Skip to main content
Log in

Electron Transfer Reactivity of Organometallic Compounds Involving Radical-Forming Noninnocent Ligands

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The potential of organometallics for radical reactivity is documented for compounds containing redox-active ligands. The diversity of organometallic redox systems with noninnocent ligands will be presented in a brief survey, covering reaction mechanisms, the identification of stable intermediates, and an outline of some synthetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Fig. 1
Scheme 14

Similar content being viewed by others

References

  1. Gomberg M (1900) An instanceof trivalent carbon: triphenylmethyl. J Am Chem Soc 22:757–771

    Article  Google Scholar 

  2. Schlenk W, Weickel T, Herzenstein A (1910) Ueber triphenylmethyl und analoga des triphenylmethyls in der biphenylreihe. [Zweite Mittheilung über „Triarylmethyle“]. Liebigs Ann Chem 372:1–20

    Article  Google Scholar 

  3. Schlenk W, Thal A (1913) Über Metallketyle, eine große Klasse von Verbindungen mit dreiwertigem Kohlenstoff II. Ber Dtsch Chem Ges 46:2840–2854

    Article  Google Scholar 

  4. Schlenk W, Brauns M (1915) Zur frage der metachinoide. Ber Dtsch Chem Ges 48:661–669

    Article  Google Scholar 

  5. Tidwell TT (2001) Wilhelm schlenks leben und werk–aufstieg und fall eines brillanten wissenschaftlers. Angew Chem 113:343–349

    Article  Google Scholar 

  6. Tidwell TT (2001) Wilhelm Schlenk: the man behind the flask. Angew Chem Int Ed 40:331–337

    Article  Google Scholar 

  7. Anwander R (2011) Schlenk in Tübingen. Nachr Chem 59:951–953

    Article  Google Scholar 

  8. Schlenk W, Schlenk W Jr (1929) Über die Konstitution der Grignardschen Magnesiumverbindungen. Ber Dtsch Chem Ges 62B:920–924

    Article  Google Scholar 

  9. Ziegler K (1964) Folgen und Werdegang einer Erfindung Nobel-Vortrag am 12. Dezember 1963. Angew Chem 76:545–553

    Article  Google Scholar 

  10. Ziegler K (1965) Consequences and development of an invention. Rubber Chem Technol 38:23–36

    Article  Google Scholar 

  11. Ziegler K (1949) 25 Jahre „Zur Kenntnis des ‘dreiwertigen’ Kohlenstoffs”. Angew Chem 61:168–179

    Article  Google Scholar 

  12. Ziegler K (1923) Zur Kenntnis des „dreiwertigen” Kohlenstoffs. I. Über Tetra-aryl-allyl-Radikale und ihre derivate. Liebigs Ann Chem 434:34–78

    Article  Google Scholar 

  13. Wilke G (1975) Nachruf auf Karl Ziegler. Liebigs Ann Chem 1975:804–833

    Article  Google Scholar 

  14. Ziegler K (1952) Aluminium-organische synthese im bereich olefinischer kohlenwasserstoffe. Angew Chem 64:323–329

    Article  Google Scholar 

  15. Lawrence LM, Whitesides GM (1980) Trapping of free alkyl radical intermediates in the reaction of alkyl bromdies with magnesium. J Am Chem Soc 102:2493–2494

    Article  Google Scholar 

  16. Doxsee KM, Grubbs RH, Anson FC (1984) Decomposition and ligand substitution reaction mechanisms for organometallic radicals. J Am Chem Soc 106:7819–7824

    Article  Google Scholar 

  17. McCullen SB, Walker HW, Brown TL (1982) Direct observation of substitution reactions of tricarbonylbis(phosphine)manganese radicals. J Am Chem Soc 104:4007–4008

    Article  Google Scholar 

  18. Shi Q-Z, Richmond TG, Trogler WC, Basolo F (1982) Mechanism of carbon monoxide substitution in a metal radical: vanadium hexacarbonyl. J Am Chem Soc 104:4032–4034

    Article  Google Scholar 

  19. Kochi JK (1978) Organometallic mechanisms and catalysis. Academic Press, New York

    Google Scholar 

  20. Astruc D (1995) Eletron transfer and radical processes in transition-metal chemistry. VCH, New York

    Google Scholar 

  21. Ashby EC (1988) Single-electron transfer, a major reaction pathway in organic chemistry. An answer to recent criticisms. Acc Chem Res 21:414–421

    Article  Google Scholar 

  22. Ashby EC, Coleman D (1987) Evidence for single electron transfer in the reactions of lithium dimethylcuprate with alkyl halides. J Org Chem 52:4554–4565

    Article  Google Scholar 

  23. Ashby EC, Pham TN (1987) Single electron transfer in metal halogen exchange. The reaction of organolithium compounds with alkyl halides. J Org Chem 52:1291–1300

    Article  Google Scholar 

  24. Ashby EC, Pham TN (1987) The question of the validity of using radical probes for determining SET. The reaction of alkyl halides with LiAlH4. Tetrahedron Lett 28:3197–3200

    Article  Google Scholar 

  25. Ashby EC, Pham TN (1987) Evidence for electron transfer in reactions of nucleophiles with optically active alkyl halides. A challenge to the SN2 transition state. Tetrahedron Lett 28:3183–3186

    Article  Google Scholar 

  26. Ashby EC, Goel AB (1981) Direct evidence supporting a single electron transfer pathway in the reduction of ketones by primary, secondary, and tertiary Grignard reagents. J Am Chem Soc 103:4983–4985

    Article  Google Scholar 

  27. Ashby EC, Oswald J (1988) Concerning the mechanism of Grignard reagent formation. Evidence for radical escape and return to the surface of magnesium. J Org Chem 53:6068–6076

    Article  Google Scholar 

  28. Ashby EC, Goel AB (1981) Evidence for single electron transfer in reactions of trialkylaluminium compounds with organic substrates. J Organomet Chem 221:C15–C19

    Article  Google Scholar 

  29. Kaim W (1982) Ambivalentes Koordinationsverhalten von Lithiumtetrahydridoaluminat in Elektronentransfer-Reaktionen. Angew Chem 94:150–151

    Google Scholar 

  30. Kaim W (1982) Ambivalent coordination behavior of lithium aluminum hydride in electron transfer reactions. Angew Chem Int Ed Engl 21:140–141

    Article  Google Scholar 

  31. Kaim W (1982) Electron transfer to complex ligands. Radical anions and organomagnesium radical complexes of 2,2’-bipyridines and 1,10-phenanthrolines. J Am Chem Soc 104:3833–3837

    Article  Google Scholar 

  32. Kaim W (1982) Organoaluminum radical complexes from the single electron transfer reaction of diisobutylaluminumhydride with N-Heterocycles. Z Naturforsch 37b:783–785

    Google Scholar 

  33. Kaim W (1984) Single electron transfer reaction of aluminum hydride with N-Heterocycles. ESR characterization of the radical products. J Am Chem Soc 106:1712–1716

    Article  Google Scholar 

  34. Kaim W (1985) Radical-forming electron transfer reactions involving main-group organometallics. Acc Chem Res 18:160–166

    Article  Google Scholar 

  35. Kaim W, Lubitz W (1983) Radikalprodukte aus Einelektronen-Übertragungsreaktionen von Lithium-triethylhydridoborat, nachgewiesen durch ESR und Multikern(1H, 10B, 11B, 14N)-ENDOR-Spektroskopie. Angew Chem 95:915–916

    Article  Google Scholar 

  36. Kaim W, Lubitz W (1983) Radical products in single electron transfer reactions of lithium triethylhydridoborate as detected by ESR and multinuclear (Proton, Boron-10, Boron-11, and Nitrogen-14) ENDOR spectroscopy. Angew Chem Int Ed Engl 22:892–893

    Article  Google Scholar 

  37. Kaim W, Lubitz W (1983) Radical products in single electron transfer reactions of lithium triethylhydridoborate as detected by ESR and multinuclear (Proton, Boron-10, Boron-11, and Nitrogen-14) ENDOR spectroscopy. Angew Chem Suppl 1983:1209–1220

    Article  Google Scholar 

  38. Kaim W (1994) Thermal and lightinduced electron transfer reactions of main group metal hydrides and organometallics. Top Curr Chem 169:231–251

    Article  Google Scholar 

  39. Kaupp M, Stoll H, Preuss H, Kaim W, Stahl T, van Koten G, Wissing E, Smeets WJJ, Spek AL (1991) Theoretical and experimental study of dia- and paramagnetic products from thermal and light-induced alkyl transfer between zinc or magnesium dialkyls and 1,4-Diaza-1,3-butadiene substrates. J Am Chem Soc 113:5606–5618

    Article  Google Scholar 

  40. Moscherosch M, Kaim W (1992) EPR/ENDOR detection of stable Ti(III) and Ti(IV) radical products generated by single electron transfer from (iPrO)3TiCH3. J Chem Soc Perkin Trans 2:1493–1496

    Article  Google Scholar 

  41. Greulich S, Klein A, Knoedler A, Kaim W (2002) Qualitatively different reactivity of hydride reagents toward [(α-diimine)(η5-C5Me5)ClIr]+ cations: substitution, electron transfer (reduction), or stepwise hydrogenation. Organometallics 21:765–769

    Article  Google Scholar 

  42. Kaim W, Klein A, Hasenzahl S, Stoll H, Záliš S, Fiedler J (1998) Reactions of new organoplatinum (II) and -(IV) complexes of the 1,4-diaza-1,3-butadienes with light and electrons. Emission vs. Photochemistry and the electronic structures of ground, reduced, oxidized and low-lying charge-transfer excited states. Organometallics 17:237–247

    Article  Google Scholar 

  43. Klein A, Hasenzahl S, Kaim W (1997) EPR study of electron transfer and group transfer in organoplatinum (II) and -(IV) compounds. J. Chem. Soc. Perkin Trans. 2:2573–2577

    Article  Google Scholar 

  44. Geiger WE (2007) Organometallic electrochemistry: origins, development, and future. Organometallics 26:5738–5765

    Article  Google Scholar 

  45. Connelly NG, Geiger WE (1996) Chemical redox agents for organometallic chemistry. Chem Rev 96:877–910

    Article  Google Scholar 

  46. Kaim W, Klein A (eds) (2008) Spectroelectrochemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  47. Kaim W, Fiedler J (2009) Spectroelectrochemistry: the best of two worlds. Chem Soc Rev 38:3373–3382

    Article  Google Scholar 

  48. Low PJ, Bock S (2013) Spectroelectrochemistry: a valuable tool for the study of organometallic-alkyne, -vinylidene, -cumulene, -alkynyl and related complexes. Electrochim Acta 110:681–692

    Article  Google Scholar 

  49. Kaim W (2001) ESR spectroscopy of inorganic and organometallic radicals. In: Balzani V (ed) Electron transfer in chemistry, vol 2. Wiley-VCH, Weinheim, pp 976–1002

    Chapter  Google Scholar 

  50. Goswami M, Chirila A, Rebreyend C, de Bruin B (2015) EPR spectroscopy as a tool in homogeneous catalysis research. Top Catal 58:719–750

    Article  Google Scholar 

  51. Manck S, Sarkar B (2015) Use of EPR spectroscopy to unravel reaction mechanisms in (catalytic) bond activation reactions: some selected examples. Top Catal 58:751–758

    Article  Google Scholar 

  52. Hasenzahl S, Kaim W, Stahl T (1994) Charge and electron transfer from metal-to-carbon bonds of main group organometallics MRn (M = Al, Ga, Zn) to aromatic N-Heterocycles: coloured precursor compounds and radical complex formation. Inorg Chim Acta 225:23–34

    Article  Google Scholar 

  53. Kaim W, Olbrich-Deussner B (1990) Paramagnetic main group and transition metal complexes containing unsaturated nitrogen ligands. In: Trogler WC (ed) Organometallic radical processes. Elsevier, Amsterdam, pp 173–199

    Google Scholar 

  54. Baumgarten J, Bessenbacher C, Kaim W, Stahl T (1989) Molecular and electronic structure of electron-transfer active main-group organometallics. J Am Chem Soc 111:2126–2131

    Article  Google Scholar 

  55. Chirik PJ, Wieghardt K (2010) Radical ligands confer nobility on base-metal catalysts. Science 327:794–795

    Article  ADS  Google Scholar 

  56. Kaim W (2012) The shrinking world of innocent ligands: conventional and non-conventional redox-active ligands (essay). Eur J Inorg Chem 2012:343–348

    Article  Google Scholar 

  57. Kaim W, Schwederski B, Klein A (2013) Bioinorganic chemistry-inorganic elements in the chemistry of life: an introduction and guide, 2nd edn. Wiley, Chichester

    Google Scholar 

  58. Buckel W (2007) Cobalamin coenzymes and vitamin B12. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net. doi: 10.1002/9780470015902.a0000666.pub2

  59. Crabtree RH (2014) The organometallic chemistry of the transition metals, 6th edn. Wiley, Hoboken, p 290

    Book  Google Scholar 

  60. Russell SK, Hoyt JM, Bart SC, Milsmann C, Stieber SCE, Semproni SP, DeBeer S, Chirik PJ (2014) Synthesis, electronic structure and reactivity of bis(imino)pyridine iron carbene complexes: evidence for a carbene radical. Chem Sci 5:1168–1174

    Article  Google Scholar 

  61. Dzik WI, Zhang XP, de Bruin B (2011) Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C − C bond formation. Inorg Chem 50:9896–9903

    Article  Google Scholar 

  62. Dzik WI, de Bruin B (2011) Organometallic chemistry, vol 37. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  63. Crabtree RH (2014) The organometallic chemistry of the transition metals, 6th edn. Wiley, Hoboken, p 134

    Book  Google Scholar 

  64. Albright TA, Hoffmann R, Thibeault JC, Thorn DL (1979) Ethylene complexes. Bonding, rotational barriers, and conformational preferences. J Am Chem Soc 101:3801–3812

    Article  Google Scholar 

  65. Thompson JS, Harlow RL, Whitney JF (1983) Copper(I)-olefin complexes. Support for the proposed role of copper in the ethylene effect in plants. J Am Chem Soc 105:3522–3527

    Article  Google Scholar 

  66. Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleeker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998

    Article  ADS  Google Scholar 

  67. Kaim W, Moscherosch M (1994) The coordination chemistry of TCNE, TCNQ and related polynitrile acceptors. Coord Chem Rev 129:157–193

    Article  Google Scholar 

  68. Linseis M, Winter RF, Sarkar B, Kaim W, Záliš S (2008) Ligand-centered oxidations and electron delocalisation in a tetranuclear complex of a tetradonor-substituted olefin. Organometallics 27:3321–3324

    Article  Google Scholar 

  69. Maurer J, Linseis M, Sarkar B, Schwederski B, Niemeyer M, Kaim W, Záliš S, Anson C, Zabel M, Winter RF (2008) Ruthenium complexes with vinyl, styryl, and vinylpyrenyl ligands: a case of non-innocence in organometallic chemistry. J Am Chem Soc 130:259–268

    Article  Google Scholar 

  70. Maurer J, Sarkar B, Kaim W, Winter RF, Záliš S (2007) Towards new organometallic wires: tetraruthenium complexes bridged by phenylenevinylene and vinylpyridine ligands. Chem Eur J 13:10257–10272

    Article  Google Scholar 

  71. Kowalski K, Linseis M, Winter RF, Zabel M, Záliš S, Kelm H, Krüger H-J, Sarkar B, Kaim W (2009) Charge delocalization in a heterobimetallic Ferrocene-(Vinyl)Ru(CO)Cl(PiPr3)2 system. Organometallics 28:4196–4209

    Article  Google Scholar 

  72. Záliš S, Winter RF, Kaim W (2010) Quantum chemical interpretation of redox properties of ruthenium complexes with vinyl and TCNX type non-innocent ligands. Coord Chem Rev 254:1383–1396

    Article  Google Scholar 

  73. Rigaut S, Touchard D, Dixneuf PH (2006) Redox active architectures and carbon-rich ruthenium complexes as models for molecular wires. In: Hirao T (ed) Redox systems under nano-space control. Springer, Berlin, pp 55–84

    Chapter  Google Scholar 

  74. Maurer J, Winter RF, Sarkar B, Záliš S (2005) Electron delocalization in mixed-valence butadienediyl-bridged diruthenium complexes. J Solid State Electrochem 9:738–749

    Article  Google Scholar 

  75. Winter RF (2008) Spectroelectrochemical Investigations on carbon-rich organometallic complexes. In: Kaim W, Klein A (eds) Spectroelectrochemistry. Royal Society of Chemistry, Cambridge, pp 145–306

    Chapter  Google Scholar 

  76. Fitzgerald EC, Ladjarafi A, Brown NJ, Collison D, Costuas K, Edge R, Halet J-F, Justaud F, Low PJ, Meghezzi H, Roisnel T, Whiteley MW, Lapinte C (2011) Spectroscopic evidence for redox isomerism in the 1,4-diethynylbenzene-bridged heterobimetallic cation [{Fe(dppe)Cp*}(μ-C ≡ CC6H4C ≡ C){Mo(dppe)(η-C7H7)}]PF6. Organometallics 30:4180–4195

    Article  Google Scholar 

  77. Schauer PA, Low PJ (2012) Ligand redox non-innocence in transition-metal σ-alkynyl and related complexes. Eur J Inorg Chem 2012:390–411

    Article  Google Scholar 

  78. Roberts HN, Brown NJ, Edge R, Fitzgerald EC, Ta YT, Collison D, Low PJ, Whiteley MW (2012) Synthesis, redox chemistry, and electronic structure of the butadiynyl and hexatriynyl complexes [Mo{(C≡C) n C≡CR}(L2)(η-C7H7)]z+ (n = 1, 2; z = 0, 1; R = SiMe3, H; L2 = 2,2′-bipyridine, Ph2PCH2CH2PPh2). Organometallics 31:6322–6335

    Article  Google Scholar 

  79. Kaim W, Bock H (1979) Radical ions of tetrakis(trimethylsilyl)butatriene. J Organomet Chem 164:281–293

    Article  Google Scholar 

  80. Kaim W (1988) Trapping of the coordinatively unsaturated organosilicon anion radical Me3Si–C≡C–C≡C–SiMe −∙3 by double ate-complex formation with AlR3. J Organomet Chem 339:253–257

    Article  Google Scholar 

  81. Seyler JW, Weng W, Zhou Y, Gladysz JA (1993) An isolable organometallic cation radical in which a C4 chain conducts charge between two chiral and configurationally stable rhenium termini. Organometallics 12:3802–3804

    Article  Google Scholar 

  82. Bruce MI (1998) Transition metal complexes containing allenylidene, cumulenylidene, and related ligands. Chem Rev 98:2797–2858

    Article  Google Scholar 

  83. Gluyas JBC, Sobolev AN, Moore EG, Low PJ (2015) Transition metal complexes containing allenylidene, cumulenylidene, and related ligands. Organometallics 34:3923–3926

    Article  Google Scholar 

  84. Bunz UH (1996) Metallorganische “Kohlenstoffstangen”–ein Längenrekord. Angew Chem 108:1047–1049

    Article  Google Scholar 

  85. Bunz UH (1996) Organometallic “carbon chains”: they just keep getting longer! Angew Chem Int Ed 35:969–971

    Article  Google Scholar 

  86. Alkorta I, Elguero J (2005) Polyynes vs. Cumulenes: their possible use as molecular wires. Struct Chem 16:77–79

    Article  Google Scholar 

  87. Li Y, Mondal KC, Samuel PP, Zhu H, Orben CM, Panneerselvam S, Dittrich B, Schwederski B, Kaim W, Mondal T, Koley D, Roesky HW (2014) C4 Cumulene and the corresponding air-stable radical cation and dication. Angew Chem 126:4252–4256

    Article  Google Scholar 

  88. Li Y, Mondal KC, Samuel PP, Zhu H, Orben CM, Panneerselvam S, Dittrich B, Schwederski B, Kaim W, Mondal T, Koley D, Roesky HW (2014) C4 Cumulene and the corresponding air-stable radical cation and dication. Angew Chem Int Ed 53:4168–4172

    Article  Google Scholar 

  89. Hoshino Y, Higuchi S, Fiedler J, Su C-Y, Knödler A, Schwederski B, Sarkar B, Hartmann H, Kaim W (2003) Weitreichende elektronische kopplung in unterschiedlichen oxidationszuständen eines C4-verknüpften tris(β-diketonato)ruthenium-dimers. Angew Chem 115:698–701

    Article  Google Scholar 

  90. Hoshino Y, Higuchi S, Fiedler J, Su C-Y, Knödler A, Schwederski B, Sarkar B, Hartmann H, Kaim W (2003) Long-range electronic coupling in various oxidation states of a C4-linked tris(β-diketonato)ruthenium dimer. Angew Chem Int Ed 42:674–677

    Article  Google Scholar 

  91. Bildstein B, Schweiger M, Kopacka H, Wurst K (1998) Tetraferrocenyl-[3]-cumulene. J Organomet Chem 553:73–81

    Article  Google Scholar 

  92. Paul F, Meyer WE, Toupet L, Jiao H, Gladysz JA, Lapinte C (2000) A “conjugal” consanguineous family of butadiynediyl-derived complexes: synthesis and electronic ground states of neutral, radical cationic, and dicationic iron/rhenium C4 species. J Am Chem Soc 122:9405–9414

    Article  Google Scholar 

  93. Makhoul R, Sahnoune H, Dorcet V, Halet J-F, Hamon J-R, Lapinte C (2015) 1,2-Diethynylbenzene-Bridged [Cp*(dppe)Fe]n+ units: effect of steric hindrance on the chemical and physical properties. Organometallics 34:3314–3326

    Article  Google Scholar 

  94. Zhang J, Zhang M-X, Sun C-F, Xu M, Hartl F, Yin J, Yu G-A, Rao L, Liu SH (2015) Diruthenium complexes with bridging diethynyl polyaromatic ligands: synthesis, spectroelectrochemistry, and theoretical calculations. Organometallics 34:3967–3978

    Article  Google Scholar 

  95. Ernst S, Hänel P, Jordanov J, Kaim W, Kasack V, Roth E (1989) Stable binuclear o- and p-semiquinone complexes of [Ru(bpy)2]2+. Radical ion versus mixed valence dimer formulation. J Am Chem Soc 111:1733–1738

    Article  Google Scholar 

  96. Kasack V, Kaim W, Binder H, Jordanov J, Roth E (1995) When is an odd-electron dinuclear complex a mixed-valent species? Tuning of ligand-to-metal spin shifts in diruthenium complexes of non-innocent dicarbonylhy-drazido bis-chelate ligands. Inorg Chem 34:1924–1933

    Article  Google Scholar 

  97. Roy S, Sarkar B, Imrich H-G, Fiedler J, Záliš S, Jimenez-Aparicio R, Urbanos FA, Mobin SM, Lahiri GK, Kaim W (2012) Charged but found not guilty: innocence of the suspect bridging ligands [RO(O)CNNC(O)OR]2− = L2− in [(acac)2Ru(μ-L)Ru(acac)2]n, n = + ,0,−,2−. Inorg Chem 51:9273–9281

    Article  Google Scholar 

  98. Cowan DO, Levanda C, Park J, Kaufman F (1973) Organic solid state. VIII. Mixed-valence ferrocene chemistry. Acc Chem Res 6:1–7

    Article  Google Scholar 

  99. Bruns W, Kaim W, Waldhör E, Krejcik M (1993) Spectroelectrochemical characterization of a pyrazine-bridged mixed-valent(4d5/4d6) organometallic analogue of the creutz-taube ion. J Chem Soc, Chem Commun 24:1868–1869

    Article  Google Scholar 

  100. Bruns W, Kaim W, Waldhör E, Krejcik M (1995) Electronic structure of the 16 valence electron fragments M(CO)3(PR3)2 (M = Mo, W; R = iPr, Cy) in their complexes with H2, THF and three π-conjugated dinucleating ligands: electrochemistry and spectroscopy of different oxidation states. Inorg Chem 34:663

    Article  Google Scholar 

  101. Kaim W, Klein A, Glöckle M (2000) Exploration of mixed-valence chemistry: inventing new analogues of the creutz-taube ion. Acc Chem Res 33:755–763

    Article  Google Scholar 

  102. Kaim W (2011) Concepts for metal complex chromophors absorbing in the near infrared. Coord Chem Rev 255:2503–2513

    Article  Google Scholar 

  103. Boyer JL, Cundari TR, DeYonker NJ, Rauchfuss TB, Wilson SR (2009) Redox activation of alkene ligands in platinum complexes with non-innocent ligands. Inorg Chem 48:638–645

    Article  Google Scholar 

  104. Ziegler K, Schnell B (1925) Zur kenntnis des ”dreiwertigen„ kohlenstoffs: III. Über das penta-phenyl-cyclo-pentadienyl. Liebigs Ann Chem 445:266–282

    Article  Google Scholar 

  105. Sitzmann H, Bock H, Boese R, Dezember T, Havlas Z, Kaim W, Moscherosch M, Zanathy L (1993) Pentaisopropylcyclopentadienyl singlet anion, doublet radical and triplet cation of a carbocyclic π system. J Am Chem Soc 115:12003–12009

    Article  Google Scholar 

  106. Kaim W (2015) Complete and partial electron transfer involving coordinated NOx. In: van Eldik R, Olabe J (eds) NOx related chemistry, vol 67. Academic Press, Adioch, pp 295–313

    Chapter  Google Scholar 

  107. Scherer T (2013) Spektroelektrochemische Untersuchungen von Ruthenium- und Osmium-Komplexen mit redoxaktiven Liganden. Ph.D. Thesis, Universität Stuttgart

  108. Young DJ, Chien SW, Hor TSA (2012) 1,1′-Bis(diphenylphosphino)ferrocene in functional molecular materials. Dalton Trans 41:12655–12665

    Article  Google Scholar 

  109. Hartwig JF (1998) Übergangsmetall-katalysierte Synthese von Arylaminen und Arylethern aus Arylhalogeniden und -triflaten: Anwendungen und Reaktionsmechanismus. Angew Chem 110:2154–2177

    Article  Google Scholar 

  110. Hartwig JF (1998) Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: scope and Mechanism. Angew Chem Int Ed 37:2046–2067

    Article  Google Scholar 

  111. Hembre RT, McQueen JS, Day VW (1996) Coupling H2 to electron transfer with a 17-electron heterobimetallic hydride: a “Redox Switch” model for the H2-activating center of hydrogenase. J Am Chem Soc 118:798–803

    Article  Google Scholar 

  112. Sixt T, Sieger M, Krafft MJ, Bubrin D, Fiedler J, Kaim W (2010) Ambi-valence taken literally: Ru vs. Fe oxidation in 1,1’-Diphosphinoferroceneruthenium(II) hydride and chloride complexes as deduced from spectroelectrochemistry of the heterodimetallic „Mixed-Valent“ intermediates. Organometallics 29:5511–5516

    Article  Google Scholar 

  113. Kaim W, Sixt T, Weber M, Fiedler J (2001) Iron(II) versus Osmium(II) oxidation in 1,1’-bis(diorganophosphino)ferrocene-osmium(II) complexes. J Organomet Chem 637–639:167–171

    Article  Google Scholar 

  114. Krafft MJ, Bubrin M, Paretzki A, Lissner F, Fiedler J, Záliš S, Kaim W (2013) Nachweis der Zwischenstufen bei der sequenziellen Elektronen- und Wasserstoffabgabe aus einem Dicarbonylcobalthydrid-Komplex. Angew Chem 125:6914–6917

    Article  Google Scholar 

  115. Krafft MJ, Bubrin M, Paretzki A, Lissner F, Fiedler J, Záliš S, Kaim W (2013) Identifying intermediates of sequential electron and hydrogen loss from a dicarbonylcobalt hydride complex. Angew Chem Int Ed 52:6781–6784

    Article  Google Scholar 

  116. Roy S, Sarkar B, Bubrin D, Niemeyer M, Zališ S, Lahiri GK, Kaim W (2008) Stabilizing the Elusive ortho-quinone/copper(I) oxidation state combination through π/π interaction in an isolated complex. J Am Chem Soc 130:15230–15231

    Article  Google Scholar 

  117. Jana R, Mobin SM, Schwederski B, Fiedler J, Kaim W (2013) Variable coordination of redox-active TCNB in discrete and polymeric ferrocenylcopper(I) complexes: structures and spectroelectrochemical behaviour. Dalton Trans 42:16142–16150

    Article  Google Scholar 

  118. Jana R, Lissner F, Schwederski B, Fiedler J, Kaim W (2013) A Ligand-bridged Heterotetranuclear (Fe2Cu2) redox system with Fc/Fc+ and radical ion intermediates. Organometallics 32:5879–5886

    Article  Google Scholar 

  119. Roy S, Sarkar B, Duboc C, Fiedler J, Sarper O, Lissner F, Mobin SM, Lahiri GK, Kaim W (2009) Heterohexanuclear (Cu3Fe3) complexes of substituted hexaazatrinaphthylene (HATN) ligands: twofold BF4 association in the solid and stepwise oxidation (3e) or reduction (2e) to spectroelectrochemically characterized species. Chem Eur J 15:6932–6939

    Article  Google Scholar 

  120. Bach M, Roy S, Sarkar B, Bubrin M, Niemeyer M, Fiedler J, Duboc C, Kaim W (2015) Heterotetranuclear complexes of reduced and non-reduced bridging 1,2,4,5-tetrazine ligands with 1,1′-bis(diphenylphosphino)-ferrocene-copper(I). Z Anorg Allg Chem 641:327–331

    Article  Google Scholar 

  121. Schnöckelburg E-M, Khusniyarov MM, de Bruin B, Hartl F, Langer T, Eul M, Schulz S, Pöttgen R, Wolf R (2012) Unraveling the electronic structures of low-valent naphthalene and anthracene iron complexes: x-ray, spectroscopic, and density functional theory studies. Inorg Chem 51:6719–6730

    Article  Google Scholar 

  122. Ehret F, Bubrin M, Záliš S, Kaim W (2013) Eine weitere Unschuldsvermutung widerlegt: triazenido- versus triazenylradikal-ligandenfunktion sowie eine anmerkung zu [NO2]n als “suspektem” liganden. Angew Chem 125:4771–4773

    Article  Google Scholar 

  123. Ehret F, Bubrin M, Záliš S, Kaim W (2013) Discovering more non-innocence: triazenido versus triazenyl radical ligand function, and a comment on [NO2]n as a “Suspect” ligand. Angew Chem Int Ed 52:4673–4675

    Article  Google Scholar 

  124. Ehret F, Bubrin M, Záliš S, Kaim W (2014) Non-innocent redox behaviour of amidinato ligands: spectroscopic evidence for amidinyl complexes. Z Anorg Allg Chem 640:2781–2787

    Article  Google Scholar 

  125. Ehret F, Bubrin M, Záliš S, Kaim W (2015) Metal-chelating N, N′-Bis(4-dimethylaminophenyl)acetamidinyl radical: a new chromophore for the near-infrared region. Chem Eur J 21:12275–12278

    Article  Google Scholar 

  126. Ellis JE (2006) Adventures with substances containing metals in negative oxidation states. Inorg Chem 45:3167–3186

    Article  Google Scholar 

  127. Fang M, Farnaby JH, Ziller JW, Bartes JE, Furche F, Evans WJ (2012) Isolation of (CO)1− and (CO2)1− radical complexes of rare earths via Ln(NR2)3/K reduction and [K2(18-crown-6)2]2+ oligomerization. J Am Chem Soc 134:6064–6067

    Article  Google Scholar 

  128. Kaim W (2011) Schuldig gesprochen–ein beweis für die “Nicht-Unschuld” des cyanidliganden. Angew Chem 123:10682–10684

    Article  Google Scholar 

  129. Kaim W (2011) ‘Guilty’ verdict–evidence for the noninnocence of cyanide. Angew Chem Int Ed 50:10498–10500

    Article  Google Scholar 

  130. Weiss E, Büchner W (1963) Zur Kenntnis der sogenannten « Alkalicarbonyle » I Die Kristallstruktur des Kalium-acetylendiolats, KOC ≡ COK. Helv Chim Acta 46:1121–1127

    Article  Google Scholar 

  131. Seitz F, Fischer H, Riede J, Schöttle T, Kaim W (1986) Ein Isocyanid-radikal als komplexligand. Angew Chem 98:753–755

    Article  Google Scholar 

  132. Seitz F, Fischer H, Riede J, Schöttle T, Kaim W (1986) An isocyanide radical as complex ligand. Angew Chem Int Ed Engl 25:744–746

    Article  Google Scholar 

  133. Kaim W (1987) The transition metal coordination chemistry of anion radicals. Coord Chem Rev 76:187–235

    Article  Google Scholar 

  134. Kaim W (2011) Manifestations of non-innocent ligand behavior (forum article). Inorg Chem 50:9752–9765

    Article  Google Scholar 

  135. Khusniyarov MM, Bill E, Weyhermüller T, Bothe E, Wieghardt K (2011) Hidden noninnocence: theoretical and experimental evidence for redox activity of a β-Diketiminate(1-) ligand. Angew Chem 123:1690–1693

    Article  Google Scholar 

  136. Khusniyarov MM, Bill E, Weyhermüller T, Bothe E, Wieghardt K (2011) Hidden noninnocence: theoretical and experimental evidence for redox activity of a β-Diketiminate(1-) ligand. Angew Chem Int Ed 50:1652–1655

    Article  Google Scholar 

  137. Kaim W, Schwederski B (2010) Non-innocent ligands in bioinorganic chemistry—an overview. Coord Chem Rev 254:1580–1588

    Article  Google Scholar 

  138. Kaim W (2001) Complexes with 2,2’-azobispyridine and related S-frame bridging ligands containing the azo function. Coord Chem Rev 219–221:463–488

    Article  Google Scholar 

  139. Kaim W (2002) The coordination chemistry of 1,2,4,5-tetrazines. Coord Chem Rev 230:127–139

    Article  Google Scholar 

  140. Kaim W, Sieger M, Greulich S, Sarkar B, Fiedler J, Záliš S (2010) The 1,4-diazabutadiene/1,2-enediamido non-innocent ligand system in the formation of iridaheteroarmatic compounds: spectroelectrochemistry and electronic structure. J Organomet Chem 695:1052–1058

    Article  Google Scholar 

  141. Caulton KG (2012) Systematics and future projections concerning redox-noninnocent amide/imine ligands. Eur J Inorg Chem 2012:435–443

    Article  Google Scholar 

  142. Smith DA, Batsanov AS, Costuas K, Edge R, Apperley DC, Collison D, Halet J-F, Howard JAK, Dyer PW (2010) Exploiting non-innocent ligands to prepare masked palladium(0) complexes. Angew Chem 122:7194–7198

    Article  Google Scholar 

  143. Smith DA, Batsanov AS, Costuas K, Edge R, Apperley DC, Collison D, Halet J-F, Howard JAK, Dyer PW (2010) Exploiting Non-Innocent Ligands to Prepare Masked Palladium(0) Complexes. Angew Chem Int Ed 49:7040–7044

    Article  Google Scholar 

  144. van der Vlugt JI, Pidko EA, Vogt D, Lutz M, Spek AL (2009) CuI complexes with a noninnocent PNP ligand: selective dearomatization and electrophilic addition reactivity. Inorg Chem 48:7513–7515

    Article  Google Scholar 

  145. Jørgensen CK (1966) Differences between the four halide ligands, and discussion remarks on trigonal-bipyramidal complexes, on oxidation states, and on diagonal elements of one-electon energy. Coord Chem Rev 1:164–178

    Article  Google Scholar 

  146. Ward M, McCleverty JA (2002) Non-innocent behaviour in mononuclear and polynuclear complexes: consequences for redox and electronic spectroscopic properties. J Chem Soc, Dalton Trans 3:275–288

    Article  Google Scholar 

  147. Chaudhuri P, Verdani CN, Bill E, Bothe E, Weyhermüller T, Wieghardt K (2001) Electronic structure of Bis(o-iminobenzosemiquinonato)metal complexes (Cu, Ni, Pd). The art of establishing physical oxidation states in transition-metal complexes containing radical ligands. J Am Chem Soc 123:2213–2223

    Article  Google Scholar 

  148. Herzog S, Taube R (1958) Niedere oxydationsstufen des titans: Ti(0) und Ti(−1). Angew Chem 70:469

    Article  Google Scholar 

  149. Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy) 2+3 –Co2+ combinations as homogeneous catalysts. J Chem Soc, Chem Commun 9:536–538

    Article  Google Scholar 

  150. Hawecker J, Lehn J-M, Ziessel R (1986) Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2′-Bipyridine)tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts. Helv Chim Acta 69:1990–2012

    Article  Google Scholar 

  151. Masood MA, Zacharias PS (1991) Electrochemical reversibility of the CuI–Cu0 couple in bis[2,9-di(o-substituted phenyl)-1,10-phenanthroline]-copper(I) complexes. Stability of the corresponding copper(0) species. J Chem Soc Dalton Trans, pp 111–114. doi:10.1039/DT9910000111

  152. Wang M, Weyhermüller T, England J, Wieghardt K (2013) Molecular and electronic structures of six-coordinate “low-valent” [M(Mebpy)3]0 (M = Ti, V, Cr, Mo) and [M(tpy)2]0 (M = Ti, V, Cr), and seven-coordinate [MoF(Mebpy)3](PF6) and [MX(tpy)2](PF6) (M = Mo, X = Cl and M = W, X = F). Inorg Chem 52:12763–12776

    Article  Google Scholar 

  153. Sellmann D, Müller J, Hofmann P (1982) C5H5(CO)2Mn(m-Toluidinyl), ein isolierbarer aminyl-komplex. Angew Chem 94:708–709

    Article  Google Scholar 

  154. Sellmann D, Müller J, Hofmann P (1982) C5H5(CO)2Mn(m-Toluidinyl), an isolable aminyl complex. Angew Chem Int Ed Engl 21:691–692

    Article  Google Scholar 

  155. Winter A, Huttner G, Zsolnai L, Kroneck P, Gottlieb M (1984) Synthese und Charakterisierung von [(C5Me5)Mn(CO)2(SR)]; RS-radikale als liganden. Angew Chem 96:986–987

    Article  Google Scholar 

  156. Winter A, Huttner G, Zsolnai L, Kroneck P, Gottlieb M (1984) Synthesis and characterization of [(C5Me5)Mn(CO)2(SR)]; RS radicals as ligands. Angew Chem Int Ed Engl 23:975–976

    Article  Google Scholar 

  157. Gross R, Kaim W (1985) Stabilisieren Cp(CO)2Mn-Fragmente radikale? Angew Chem 97:869–870

    Article  Google Scholar 

  158. Gross R, Kaim W (1985) Do Cp(CO)2Mn Fragments stabilize radicals? Angew Chem Int Ed Engl 24:856–858

    Article  Google Scholar 

  159. Gross R, Kaim W (1987) Deprotonated p-phenylenediamines as non-innocent ligands. Metal-to-ligand spin transfer in the ground state and ligand-to-metal charge transfer in the lowest excited state of low-spin manganese(II) complexes. Inorg Chem 26:3596–3600

    Article  Google Scholar 

  160. Büttner T, Geier J, Frison G, Hammer J, Calle C, Schweiger A, Schönberg H, Grützmacher H (2005) A stable aminyl radical metal complex. Science 307:235–238

    Article  ADS  Google Scholar 

  161. Kaim W (2005) Odd electron on nitrogen: a metal-stabilized aminyl radical (perspective). Science 307:216–217

    Article  Google Scholar 

  162. Lyaskovskyy V, de Bruin B (2012) Redox non-innocent ligands: versatile new tools to control catalytic reactions. ACS Catal 2:270–279

    Article  Google Scholar 

  163. Praneeth VKK, Ringenberg M, Ward TR (2012) Redoxaktive liganden in der katalyse. Angew Chem 124:10374–10380

    Article  Google Scholar 

  164. Praneeth VKK, Ringenberg M, Ward TR (2012) Redox-active ligands in catalysis. Angew Chem Int Ed 51:10228–10234

    Article  Google Scholar 

  165. Luca OR, Crabtree RH (2013) Redox-active ligands in catalysis. Chem Soc Rev 42:1440–1459

    Article  Google Scholar 

  166. Munha RF, Zarkesh RA, Heyduk AF (2013) Group transfer reactions of d0 transition metal complexes: redox-active ligands provide a mechanism for expanded reactivity. Dalton Trans 42:3751–3766

    Article  Google Scholar 

  167. Dzik WI, van der Vlugt JL, Reek JNH, de Bruin B (2011) Liganden, die während der Katalyse Elektronen speichern und freisetzen. Angew Chem 123:3416–3418

    Article  Google Scholar 

  168. Dzik WI, van der Vlugt JL, Reek JNH, de Bruin B (2011) Liganden, die während der Katalyse Elektronen speichern und freisetzen. Angew Chem Int Ed 50:3356–3358

    Article  Google Scholar 

  169. Broere DLJ, Plessius R, van der Vlugt JI (2015) New avenues for ligand-mediated processes–expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands. Chem Soc Rev 44:6886–65915

    Article  Google Scholar 

  170. Hershberger JW, Klingler RJ, Kochi JK (1982) Electron-transfer catalysis. Radical chain mechanism for the ligand substitution of metal carbonyls. J Am Chem Soc 104:3034–3043

    Article  Google Scholar 

  171. Kaim W, Olbrich-Deussner B, Gross R, Ernst S, Kohlmann S, Bessenbacher C (1989) Electron transfer induced metal addition and ligand exchange in organometallic anion radical complexes. In: Chanon M (ed) Importance of paramagnetic organometallic species in activation, selectivity and catalysis. Kluwer Academic Publishers, Dordrecht, pp 283–294

    Chapter  Google Scholar 

  172. Olbrich-Deussner B, Kaim W, Gross-Lannert R (1989) Electron-transfer autocatalytic formation, intramolecular charge transfer, and qualitatively different solvatochromism of σ and π transition-metal carbonyl complexes with polynitrile ligands. Inorg Chem 28:3113–3120

    Article  Google Scholar 

  173. Klein A, Vogler C, Kaim W (1996) The δ in 18 + δ electron complexes: importance of the metal/ligand interface for the substitutional reactivity of “Re(0)” complexes (α-Diimine−I)Re+I(CO)3(X). Organometallics 15:236–244

    Article  Google Scholar 

  174. Vollmer MV, Machan CW, Clark ML, Antholine WE, Agarwal J, Schaefer HF III, Kubiak CP, Walensky JR (2015) Synthesis, spectroscopy, and electrochemistry of (α-Diimine)M(CO)3Br, M = Mn, Re, complexes: ligands isoelectronic to bipyridyl show differences in CO2 reduction. Organometallics 34:3–12

    Article  Google Scholar 

  175. Manbeck GF, Muckerman JT, Szalda DJ, Himeda Y, Fujita E (2015) Push or Pull? Proton responsive ligand effects in rhenium tricarbonyl CO2 reduction catalysts. J Phys Chem B 119:7457–7466

    Article  Google Scholar 

  176. Scheiring T, Klein A, Kaim W (1997) EPR study of paramagnetic rhenium(I) complexes (bpy−∙)Re(CO)3X relevant to the mechanism of electrocatalytic CO2 reduction. J Chem Soc Perkin Trans 2:2569–2571

    Article  Google Scholar 

  177. Ringenberg MR, Kokatam SL, Heiden ZM, Rauchfuss TB (2008) Redox-switched oxidation of dihydrogen using a non-innocent ligand. J Am Chem Soc 130:788–789

    Article  Google Scholar 

  178. Ringenberg MJ, Nilges MJ, Rauchfuss TB, Wilson SR (2010) Oxidation of dihydrogen by iridium complexes of redox-active ligands. Organometallics 29:1956–1965

    Article  Google Scholar 

  179. Deibel N, Schweinfurth D, Hohloch S, Fiedler J, Sarkar B (2012) Donor–acceptor systems of Pt(II) and redox-induced reactivity towards small molecules. Chem Commun 48:2388–2390

    Article  Google Scholar 

  180. Deibel N, Schweinfurth D, Hohloch S, Delor M, Sazanovich IV, Towrie M, Weinstein JA, Sarkar B (2014) Electrochemistry, chemical reactivity, and time-resolved infrared spectroscopy of donor-acceptor systems [(Qx)Pt(papy)] (Q = Substituted o-Quinone or o-Iminoquinone; pap = Phenylazopyridine). Inorg Chem 53:1021–1031

    Article  Google Scholar 

  181. Hübner R, Weber S, Strobel S, Sarkar B, Záliš S, Kaim W (2011) Reversible intramolecular single-electron oxidative addition involving a hemilabile noninnocent ligand. Organometallics 30:1414–1418

    Article  Google Scholar 

  182. Kaim W, Bubrin M, Hübner R (2014) Electron transfer induced coordination changes in organometallic complexes with non-innocent hemilabile ligands. In: Pombeiro AJL (ed) Advances in organometallic chemistry and catalysis. Wiley, Hoboken, pp 667–675

    Google Scholar 

  183. Bubrin M, Schweinfurth D, Ehret F, Kvapilová H, Záliš S, Fiedler J, Zeng Q, Hartl F, Kaim W (2014) Structure and spectroelectrochemical response of arene-ruthenium and arene-osmium complexes with potentially hemilabile noninnocent ligands. Organometallics 33:4973–4985

    Article  Google Scholar 

  184. Jeffrey JC, Rauchfuss TB (1979) Metal complexes of hemilabile ligands. Reactivity and structure of dichlorobis(o-(diphenylphosphino)anisole)ruthenium(II). Inorg Chem 18:2658–2666

    Article  Google Scholar 

  185. Braunstein P, Naud F (2001) Metal complexes of hemilabile ligands. Reactivity and structure of dichlorobis(o-(diphenylphosphino)anisole)ruthenium(II). Angew Chem 113:702–722

    Article  Google Scholar 

  186. Braunstein P, Naud F (2001) Hemilability of hybrid ligands and the coordination chemistry of oxazoline-based systems. Angew Chem Int Ed 40:680–699

    Article  Google Scholar 

  187. Yu RP, Darmon JM, Milsmann C, Margulieux GW, Stieber SCE, DeBeer S, Chirik PJ (2013) Catalytic hydrogenation activity and electronic structure determination of bis(arylimidazol-2-ylidene)pyridine cobalt alkyl and hydride complexes. J Am Chem Soc 135:13168–13184

    Article  Google Scholar 

Download references

Acknowledgments

Support from the Deutsche Forschungsgemeinschaft, the COST program, and from the Fonds der Chemischen Industrie is gratefully acknowledged. Author also thank the dedicated coworkers mentioned in those references which pertain to our own work. Special thanks are due to Mrs. Angela Winkelmann for her contributions to preparing this article and to Drs. Jan Fiedler and Stanislav Záliš (J. Heyrovsky Institute, Prague) for continued cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kaim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaim, W. Electron Transfer Reactivity of Organometallic Compounds Involving Radical-Forming Noninnocent Ligands. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 86, 445–457 (2016). https://doi.org/10.1007/s40010-016-0304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-016-0304-y

Keywords

Navigation