Skip to main content
Log in

An All-Mode KHN Equivalent Biquad Using Third Generation Current Conveyor and All Grounded Passive Elements

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Voltage-mode, current-mode, transresistance-mode and transconductance-mode KHN-equivalent biquad employing third generation current conveyors (CCIII), realizes low pass, high pass, band pass, notch and all pass filters using grounded passive elements and provides current and voltage outputs and also facilitates tunability of filter parameters. Analysis of the proposed configuration is given that includes non-ideal analysis along with the sensitivity analysis for the used passive and active components. A comparison of the proposed structure with those few existing CCIII-based filters has also been detailed out. The workability of the proposed structure has been demonstrated with PSPICE simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kerwin WJ, Huelsman LP, Newcomb RW (1967) State-variable synthesis for insensitive integrated circuit transfer functions. IEEE J Solid state Circ 2(3):87–92

    Article  Google Scholar 

  2. Soliman AM (1994) Kerwin–Huelsman–Newcomb circuit using current conveyor. Electron Lett 30(24):2019–2024

    Article  Google Scholar 

  3. Senani R, Singh VK (1995) KHN-equivalent biquad using current conveyors. Electron Lett 31(8):626–628

    Article  ADS  Google Scholar 

  4. Singh VK, Singh AK, Bhaskar DR, Senani R (2006) New universal biquads using CFOA’s. IEEE Trans Circ Syst II 53(11):1299–1303

    Article  ADS  Google Scholar 

  5. Senani R, Gupta SS (1997) Universal voltage mode/current mode filter realized with current feedback op-amps. Frequenz 51(7/8):203–208

    ADS  Google Scholar 

  6. Abuelma’atti MT, Al-Zaher HA (1998) New universal filter with one input and five outputs using current-feedback amplifiers. Analog Integr Circ Sig Process 16(3):239–244

    Article  Google Scholar 

  7. Soliman AM (2011) Generation of Kerwin-Huelsman-Newcomb biquad filter circuits using nodal admittance matrix expansion. Int J Circ Theor Appl 39(7):697–717

    Article  Google Scholar 

  8. Beg P, Khan IA, Maheshwari S, Siddiqi MA (2011) Digitally programmable fully differential filter. Radioengineering 20(4):917–925

    Google Scholar 

  9. Sanchez-Sinencio E, Geiger RL, Nevarez-Lozano H (1998) Generation of continuous-time two integrator loop OTA filter structures. IEEE Trans Circ Syst 35(8):936–946

    Article  Google Scholar 

  10. Salma KN, Soliman AM (2000) Voltage mode Kerwin–Huelsman–Newcomb circuit using CDBAs. Frequenz 54(3–4):90–93

    ADS  Google Scholar 

  11. Toker A, Ozoguz S, Acar C (1999) Current-mode KHN-equivalent biquad using CDBAs. Electron Lett 35(20):1682–1683

    Article  Google Scholar 

  12. Altuntas E, Toker A (2002) Realization of voltage and current mode KHN biquads using CCCIIs. Int J Electron Commun (AEU) 56(1):45–49

    Article  Google Scholar 

  13. Ibrahim MA, Kuntman H (2003) A novel transadmittance-type KHN-biquad employing DO-OTA with only two grounded capacitors. WSEAS Trans Circ Syst 2(3):400–403

    Google Scholar 

  14. Ibrahim MA, Kuntman H (2004) A novel high CMRR high input impedance differential voltage-mode KHN-biquad employing DO-DDCCs. Int J Electron Commun (AEU) 58(6):429–433

    Article  Google Scholar 

  15. Ibrahim MA, Minaei S, Kuntman H (2005) A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. Int J Electron Commun (AEU) 59(5):311–318

    Article  Google Scholar 

  16. Keskin AU, Biolek D, Hancioglu E, Biolkova V (2006) Current-mode KHN filter employing current differencing transconductance amplifiers. Int J Electron Commun (AEU) 60(6):443–446

    Article  Google Scholar 

  17. Biolek D, Biolkova V, Kolka Z (2007) Universal current-mode OTA-C KHN biquad. World Acad Sci Eng Technol 31:289–292

    Google Scholar 

  18. Soliman AM (2008) History and progress of the Kerwin–Huelsman–Newcomb filter generation and op amp realizations. J Circ Syst Comput 17(4):637–658

    Article  Google Scholar 

  19. Soliman AM (2008) Current-mode filters using two output inverting CCII. Int J Circ Theor Appl 36(7):875–881

    Article  Google Scholar 

  20. Minaei S, Ibrahim MA (2009) A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int J Circ Theor Appl 37(7):793–810

    Article  MATH  Google Scholar 

  21. Soliman AM (2008) Generation and classification of Kerwin–Huelsman–Newcomb circuits using the DVCC. Int J Circ Theor Appl 37(7):835–855

    Article  MATH  Google Scholar 

  22. Kostan J, Herencsar N, Vrba K (2011) KHN-equivalent voltage-mode filters using universal voltage conveyors. Int J Electron Commun (AEU) 65(2):156–160

    Google Scholar 

  23. Satansup J, Tangsrirat W (2011) Realization of current-mode KHN-equivalent biquad filter using ZC-CFTAs and grounded capacitors. Indian J Pure Appl Phys 49:841–846

    Google Scholar 

  24. Fabre A (1995) Third generation current conveyor: a new helpful active element. Electron Lett 31:338–339

    Article  Google Scholar 

  25. Kuntman H, Cicekoglu O, Ozoguz S, Karacivi B (2000) Universal current-mode filter implemented with the modified third generation current conveyor. In: Proceedings of the IEEE nordic signal processing symposium (NORSIG’OO), Kolmarden, Sweden, 13–15 June 2000, pp 165–168

  26. Kuntman H, Cicekoglu O, Ozoguz S (2002) A modified third generation current conveyor, its characterization and applications. Frequenz 56:47–54

    Article  ADS  Google Scholar 

  27. Chunhua W, Keskin AU, Yang L, Qiujing Z, Sichun D (2010) Minimum configuration insensitive multifunctional current mode biquad using current conveyors and all grounded passive components. Radioengineering 19(1):178–183

    Google Scholar 

  28. Chang CM, Yang RH, Tu SH, Hou CL, Horng JW (2008) Universal active current filter using single third generation current conveyor. In: Proceedings of the 7th WSEAS international conference on applied computer and applied computational science. World Scientific and Engineering Academy and Society (WSEAS), pp 163–168

  29. Abuelma’atti MT, Al-Zaher HA (1998) Multifunction active only current mode filter with three inputs and one output. Int J Electron 85(4):431–435

    Article  Google Scholar 

  30. Horng JW, Weng RM, Lee MH, Chang CW (1997) Universal active current filter using two multiple current output OTAs and one CCIII. Int J Electron 82(3):241–247

    Article  Google Scholar 

  31. Sobhy EA, Soliman AM (2009) Novel CMOS realization of balanced output third generation inverting current conveyor with applications. Circ Syst Sig Process 28:1037–1051

    Article  MATH  Google Scholar 

  32. Yuce E, Metin B, Cicekoglu B (2004) Current mode biquadratic filters using single CCIII and minimum number of passive elements. Frequenz 58:225–228

    Article  ADS  Google Scholar 

  33. Wang HY, Lee CT (2001) Versatile insensitive current mode universal biquad implementation using current conveyors. IEEE Trans Circ Syst II 48(4):409–413

    Article  Google Scholar 

  34. Feki NBEL, Masmoudi DS (2009) High performance dual output second and third generation current conveyors and current-mode multifunction filter application. In: 6th multi-conference on signals, systems and devices, pp 1–6

  35. Piovaccari A (1995) CMOS integrated third-generation current conveyor. Electron Lett 31(15):1228–1229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, T.S., Sharma, R.K. An All-Mode KHN Equivalent Biquad Using Third Generation Current Conveyor and All Grounded Passive Elements. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87, 97–108 (2017). https://doi.org/10.1007/s40010-016-0310-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-016-0310-0

Keywords

Navigation