Skip to main content

Advertisement

Log in

Prediction of Uniaxial Compressive Strength of Rock Using Machine Learning

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

The uniaxial compressive strength of rock is one of the most significant parameters required for analysis of rock mass, its characterization, and design of foundations. Direct determination of the uniaxial compressive strength of rock is time-consuming, expensive, and requires destructive laboratory or field testing. Therefore, indirect methods based on regression analysis are widely used for estimation of the uniaxial compressive strength of rock, which have less accuracy. In this study, machine learning algorithms are used to estimate the uniaxial compressive strength of rock using point load strength, porosity, Schmidt rebound hardness, block punch index, and specific gravity. The performance of each machine learning model is evaluated using statistical parameters, viz., mean absolute error, value account for, and coefficient of determination. It is found that random forest regression is the most suitable model for estimation of uniaxial compressive strength with the minimum mean absolute error of 8.68 MPa and r2-score of 0.94.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. E. Hoek, C. Carranza-Torres, B. Corkum, Hoek-Brown failure criterion-2002 edition. Proc. NARMS-Tac 1(1), 267–273 (2002)

    Google Scholar 

  2. B. Adebayo, A. E. Aladejare, Effect of rock properties on excavation-loading operation in selected quarries, in Advanced materials research, vol. 824. (Trans Tech Publications Ltd, 2013)

  3. R. Ulusay, The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014 (Springer, Berlin, 2014)

    Google Scholar 

  4. V. Palchik, Use of stress–strain model based on Haldane’s distribution function for prediction of elastic modulus. Int. J. Rock Mech. Min. Sci. 44(4), 514–524 (2007)

    Article  Google Scholar 

  5. D.A. Mishra, A. Basu, Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng. Geol. 160, 54–68 (2013)

    Article  Google Scholar 

  6. Y. Wang, A.E. Aladejare, Selection of site-specific regression model for characterization of uniaxial compressive strength of rock. Int. J. Rock Mech. Min. Sci. 75, 73–81 (2015)

    Article  Google Scholar 

  7. A. Aydin, A. Basu, The Schmidt hammer in rock material characterization. Eng. Geol. 81(1), 1–14 (2005)

    Article  Google Scholar 

  8. S. Kahraman, O. Gunaydin, The effect of rock classes on the relation between uniaxial compressive strength and point load index. Bull. Eng. Geol. Environ. 68(3), 345–353 (2009)

    Article  Google Scholar 

  9. A. Basu, M. Kamran, Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int. J. Rock Mech. Min. Sci. 47(5), 823–828 (2010)

    Article  Google Scholar 

  10. M.M. Aliyu et al., Assessing the uniaxial compressive strength of extremely hard cryptocrystalline flint. Int. J. Rock Mech. Min. Sci. 113, 310–321 (2019)

    Article  Google Scholar 

  11. A.E. Aladejare, Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests. J. Rock Mech. Geotech. Eng. 12(2), 256–268 (2020)

    Article  Google Scholar 

  12. Y.M. Li, G.F. Zhao, A numerical integrated approach for the estimation of the uniaxial compression strength of rock from point load tests. Int. J. Rock Mech. Min. Sci. 148, 104939 (2021)

    Article  Google Scholar 

  13. F. Huang, J. Shen, M. Cai, C. Xu, An empirical UCS model for anisotropic blocky rock masses. Rock Mech. Rock Eng. 52(9), 3119–3131 (2019)

    Article  Google Scholar 

  14. D. Gupta, N. Natarajan, Prediction of uniaxial compressive strength of rock samples using density weighted least squares twin support vector regression. Neural Comput. Appl. 33(22), 15843–15850 (2021)

    Article  Google Scholar 

  15. F. Meulenkamp, M.A. Grima, Application of neural networks for the prediction of the uniaxial compressive strength (UCS) from Equotip hardness. Int. J. Rock Mech. Min. Sci. 36(1), 29–39 (1999)

    Article  Google Scholar 

  16. B. Tiryaki, Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees. Eng. Geol. 99(1–2), 51–60 (2008)

    Article  Google Scholar 

  17. K. Zorlu et al., Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 96(3–4), 141–158 (2008)

    Article  Google Scholar 

  18. S. Dehghan et al., Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min. Sci. Technol. (China) 20(1), 41–46 (2010)

    Article  Google Scholar 

  19. A. Cevik et al., Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl. Soft Comput. 11(2), 2587–2594 (2011)

    Article  Google Scholar 

  20. D. Jahed Armaghani, V. Safari, A. Fahimifar, M. Monjezi, M.A. Mohammadi, Uniaxial compressive strength prediction through a new technique based on gene expression programming. Neural Comput. Appl. 30(11), 3523–3532 (2018)

    Article  Google Scholar 

  21. H. Zhang, S. Wu, Z. Zhang, Prediction of uniaxial compressive strength of rock via genetic algorithm—selective ensemble learning. Nat. Resour. Res. 31(3), 1721–1737 (2022)

    Article  Google Scholar 

  22. M.A. Grima, R. Babuška, Fuzzy model for the prediction of uniaxial compressive strength of rock samples. Int. J. Rock Mech. Min. Sci. 36(3), 339–349 (1999)

    Article  Google Scholar 

  23. C. Gokceoglu, A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Eng. Geol. 66(1–2), 39–51 (2002)

    Article  Google Scholar 

  24. C. Gokceoglu, K. Zorlu, A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng. Appl. Artif. Intell. 17(1), 61–72 (2004)

    Article  Google Scholar 

  25. H. Sonmez, E.R.G.Ü.N. Tuncay, C.A.N.D.A.N. Gokceoglu, Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci. 41(5), 717–729 (2004)

    Article  Google Scholar 

  26. M. Karakus, B.Ü.L.E.N.T. Tutmez, Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock Mech. Rock Eng. 39(1), 45–57 (2006)

    Article  Google Scholar 

  27. M. Rezaei, A. Majdi, M. Monjezi, An intelligent approach to predict uniaxial compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Comput. Appl. 24(1), 233–241 (2014)

    Article  Google Scholar 

  28. D.K. Ghosh, M. Srivastava, Point-load strength: an index for classification of rock material. Bull. Int. Assoc. Eng. Geol.-Bull. de l’Assoc Int. de Géol. de l’Ing. 44(1), 27–33 (1991)

    Article  Google Scholar 

  29. A. Tuğrul, I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 51(4), 303–317 (1999)

    Article  Google Scholar 

  30. A.A. Al-Harthi, R.M. Al-Amri, W.M. Shehata, The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng. Geol. 54(3–4), 313–320 (1999)

    Article  Google Scholar 

  31. A. Tuğrul, O. Gürpinar, A proposed weathering classification for basalts and their engineering properties (Turkey). Bull. Eng. Geol. Env. 55(1), 139–149 (1997)

    Article  Google Scholar 

  32. H.J. Smith, The point load test for weak rock in dredging applications. Int. J. Rock Mech. Min. Sci. 34(3–4), 295-e1 (1997)

    Article  Google Scholar 

  33. K.Y. Haramy, M.J. DeMarco, Use of the Schmidt hammer for rock and coal testing, in The 26th US symposium on rock mechanics (USRMS). (American Rock Mechanics Association, 1985)

  34. R. Chatterjee, M. Mukhopadhyay, Petrophysical and geomechanical properties of rocks from the oilfields of the Krishna-Godavari and Cauvery Basins, India. Bull. Eng. Geol. Env. 61(2), 169–178 (2002)

    Article  Google Scholar 

  35. V.K. Singh, D.P. Singh, Correlation between point load index and compressive strength for quartzite rocks. Geotech. Geol. Eng. 11(4), 269–272 (1993)

    Article  Google Scholar 

  36. V. Gupta, Non-destructive testing of some Higher Himalayan Rocks in the Satluj Valley. Bull. Eng. Geol. Env. 68(3), 409–416 (2009)

    Article  Google Scholar 

  37. M. Awad, R. Khanna, Support vector regression (Efficient learning machines. Apress, Berkeley, CA, 2015), pp.67–80

    Google Scholar 

  38. A.J. Smola, B. Schölkopf, A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  39. S. Suthaharan, Decision tree learning, in Machine learning models and algorithms for big data classification, pp. 237–269 (Springer, Boston, MA, 2016)

  40. A.M. Hanna, G. Morcous, M. Helmy, Efficiency of pile groups installed in cohesionless soil using artificial neural networks. Can. Geotech. J. 41(6), 1241–1249 (2004)

    Article  Google Scholar 

  41. L. Buitinck, et al. API design for machine learning software: experiences from the scikit-learn project. http://arxiv.org/abs/1309.0238 (2013)

  42. McKinney, Wes. "Data structures for statistical computing in python." Proceedings of the 9th Python in Science Conference. Vol. 445. 2010.

  43. J.D. Hunter, Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  44. S. Dadhich, J.K. Sharma, M. Madhira, Prediction of ultimate bearing capacity of aggregate pier reinforced clay using machine learning. Int. J. Geosynth. Ground Eng. 7(2), 1–16 (2021)

    Article  Google Scholar 

  45. K.T. Chau, R.H.C. Wong, Uniaxial compressive strength and point load strength of rocks, in International journal of rock mechanics and mining sciences and geomechanics abstracts, vol. 33. no. 2. (Pergamon, 1996)

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Dadhich.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadhich, S., Sharma, J.K. & Madhira, M. Prediction of Uniaxial Compressive Strength of Rock Using Machine Learning. J. Inst. Eng. India Ser. A 103, 1209–1224 (2022). https://doi.org/10.1007/s40030-022-00688-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-022-00688-4

Keywords

Navigation