Skip to main content
Log in

Abstract

Recent developments in the field of topological quantum materials have stimulated the search for materials that could serve as the building blocks for next-generation memory applications. Due to their intriguing topological properties, such as flat bands, Dirac nodes, and Weyl points, kagome magnets are anticipated to be the leading materials for this application. In this mini review, we discuss some of the recent advancements in binary kagome magnets, both ferromagnetic and anti-ferromagnetic, for use as emerging memory devices. First, we discuss ferromagnetic kagome magnets, specifically Fe\(_3\)Sn\(_2\), and then we discuss non-collinear antiferromagnetic kagome magnets, Mn\(_3\)Sn and Mn\(_3\)Ir. Finally, we discuss collinear antiferromagnetic kagome magnet, FeSn. In each of the aforementioned sections, we begin with a discussion of their topological, structural, and magnetic properties, followed by application-specific studies such as spin-orbit torques (SOT). In the final section, we discuss the current state of kagome magnets for efficient, faster, denser, and reliable memory technologies with focus on the SOT switching and observation/manipulation of skyrmions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N, Tokura Y (2001) Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291(5513):2573–2576

    ADS  Google Scholar 

  2. Nakatsuji S, Kiyohara N, Higo T (2015) Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527(7577):212–215

    ADS  Google Scholar 

  3. Kumar K, Sun K, Fradkin E (2015) Chiral spin liquids on the kagome lattice. Phys Rev B 92(9):094433

    ADS  Google Scholar 

  4. Wietek A, Sterdyniak A, Läuchli AM (2015) Nature of chiral spin liquids on the kagome lattice. Phys Rev B 92(12):125122

    ADS  Google Scholar 

  5. Hou Z, Zhang Q, Xu G, Zhang S, Gong C, Ding B, Li H, Xu F, Yao Y, Liu E et al (2019) Manipulating the topology of nanoscale skyrmion bubbles by spatially geometric confinement. ACS Nano 13(1):922–929

    Google Scholar 

  6. Pereiro M, Yudin D, Chico J, Etz C, Eriksson O, Bergman A (2014) Topological excitations in a kagome magnet. Nat Commun 5(1):1–11

    Google Scholar 

  7. Mekata M (2003) Kagome: the story of the basketweave lattice. Phys Today 56(2):12

    Google Scholar 

  8. Lin Z, Choi J-H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z et al (2018) Flatbands and emergent ferromagnetic ordering in Fe\(_3\)Sn\(_2\) kagome lattices. Phys Rev Lett 121(9):096401

    ADS  Google Scholar 

  9. Kang M, Fang S, Ye L, Po HC, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky JG et al (2020) Topological flat bands in frustrated kagome lattice CoSn. Nat Commun 11(1):1–9

    Google Scholar 

  10. Kang M, Ye L, Fang S, You J-S, Levitan A, Han M, Facio JI, Jozwiak C, Bostwick A, Rotenberg E et al (2020) Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat Mater 19(2):163–169

    ADS  Google Scholar 

  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva I, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    ADS  Google Scholar 

  12. Kariyado T, Hatsugai Y (2015) Manipulation of Dirac cones in mechanical graphene. Sci Rep 5(1):1–8

    Google Scholar 

  13. Lin Z, Wang C, Wang P, Yi S, Li L, Zhang Q, Wang Y, Wang Z, Huang H, Sun Y et al (2020) Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry. Phys Rev B 102(15):155103

    ADS  Google Scholar 

  14. Xie Y, Chen L, Chen T, Wang Q, Yin Q, Stewart JR, Stone MB, Daemen LL, Feng E, Cao H et al (2021) Spin excitations in metallic kagome lattice FeSn and CoSn. Commun Phys 4(1):1–11

    Google Scholar 

  15. Xu S-Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C-C et al (2015) Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349(6248):613–617

    ADS  Google Scholar 

  16. Armitage N, Mele E, Vishwanath A (2018) Weyl and Dirac semimetals in three-dimensional solids. Rev Mod Phys 90(1):015001

    MathSciNet  ADS  Google Scholar 

  17. Zheng H, Zahid Hasan M (2018) Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: a review. Adv. Phys.: X 3(1):1466661

    Google Scholar 

  18. Burkov A (2016) Topological semimetals. Nat Mater 15(11):1145–1148

    MathSciNet  ADS  Google Scholar 

  19. Hasan MZ, Xu S-Y, Bian G (2015) Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys Scr 2015(T164):014001

    Google Scholar 

  20. Vafek O, Vishwanath A (2014) Dirac fermions in solids: From high \(T_{\rm C}\) cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5(1):83–112

    ADS  Google Scholar 

  21. Hasan MZ, Chang G, Belopolski I, Bian G, Xu S-Y, Yin J-X (2021) Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat Rev Mater 6(9):784–803

    ADS  Google Scholar 

  22. Ye L, Kang M, Liu J, Von Cube F, Wicker CR, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell DC et al (2018) Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555(7698):638–642

    ADS  Google Scholar 

  23. Lin Z-Z, Chen X (2020) Tunable massive Dirac fermions in ferromagnetic Fe\(_3\)Sn\(_2\) kagome lattice. Phys Status Solidi Rapid Res Lett 14(5):1900705

    ADS  Google Scholar 

  24. Miyahara S, Kusuta S, Furukawa N (2007) BCS theory on a flat band lattice. Phys. C: Supercond. Appl. 460:1145–1146

    ADS  Google Scholar 

  25. Tasaki H (1998) From Nagaoka’s ferromagnetism to flat-band ferromagnetism and beyond: an introduction to ferromagnetism in the Hubbard model. Prog Theor Phys 99(4):489–548

    ADS  Google Scholar 

  26. Tang E, Mei J-W, Wen X-G (2011) High-temperature fractional quantum Hall states. Phys Rev Lett 106(23):236802

    ADS  Google Scholar 

  27. Yin J-X, Ma W, Cochran TA, Xu X, Zhang SS, Tien H-J, Shumiya N, Cheng G, Jiang K, Lian B et al (2020) Quantum-limit Chern topological magnetism in TbMn\(_6\)Sn\(_6\). Nature 583(7817):533–536

    ADS  Google Scholar 

  28. Kim K, Seo J, Lee E, Ko K-T, Kim B, Jang BG, Ok JM, Lee J, Jo YJ, Kang W et al (2018) Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat Mater 17(9):794–799

    ADS  Google Scholar 

  29. Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S-Y, Liu D, Liang A, Xu Q et al (2018) Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat Phys 14(11):1125–1131

    Google Scholar 

  30. Khan KIA, Yadav RS, Bangar H, Kumar A, Chowdhury N, Muduli PK, Muduli PK (2022) Intrinsic anomalous Hall effect in thin films of topological kagome ferromagnet Fe\(_3\)Sn\(_2\). Nanoscale

  31. Bangar H, Khan KIA, Kumar A, Chowdhury N, Muduli PK, Muduli PK (2023) Large spin hall conductivity in epitaxial thin films of kagome antiferromagnet Mn3Sn at room temperature. Adv Quantum Technol 6(1):2200115

    Google Scholar 

  32. Kumar A, Gupta P, Chowdhury N, Khan KIA, Shashank U, Gupta S, Fukuma Y, Chaudhary S, Muduli PK (2023) Interfacial origin of unconventional spin-orbit torque in Py/γ−IrMn3. Adv Quantum Technol. https://doi.org/10.1002/qute.202300092

    Article  Google Scholar 

  33. Yan B, Felser C (2017) Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8:337–354

    ADS  Google Scholar 

  34. Yao M, Lee H, Xu N, Wang Y, Ma J, Yazyev O, Xiong Y, Shi M, Aeppli G, Soh Y (2018) Switchable Weyl nodes in topological Kagome ferromagnet Fe\(_3\)Sn\(_2\). arXiv preprint arXiv:1810.01514

  35. Muduli P, Higo T, Nishikawa T, Qu D, Isshiki H, Kondou K, Nishio-Hamane D, Nakatsuji S, Otani Y (2019) Evaluation of spin diffusion length and spin Hall angle of the antiferromagnetic Weyl semimetal Mn\(_3\)Sn. Phys Rev B 99(18):184425

    ADS  Google Scholar 

  36. Zhang Y, Železnỳ J, Sun Y, Van Den Brink J, Yan B (2018) Spin Hall effect emerging from a noncollinear magnetic lattice without spin-orbit coupling. New J Phys 20(7):073028

    Google Scholar 

  37. Kondou K, Chen H, Tomita T, Ikhlas M, Higo T, MacDonald AH, Nakatsuji S, Otani Y (2021) Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet. Nat Commun 12(1):1–8

    Google Scholar 

  38. Kimata M, Chen H, Kondou K, Sugimoto S, Muduli PK, Ikhlas M, Omori Y, Tomita T, MacDonald A, Nakatsuji S et al (2019) Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565(7741):627–630

    ADS  Google Scholar 

  39. Hu S, Shao D-F, Yang H, Pan C, Fu Z, Tang M, Yang Y, Fan W, Zhou S, Tsymbal EY et al (2022) Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat Commun 13(1):1–7

    Google Scholar 

  40. Giefers H, Nicol M (2006) High pressure X-ray diffraction study of all Fe-Sn intermetallic compounds and one Fe-Sn solid solution. J Alloys Compd 422(1–2):132–144

    Google Scholar 

  41. Sales BC, Yan J, Meier WR, Christianson AD, Okamoto S, McGuire MA (2019) Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Phys Rev Mater 3(11):114203

    Google Scholar 

  42. Li H, Zhao H, Yin Q, Wang Q, Ren Z, Sharma S, Lei H, Wang Z, Zeljkovic I (2022) Spin-polarized imaging of the antiferromagnetic structure and field-tunable bound states in kagome magnet FeSn. Science 12:14525

    Google Scholar 

  43. Fenner L, Dee A, Wills A (2009) Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe\(_3\)Sn\(_2\). J Condens Matter Phys 21(45):452202

    ADS  Google Scholar 

  44. Kida T, Fenner L, Dee A, Terasaki I, Hagiwara M, Wills A (2011) The giant anomalous Hall effect in the ferromagnet Fe\(_3\)Sn\(_2\)-a frustrated kagome metal. J Condens Matter Phys 23(11):112205

    ADS  Google Scholar 

  45. Wang Q, Sun S, Zhang X, Pang F, Lei H (2016) Anomalous Hall effect in a ferromagnetic Fe\(_3\)Sn\(_2\) single crystal with a geometrically frustrated Fe bilayer kagome lattice. Phys Rev B 94(7):075135

    ADS  Google Scholar 

  46. Tanaka H, Fujisawa Y, Kuroda K, Noguchi R, Sakuragi S, Bareille C, Smith B, Cacho C, Jung SW, Muro T et al (2020) Three-dimensional electronic structure in ferromagnetic Fe\(_3\)Sn\(_2\) with breathing kagome bilayers. Phys Rev B 101(16):161114

    ADS  Google Scholar 

  47. Wu P, Song J, Yu X, Wang Y, Xia K, Hong B, Zu L, Du Y, Vallobra P, Liu F et al (2021) Evidence of spin reorientation and anharmonicity in kagome ferromagnet Fe\(_3\)Sn\(_2\). Appl Phys Lett 119(8):082401

    ADS  Google Scholar 

  48. Ekahana SA, Soh Y, Tamai A, Gosálbez-Martínez D, Yao M, Hunter A, Fan W, Wang Y, Li J, Kleibert A, et al. (2022) Anomalous quasiparticles in the zone center electron pocket of the kagom\(\backslash\)’e ferromagnet Fe\(_3\)Sn\(_2\). arXiv preprint arXiv:2206.13750

  49. Karplus R, Luttinger J (1954) Hall effect in ferromagnetics. Phys Rev 95(5):1154

    MATH  ADS  Google Scholar 

  50. Smit J (1958) The spontaneous Hall effect in ferromagnetics II. Physica 24(1–5):39–51

    ADS  Google Scholar 

  51. Berger L (1970) Side-jump mechanism for the Hall effect of ferromagnets. Phys Rev B 2(11):4559

    ADS  Google Scholar 

  52. Volkenshtein N, Fedorov G (1960) Temperature dependence of the Hall effect of pure ferromagnets. Sov Phys JETP 11:48–50

    Google Scholar 

  53. Kaul SN (1979) Anomalous Hall effect in nickel and nickel-rich nickel-copper alloys. Phys Rev B 20(12):5122

    ADS  Google Scholar 

  54. Khadka D, Thapaliya TR, Hurtado Parra S, Wen J, Need R, Kikkawa JM, Huang SX (2020) Anomalous Hall and Nernst effects in epitaxial films of topological kagome magnet Fe\(_3\)Sn\(_2\). Phys Rev Mater 4:084203

    Google Scholar 

  55. O’Neill CD, Wills AS, Huxley AD (2019) Possible topological contribution to the anomalous Hall effect of the noncollinear ferromagnet Fe\(_3\)Sn\(_2\). Phys Rev B 100(17):174420

    ADS  Google Scholar 

  56. Bolens A, Nagaosa N (2019) Topological states on the breathing kagome lattice. Phys Rev B 99(16):165141

    ADS  Google Scholar 

  57. Manchon A, Železnỳ J, Miron IM, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P (2019) Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev Mod Phys 91(3):035004

    MathSciNet  ADS  Google Scholar 

  58. Liu L, Pai C-F, Ralph D, Buhrman R (2012) Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. Phys Rev Lett 109(18):186602

    ADS  Google Scholar 

  59. Demidov VE, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov SO (2012) Magnetic nano-oscillator driven by pure spin current. Nat Mater 11:1028

    ADS  Google Scholar 

  60. Kumar A, Rajabali M, González VH, Zahedinejad M, Houshang A, Åkerman J (2022) Fabrication of voltage-gated spin Hall nano-oscillators. Nanoscale 14(4):1432–1439

    Google Scholar 

  61. Miron IM, Garello K, Gaudin G, Zermatten P-J, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P (2011) Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476(7359):189–193

    ADS  Google Scholar 

  62. Fulara H, Zahedinejad M, Khymyn R, Dvornik M, Fukami S, Kanai S, Ohno H, Åkerman J (2020) Giant voltage-controlled modulation of spin Hall nano-oscillator damping. Nat Commun 11(1):1–7

    Google Scholar 

  63. Lyalin I, Cheng S, Kawakami RK (2021) Spin-Orbit Torque in Bilayers of Kagome Ferromagnet Fe\(_3\)Sn\(_2\) and Pt. Nano Lett 21(16):6975–6982

    ADS  Google Scholar 

  64. Kumar A, Sharma R, Ali Khan KI, Murapaka C, Lim GJ, Lew WS, Chaudhary S, Muduli PK (2021) Large damping-like spin-orbit torque and improved device performance utilizing mixed-phase Ta. ACS Appl Ele Mater 3(7):3139–3146

    Google Scholar 

  65. Liu L, Moriyama T, Ralph D, Buhrman R (2011) Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys Rev Lett 106(3):036601

    ADS  Google Scholar 

  66. Železnỳ J, Zhang Y, Felser C, Yan B (2017) Spin-polarized current in noncollinear antiferromagnets. Phys Rev Lett 119(18):187204

    ADS  Google Scholar 

  67. Krén E, Paitz J, Zimmer G, Zsoldos É (1975) Study of the magnetic phase transformation in the Mn\(_3\)Sn phase. Physica B+ C 80(1–4):226–230

    ADS  Google Scholar 

  68. Tomiyoshi S, Yamaguchi Y (1982) Magnetic structure and weak ferromagnetism of Mn\(_3\)Sn studied by polarized neutron diffraction. J Phys Soc Jpn 51(8):2478–2486

    ADS  Google Scholar 

  69. Kuroda K, Tomita T, Suzuki M-T, Bareille C, Nugroho A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S et al (2017) Evidence for magnetic Weyl fermions in a correlated metal. Nat Mater 16(11):1090–1095

    ADS  Google Scholar 

  70. Wawrzik D, You J-S, Facio JI, Van Den Brink J, Sodemann I (2021) Infinite Berry curvature of Weyl Fermi arcs. Phys Rev Lett 127(5):056601

    MathSciNet  ADS  Google Scholar 

  71. Zhang Y, Sun Y, Yan B (2018) Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys Rev B 97(4):041101

    ADS  Google Scholar 

  72. Higo T, Man H, Gopman DB, Wu L, Koretsune T, van’t Erve OM, Kabanov YP, Rees D, Li Y, Suzuki M-T et al (2018) Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat Photonics 12(2):73–78

    ADS  Google Scholar 

  73. Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP (2010) Anomalous Hall effect. Rev Mod Phys 82(2):1539

    ADS  Google Scholar 

  74. Chen H, Niu Q, MacDonald AH (2014) Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys Rev Lett 112(1):017205

    ADS  Google Scholar 

  75. Kübler J, Felser C (2014) Non-collinear antiferromagnets and the anomalous Hall effect. EPL (Europhysics Letters) 108(6):67001

    ADS  Google Scholar 

  76. Zhou J, Shu X, Liu Y, Wang X, Lin W, Chen S, Liu L, Xie Q, Hong T, Yang P et al (2020) Magnetic asymmetry induced anomalous spin-orbit torque in IrMn. Phys Rev B 101(18):184403

    ADS  Google Scholar 

  77. Fan R, Aboljadayel R, Dobrynin A, Bencok P, Ward R, Steadman P (2022) Dependence of exchange bias on structure of antiferromagnet in Fe/IrMn\(_3\). J Magn Magn Mater 546:168678

    Google Scholar 

  78. Iwaki H, Kimata M, Ikebuchi T, Kobayashi Y, Oda K, Shiota Y, Ono T, Moriyama T (2020) Large anomalous Hall effect in L1\(_2\)-ordered antiferromagnetic Mn\(_3\)Ir thin films. Appl Phys Lett 116(2):022408

    ADS  Google Scholar 

  79. Jara AA, Barsukov I, Youngblood B, Chen Y-J, Read J, Chen H, Braganca P, Krivorotov IN (2016) Highly Textured IrMn\(_3\) (111) Thin Films Grown by Magnetron Sputtering. IEEE Magn Lett 7:1–5

    Google Scholar 

  80. Yamaoka T (1974) Antiferromagnetism in \(\gamma\)-Phase Mn-Ir Alloys. J Phys Soc Jpn 36(2):445–450

    ADS  Google Scholar 

  81. Zhang W, Han W, Yang S-H, Sun Y, Zhang Y, Yan B, Parkin SS (2016) Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn\(_3\). Sci Adv 2(9):1600759

    ADS  Google Scholar 

  82. Yamaguchi K, Watanabe H (1967) Neutron diffraction study of FeSn. J Phys Soc Jpn 22(5):1210–1213

    ADS  Google Scholar 

  83. Kulshreshtha S, Raj P (1981) Anisotropic hyperfine fields in FeSn by Mossbauer spectroscopy. J Phys F: Met Phys 11(1):281

    ADS  Google Scholar 

  84. Han M, Inoue H, Fang S, John C, Ye L, Chan MK, Graf D, Suzuki T, Ghimire MP, Cho WJ et al (2021) Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn. Nat Commun 12(1):1–10

    Google Scholar 

  85. Inoue H, Han M, Ye L, Suzuki T, Checkelsky JG (2019) Molecular beam epitaxy growth of antiferromagnetic Kagome metal FeSn. Appl Phys Lett 115(7):072403

    ADS  Google Scholar 

  86. Hong D, Liu C, Hsiao H-W, Jin D, Pearson JE, Zuo J-M, Bhattacharya A (2020) Molecular beam epitaxy of the magnetic kagome metal FeSn on LaAlO\(_3\) (111). AIP Adv 10(10):105017

    ADS  Google Scholar 

  87. Ye L, Chan MK, McDonald RD, Graf D, Kang M, Liu J, Suzuki T, Comin R, Fu L, Checkelsky JG (2019) de Haas-van Alphen effect of correlated Dirac states in kagome metal Fe\(_3\)Sn\(_2\). Nat Commun 10(1):1–8

    Google Scholar 

  88. Kent AD, Worledge DC (2015) A new spin on magnetic memories. Nat Nano 10(3):187–191

    Google Scholar 

  89. Wang K, Alzate J, Amiri PK (2013) Low-power non-volatile spintronic memory: STT-RAM and beyond. J Phys D Appl Phys 46(7):074003

    ADS  Google Scholar 

  90. Gupta M, Perumkunnil M, Garello K, Rao S, Yasin F, Kar G, Furnemont A (2020) High-density SOT-MRAM technology and design specifications for the embedded domain at 5nm node. In: 2020 IEEE international electron devices meeting (IEDM), pp 24–5. IEEE

  91. Miron IM, Garello K, Gaudin G, Zermatten P-J, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P (2011) Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476(7359):189–193

    ADS  Google Scholar 

  92. Yadav RS, Gupta P, Holla A, Ali Khan KI, Muduli PK, Bhowmik D (2023) Demonstration of synaptic behavior in a heavy-metal-ferromagnetic-metal-oxide-heterostructure-based spintronic device for on-chip learning in crossbar-array-based neural networks. ACS Appl Electron Mater 5(1):484–497

    Google Scholar 

  93. Garello K, Yasin F, Couet S, Souriau L, Swerts J, Rao S, Van Beek S, Kim W, Liu E, Kundu S et al (2018) SOT-MRAM 300 mm integration for low power and ultrafast embedded memories. In: 2018 IEEE symposium on VLSI Circuits, pp 81–82. IEEE

  94. Liu L, Pai C-F, Li Y, Tseng H, Ralph D, Buhrman R (2012) Spin-torque switching with the giant spin hall effect of tantalum. Science 336(6081):555–558

    ADS  Google Scholar 

  95. Fukami S, Zhang C, DuttaGupta S, Kurenkov A, Ohno H (2016) Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat Mater 15(5):535–541

    ADS  Google Scholar 

  96. Tsai H, Higo T, Kondou K, Sakamoto S, Kobayashi A, Matsuo T, Miwa S, Otani Y, Nakatsuji S (2021) Large Hall signal due to electrical switching of an antiferromagnetic Weyl semimetal state. Small Sci 1(5):2000025

    Google Scholar 

  97. Du Q, Han M-G, Liu Y, Ren W, Zhu Y, Petrovic C (2020) Room-Temperature Skyrmion Thermopower in Fe\(_3\)Sn\(_2\). Adv Quantum Technol 3(10):2000058

    Google Scholar 

  98. Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y (2018) Antiferromagnetic spintronics. Rev Mod Phys 90(1):015005

    MathSciNet  ADS  Google Scholar 

  99. Wadley P, Howells B, Železnỳ J, Andrews C, Hills V, Campion RP, Novák V, Olejník K, Maccherozzi F, Dhesi S et al (2016) Electrical switching of an antiferromagnet. Science 351(6273):587–590

    ADS  Google Scholar 

  100. Tsai H, Higo T, Kondou K, Nomoto T, Sakai A, Kobayashi A, Nakano T, Yakushiji K, Arita R, Miwa S et al (2020) Electrical manipulation of a topological antiferromagnetic state. Nature 580(7805):608–613

    ADS  Google Scholar 

  101. Tsai H, Higo T, Kondou K, Kobayashi A, Nakano T, Yakushiji K, Miwa S, Otani Y, Nakatsuji S (2021) Spin-orbit torque switching of the antiferromagnetic state in polycrystalline Mn\(_3\)Sn/Cu/heavy metal heterostructures. AIP Adv 11(4):045110

    ADS  Google Scholar 

  102. Parkin SS, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194

    ADS  Google Scholar 

  103. Sisodia N, Muduli PK (2020) Thermal decay of a single Néel skyrmion via helicity slip in a nanodisk. Phys Status Solidi Rapid Res Lett 14(1):1900525

    ADS  Google Scholar 

  104. Sisodia N, Muduli PK, Papanicolaou N, Komineas S (2021) Chiral droplets and current-driven motion in ferromagnets. Phys Rev B 103(2):024431

    ADS  Google Scholar 

  105. Fert A, Cros V, Sampaio J (2013) Skyrmions on the track. Nat Nano 8(3):152–156

    Google Scholar 

  106. Khan KIA, Sisodia N, Muduli P (2021) Energy-efficient ultrafast nucleation of single and multiple antiferromagnetic skyrmions using in-plane spin polarized current. Science 11(1):1–10

    Google Scholar 

  107. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P, Böni P (2009) Topological Hall effect in the A phase of MnSi. Phys Rev Lett 102(18):186602

    ADS  Google Scholar 

  108. Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P (2009) Skyrmion lattice in a chiral magnet. Science 323(5916):915–919

    ADS  Google Scholar 

  109. Yu X, Kanazawa N, Onose Y, Kimoto K, Zhang W, Ishiwata S, Matsui Y, Tokura Y (2011) Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater 10(2):106

    ADS  Google Scholar 

  110. Hou Z, Wang Y, Lan X, Li S, Wan X, Meng F, Hu Y, Fan Z, Feng C, Qin M et al (2022) Controlled switching of the number of skyrmions in a magnetic nanodot by electric fields. Adv Mater 34(11):2107908

    Google Scholar 

  111. Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C et al (2020) Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat Commun 11(1):1–8

    ADS  Google Scholar 

  112. Soumyanarayanan A, Raju M, Gonzalez Oyarce A, Tan AK, Im M-Y, Petrović A, Ho P, Khoo K, Tran M, Gan C et al (2017) Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat Mater 16(9):898–904

    ADS  Google Scholar 

  113. Yagil A, Almoalem A, Soumyanarayanan A, Tan AK, Raju M, Panagopoulos C, Auslaender O (2018) Stray field signatures of Néel textured skyrmions in Ir/Fe/Co/Pt multilayer films. Appl Phys Lett 112(19):192403

    ADS  Google Scholar 

  114. Rohart S, Thiaville A (2013) Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys Rev B 88(18):184422

    ADS  Google Scholar 

  115. Choe S-B, You C-Y (2018) Experimental determination schemes of Dzyaloshinskii-Moriya interaction. J Korean Phys Soc 73(2):238–241

    Google Scholar 

  116. Treves D, Alexander S. (1962) Observation of antisymmetric exchange interaction in yttrium orthoferrite. In: Proceedings of the seventh conference on magnetism and magnetic materials, pp 1133–1134 . Springer

  117. Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F et al (2017) Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy. Adv Mater 29(29):1701144

    Google Scholar 

  118. Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H et al (2018) Creation of single chain of nanoscale skyrmion bubbles with record-high temperature stability in a geometrically confined nanostripe. Nano Lett 18(2):1274–1279

    ADS  Google Scholar 

  119. Hou Z, Zhang Q, Zhang X, Xu G, Xia J, Ding B, Li H, Zhang S, Batra NM, Costa PM et al (2020) Current-Induced Helicity Reversal of a Single Skyrmionic Bubble Chain in a Nanostructured Frustrated Magnet. Adv Mater 32(1):1904815

    Google Scholar 

  120. Xie X, Zhao X, Dong Y, Qu X, Zheng K, Han X, Han X, Fan Y, Bai L, Chen Y et al (2021) Controllable field-free switching of perpendicular magnetization through bulk spin-orbit torque in symmetry-broken ferromagnetic films. Nat Mater 12(1):1–10

    Google Scholar 

  121. Arpaci S, Lopez-Dominguez V, Shi J, Sánchez-Tejerina L, Garesci F, Wang C, Yan X, Sangwan VK, Grayson MA, Hersam MC et al (2021) Observation of current-induced switching in non-collinear antiferromagnetic IrMn\(_3\) by differential voltage measurements. Nat Commun 12(1):1–10

    Google Scholar 

Download references

Acknowledgements

N.C. acknowledges the financial support received from I-Hub Quantum Technology Foundation for Chanakya post-doctoral fellowship (order no.:I-HUB/PDF/2021-22/005). The partial support from the Ministry of Human Resource Development under the IMPRINT program (Grant no: 7519 and 7058), the Department of Electronics and Information Technology (DeitY), Science & Engineering research board (SERB File no. CRG/2022/002821), Joint Advanced Technology Centre at IIT Delhi and the Department of Science and Technology under the Nanomission program (grant no: \(SR/NM/NT-1041/2016(G)\)) are gratefully acknowledged. K.I.A.K. acknowledges support from the University Grants Commission (UGC), India. H.B. and R.A. gratefully acknowledge the financial support from the Council of Scientific and Industrial Research (CSIR), Government of India. P.G. and R.S.Y. acknowledge support from the Ministry of Human Resource Development (MHRD), India. All the authors acknowledge the facilities provided by the Department of Physics, IIT Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranaba Kishor Muduli.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, N., Khan, K.I.A., Bangar, H. et al. Kagome Magnets: The Emerging Materials for Spintronic Memories. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 477–495 (2023). https://doi.org/10.1007/s40010-023-00823-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-023-00823-1

Keywords

Navigation