Hall, G. Holmes, Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 15(6), 1437–1447 (2003)

    Article  Google Scholar 

  123. R.O. Duda, P.E. Hart, Pattern classification. Wiley (2006)

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Iqbal Quraishi.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 620 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quraishi, M.I., Choudhury, J.P. Assessment, Categorisation and Prediction of the Landslide-Affected Regions Using Soft Computing and Clustering Techniques. J. Inst. Eng. India Ser. B 104, 579–602 (2023). https://doi.org/10.1007/s40031-023-00876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-023-00876-1

Keywords

Navigation