Skip to main content
Log in

Modifications in CMOS Dynamic Logic Style: A Review Paper

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Dynamic logic style is used in high performance circuit design because of its fast speed and less transistors requirement as compared to CMOS logic style. But it is not widely accepted for all types of circuit implementations due to its less noise tolerance and charge sharing problems. A small noise at the input of the dynamic logic can change the desired output. Domino logic uses one static CMOS inverter at the output of dynamic node which is more noise immune and consuming very less power as compared to other proposed circuit. In this paper, an overview and classification of these techniques are first presented and then compared according to their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Larsson, C. Svensson, Noise in digital dynamic CMOS circuits. IEEE J. Solid-State Circuits 29, 655–662 (1994)

    Article  Google Scholar 

  2. K.L. Shepard, V. Narayanan, Noise in deep submicron digital design. In Proceedings of International Conference Computer Aided Design, 524–531, 1996

  3. M.H. Anis et al., Energy-efficient noise-tolerant dynamic styles for scaled-down CMOS and MTCMOS technologies. IEEE Trans. VLSI Syst. 10, 71–78 (2002)

    Article  Google Scholar 

  4. A. Alvandpour, R.K. Krishnamurthy, K. Soumyanath, S.Y. Borkar, A conditional keeper technique for sub-0:13 wide dynamic gates. In Proceedings of International Symposium on VLSI Circuits, 29–30, 2001

  5. R.H. Krambeck, C.M. Lee, H.F.S. Law, High-speed compact circuits with CMOS. IEEE J. Solid-State Circuits SC-17, 614–619 (1982)

  6. V.G. Oklobdzija, R.K. Montoye, Design-performance trade-offs in CMOS domino logic. In Proceedings of IEEE Custom Integrated Circuits Conference, 334–337, May 1985

  7. M.H. Anis, M.W. Allam, M.I. Elmasry, High-speed dynamic logic styles for scaled-down CMOS and MTCMOS technologies. In Proceedings of International Symposium on Low-Power Electronics and Design, 155–160, 2000

  8. A. Alvandpour et al., Asub-130-nm conditional keeper technique. IEEE J. Solid-State Circuits 37, 633–638 (2002)

    Article  Google Scholar 

  9. L. Ding, P. Mazumder, On circuit techniques to improve noise immunity of CMOS dynamic logic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12, 910–925 (2004)

  10. C.M. Lee, E.W. Szeto, Zipper CMOS. IEEE Circuits Devices Mag. 2, 10–17 (1986)

    Article  Google Scholar 

  11. J.A. Pretorius, A.S. Shubat, C.A.T. Salama, Charge redistribution and noise margins in domino CMOS logic. IEEE Trans. Circuits Syst. CAS-33, 786–793 (1986)

  12. G.P. D’Souza, Dynamic logic circuit with reduced charge leakage, U.S. Patent 5,483,181, Jan 1996

  13. E.B. Schorn, NMOS charge-sharing prevention device for dynamic logic circuits, U.S. Patent 5,838,169, Nov 1998

  14. L. Wang, N.R. Shanbhag, Noise-tolerant dynamic circuit design. In Proceedings of International Symposium on Circuits Systems, 549–552, 1999

  15. L. Wang, N.R. Shanbag, An energy-efficient noise-tolerant dynamic circuit technique. IEEE Trans. Circuits Syst. II 47, 1300–1306 (2000)

    Article  Google Scholar 

  16. G. Balamurugan, N.R. Shanbhag, Energy-efficient dynamic circuit design in the presence of crosstalk noise. In Proceedings of International Symposium on Low-Power Electronics and Design, 24–29, 1999

  17. G. Balamurugan, The twin-transistor noise-tolerant dynamic circuit technique. IEEE J. Solid-State Circuits 36, 273–280 (2001)

    Article  Google Scholar 

  18. F. Murabayashi et al., 2.5 V novel CMOS circuit techniques for a 150 MHz superscalar RISC processor. In Proceedings on European Solid-State Circuits Conference, 178–181, 1995

  19. F. Murabayashi et al., 2.5 V CMOS circuit techniques for a 200 MHz superscalar RISC processor. IEEE J. Solid-State Circuits 31, 972–980 (1996)

    Article  Google Scholar 

  20. J.J. Covino, Dynamic CMOS circuits with noise immunity, U.S. Patent 5,650,733, July 1997

  21. D.A. Evans, Noise-tolerant dynamic circuits, U.S. Patent 5,793,228, 1998

  22. S. Bobba, I.N. Hajj, Design of dynamic circuits with enhanced noise tolerance. In Proceedings of IEEE International ASIC/SOC Conference, 54–58, 1999

  23. J. Kim, K. Roy, A leakage tolerant high fan-in dynamic circuit design technique. In Proceedings of 27th European Solid-State Circuits Conference, ESSCIRC, Villach, Austria, 309–312, 2001

  24. F. Frustaci, P. Corsonello, G. Cocorullo, A new noise-tolerant dynamic logic circuit design, IEEE Ph.D. Research in Microelectronics and Electronics, PRIME, France, 61–64, 2007

  25. F.M. Hernandez, M.L. Aranda, V. Champac, Noise tolerant improvement in dynamic CMOS logic circuit. IEEE Proc Circuits Devices Syst. 153(6), 565–573 (2006)

    Article  Google Scholar 

  26. F. Tang, K. Zhu, Q. Gan, J.G. Tang, Low-noise and power dynamic logic circuit design based on semi-dynamic logic. in Anti-counterfeiting, Security and Identification, 2008, ASID 2008, 2nd International Conference, 20–23, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetisudha Meher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meher, P., Mahapatra, K. Modifications in CMOS Dynamic Logic Style: A Review Paper. J. Inst. Eng. India Ser. B 96, 391–399 (2015). https://doi.org/10.1007/s40031-014-0150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-014-0150-8

Keywords

Navigation