Skip to main content

Advertisement

Log in

Quality by design approach to the development of transdermal patch systems and regulatory perspective

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Although the quality by design (QbD) approach is widely used to develop pharmaceutical products and to consistently ensure and improve product quality, studies on this approach for transdermal patch systems (TPSs) are limited. Due to the various advantages such as reducing invasiveness, avoiding first-pass metabolism, and improving convenience and compliance, the TPS is an appealing dosage form for pharmaceutical product development.

Area covered

This study investigated the quality target product profile (QTPP), critical quality attributes (CQAs), and critical material attributes (CMAs) of a TPS for QbD. The justification for this approach is presented, comparing standards from regulatory agencies and some implementations of CQAs and CMAs with data from various related literature and pharmacopeias. The QTPP elements were generally as follows: dosage form and strength, shelf life, pharmacokinetics, and drug product quality attributes. The CMAs were as follows: drug (partition coefficient, particle size and shape, polymorph, melting point, solubility, pH, and ionization), pressure-sensitive adhesive (PSA) (viscosity, adhesive type, cold flow, and molecular weight), and other excipients (permeation enhancers, crystallization inhibitors, rate-controlling membranes, and solvents). The CQAs were as follows: physicochemical tests (assay, moisture content, folding endurance, tensile strength, and water vapor permeation), adhesive properties tests (peel adhesion, tack, and shear adhesion), in vitro tests (drug release, drug permeation), impurities and degradation products of drug, and skin irritation test.

Expert opinion

This study suggests that a QbD approach to TPS development can reduce risk, improve product quality, and consistently produce quality results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission from Lobo et al. 2016. Copyright© 2021. Elsevier B.V

Fig. 3
Fig. 4

Reprinted with permission from (a) Quaroni, et al. 2018, (b) Zhao, et al. 2014. Copyright© 2021. Elsevier B.V

Similar content being viewed by others

References

  • Adib ZM, Ghanbarzadeh S, Kouhsoltani M, Khosroshahi AY, Hamishehkar H (2016) The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: A histological study. Adv Pharm Bull 6:31

    Article  CAS  Google Scholar 

  • Ah YC, Choi JK, Choi YK, Ki HM, Bae JH (2010) A novel transdermal patch incorporating meloxicam: in vitro and in vivo characterization. Int J Pharm 385:12–19

    Article  CAS  PubMed  Google Scholar 

  • Akhlaq M, Arshad MS, Mudassir AM, Hussain A, Kucuk I, Haj-Ahmad R, Rasekh M, Ahmad Z (2016) Formulation and evaluation of anti-rheumatic dexibuprofen transdermal patches: a quality-by-design approach. J Drug Target 24:603–612

    Article  CAS  PubMed  Google Scholar 

  • Akomeah F, Nazir T, Martin GP, Brown MB (2004) Effect of heat on the percutaneous absorption and skin retention of three model penetrants. Eur J Pharm Sci 21:337–345

    Article  CAS  PubMed  Google Scholar 

  • Anissimov YG, Roberts MS (2004) Diffusion modeling of percutaneous absorption kinetics: 3. Variable diffusion and partition coefficients, consequences for stratum corneum depth profiles and desorption kinetics. J Pharm Sci 93:470–487

    Article  CAS  PubMed  Google Scholar 

  • Antosik AK, Czech Z (2016) Pressure-sensitive adhesives (PSA) based on silicone. Adv Mater Interfaces 7:249–274

    Article  CAS  Google Scholar 

  • Bagchi A, Dey BK (2010) Formulation, in-vitro evaluations and skin irritation study of losartan potassium transdermal patches. Iran J Pharm Sci 6(3):163–170

    Google Scholar 

  • Banerjee S, Chattopadhyay P, Ghosh A, Datta P, Veer V (2014) Aspect of adhesives in transdermal drug delivery systems. Int J Adhes Adhes 50:70–84

    Article  CAS  Google Scholar 

  • Barry BW (2001a) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114

    Article  CAS  PubMed  Google Scholar 

  • Barry BW (2001b) Is transdermal drug delivery research still important today? Drug Discov 6:967–971

    Google Scholar 

  • Bellantone NH, Rim S, Francoeur M, Rasadi B (1986) Enhanced percutaneous absorption via iontophoresis I. Evaluation of an in vitro system and transport of model compounds. Int J Pharm 30:63–72

    Article  CAS  Google Scholar 

  • Bhowmick M, Tamizharasi Sengodan D, Thangavel S (2014) Evaluation and characterization of transdermal therapeutic system: an exhaustive pictorial and figurative review. J Drug Delivery Ther 4:9–22

    Article  CAS  Google Scholar 

  • Bolzinger M-A, Briançon S, Pelletier J, Chevalier Y (2012) Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci 17:156–165

    Article  CAS  Google Scholar 

  • Bommannan D, Okuyama H, Stauffer P, Guy RH (1992) Sonophoresis. I. The use of high-frequency ultrasound to enhance transdermal drug delivery. Pharm Res 9:559–564

    Article  CAS  PubMed  Google Scholar 

  • Bommannan DB, Tamada J, Leung L, Potts RO (1994) Effect of electroporation on transdermal lontophoretic delivery of luteinizing hormone releasing hormone (LHRH) in vitro. Pharm Res 11:1809–1814

    Article  CAS  PubMed  Google Scholar 

  • Bozorg BD, Banga AK (2020) Effect of different pressure-sensitive adhesives on performance parameters of matrix-type transdermal delivery systems. Pharmaceutics 12:209

    Article  CAS  Google Scholar 

  • Brown CK, Friedel HD, Barker AR, Buhse LF, Keitel S, Cecil TL, Kraemer J, Morris JM, Reppas C, Stickelmeyer MP, Yomota C, Shah VP (2011) FIP/AAPS joint workshop report: dissolution/in vitro release testing of novel/special dosage forms. Indian J Pharm Sci 73:338–353

    PubMed Central  Google Scholar 

  • Brown MB, Martin GP, Jones SA, Akomeah FK (2006) Dermal and transdermal drug delivery systems: current and future prospects. Drug Delivery 13:175–187

    Article  CAS  PubMed  Google Scholar 

  • Byrn S, Pfeiffer R, Stephenson G, Grant D, Gleason W (1994) Solid-state pharmaceutical chemistry. Chem Mater 6:1148–1158

    Article  CAS  Google Scholar 

  • Cal K (2006) Skin penetration of terpenes from essential oils and topical vehicles. Planta Med 72:311–316

    Article  CAS  PubMed  Google Scholar 

  • Chang R-K, Raw A, Lionberger R, Yu L (2013) Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J 15:41–52

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KR (2008) Crystallisation within transdermal rotigotine patch: is there cause for concern? Expert Opin Drug Delivery 5:1169–1171

    Article  CAS  Google Scholar 

  • Chen J, Sarma B, Evans JM, Myerson AS (2011) Pharmaceutical crystallization. Cryst Growth Des 11:887–895

    Article  CAS  Google Scholar 

  • Chu KA, Yalkowsky SH (2009) An interesting relationship between drug absorption and melting point. Int J Pharm 373:24–40

    Article  CAS  PubMed  Google Scholar 

  • Cilurzo F, Minghetti P, Casiraghi A, Tosi L, Pagani S, Montanari L (2005) Polymethacrylates as crystallization inhibitors in monolayer transdermal patches containing ibuprofen. Eur J Pharm Biopharm 60:61–66

    Article  CAS  PubMed  Google Scholar 

  • Cilurzo F, Gennari CG, Minghetti P (2012) Adhesive properties: a critical issue in transdermal patch development. Expert Opin Drug Delivery 9:33–45

    Article  CAS  Google Scholar 

  • Cilurzo F, Gennari CG, Selmin F, Franzé S, Musazzi UM, Minghetti P (2015) On the characterization of medicated plasters containing NSAIDs according to novel indications of USP and EMA: adhesive property and in vitro skin permeation studies. Drug Dev Ind Pharm 41:183–189

    Article  CAS  PubMed  Google Scholar 

  • Cilurzo F, Musazzi UM, Franzé S, Fedele G, Minghetti P (2018) Design of in vitro skin permeation studies according to the EMA guideline on quality of transdermal patches. Eur J Pharm Sci 125:86–92

    Article  CAS  PubMed  Google Scholar 

  • Coderch L, Fonollosa J, De Pera M, Estelrich J, De La Maza A, Parra J (2000) Influence of cholesterol on liposome fluidity by EPR: relationship with percutaneous absorption. J Controlled Release 68:85–95

    Article  CAS  Google Scholar 

  • Czech Z (2006) Solvent-based pressure-sensitive adhesives for removable products. Int J Adhes Adhes 26:414–418

    Article  CAS  Google Scholar 

  • Dimas DA, Dallas PP, Rekkas DM, Choulis NH (2000) Effect of several factors on the mechanical properties of pressure-sensitive adhesives used in transdermal therapeutic systems. AAPS PharmSciTech 1:80–87

    PubMed Central  Google Scholar 

  • Fang JY, Chen SS, Huang YB, Wu PC, Tsai Y-H (1999) In vitro study of transdermal nicotine delivery: influence of rate-controlling membranes and adhesives. Drug Dev Ind Pharm 25:789–794

    Article  CAS  PubMed  Google Scholar 

  • Foldvari M (2000) Non-invasive administration of drugs through the skin: challenges in delivery system design. Pharm Sci Technol Today 3:417–425

    Article  CAS  PubMed  Google Scholar 

  • Freitas JTJ, Viana OMS, Bonfilio R, Doriguetto AC, De Araújo MB (2017) Analysis of polymorphic contamination in meloxicam raw materials and its effects on the physicochemical quality of drug product. Eur J Pharm Sci 109:347–358

    Article  CAS  Google Scholar 

  • Gaikwad AK (2013) Transdermal drug delivery system: Formulation aspects and evaluation. J Pharm Sci 1:1–10

    Google Scholar 

  • Gato K, Fujii MY, Hisada H, Carriere J, Koide T, Fukami T (2020) Molecular state evaluation of active pharmaceutical ingredients in adhesive patches for transdermal drug delivery. J Drug Deliv Sci Technol 58:101800

    Article  CAS  Google Scholar 

  • Ghafourian T, Samaras EG, Brooks JD, Riviere JE (2010) Validated models for predicting skin penetration from different vehicles. Eur J Pharm Sci 41:612–616

    Article  CAS  PubMed  Google Scholar 

  • Ghosh TK (2020) Quality and performance tests for dermal drug delivery systems. Dermal drug delivery: from innovation to production, 1st edn. CRC Press, Boca Raton, pp 255–303

    Chapter  Google Scholar 

  • Gill HS, Andrews SN, Sakthivel SK, Fedanov A, Williams IR, Garber DA, Priddy FH, Yellin S, Feinberg MB, Staprans SI (2009) Selective removal of stratum corneum by microdermabrasion to increase skin permeability. Eur J Pharm Sci 38:95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh CF, Boyd BJ, Craig DQ, Lane ME (2020) Profiling of drug crystallization in the skin. Expert Opin Drug Delivery 17:1321–1334

    Article  CAS  Google Scholar 

  • Gupta R, Mukherjee B (2003) Development and in vitro evaluation of diltiazem hydrochloride transdermal patches based on povidone–ethylcellulose matrices. Drug Dev Ind Pharm 29:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gutschke E, Bracht S, Nagel S, Weitschies W (2010) Adhesion testing of transdermal matrix patches with a probe tack test–In vitro and in vivo evaluation. Eur J Pharm Biopharm 75:399–404

    Article  CAS  PubMed  Google Scholar 

  • Hadgraft J, Lane ME (2016) Drug crystallization–implications for topical and transdermal delivery. Expert Opin Drug Delivery 13:817–830

    Article  CAS  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17:397–404

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Henning A, Naegel A, Heisig M, Wittum G, Neumann D, Kostka KH, Zbytovska J, Lehr CM, Schaefer UF (2008) In-silico model of skin penetration based on experimentally determined input parameters. Part I: experimental determination of partition and diffusion coefficients. Eur J Pharm Biopharm 68:352–367

    Article  CAS  PubMed  Google Scholar 

  • Ho KY, Dodou K (2007) Rheological studies on pressure-sensitive silicone adhesives and drug-in-adhesive layers as a means to characterise adhesive performance. Int J Pharm 333:24–33

    Article  CAS  PubMed  Google Scholar 

  • Hopp S (2002) Developing custom adhesive systems for transdermal drug delivery products. Pharm Technol 26:30–30

    Google Scholar 

  • Hu L, Silva SM, Damaj BB, Martin R, Michniak-Kohn BB (2011) Transdermal and transbuccal drug delivery systems: enhancement using iontophoretic and chemical approaches. Int J Pharm 421:53–62

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Kaul G, Cai C, Chatlapalli R, Hernandez-Abad P, Ghosh K, Nagi A (2009) Quality by design case study: an integrated multivariate approach to drug product and process development. Int J Pharm 382:23–32

    Article  CAS  PubMed  Google Scholar 

  • Hui M, Quan P, Yang Y, Fang L (2016) The effect of ion-pair formation combined with penetration enhancers on the skin permeation of loxoprofen. Drug Delivery 23:1550–1557

    CAS  PubMed  Google Scholar 

  • Imani M, Lahooti-Fard F, Taghizadeh SM, Takrousta M (2010) Effect of adhesive layer thickness and drug loading on estradiol crystallization in a transdermal drug delivery system. AAPS PharmSciTech 11:1268–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Intarakumhaeng R, Li SK (2014) Effects of solvent on percutaneous absorption of nonvolatile lipophilic solute. Int J Pharm 476:266–276

    Article  CAS  PubMed  Google Scholar 

  • Intarakumhaeng R, Wanasathop A, Li SK (2018) Effects of solvents on skin absorption of nonvolatile lipophilic and polar solutes under finite dose conditions. Int J Pharm 536:405–413

    Article  CAS  PubMed  Google Scholar 

  • Ita KB (2015) Chemical penetration enhancers for transdermal drug delivery-success and challenges. Curr Drug Deliv 12:645–651

    Article  CAS  PubMed  Google Scholar 

  • Jacques SL, Mcauliffe DJ, Blank IH, Parrish JA (1987) Controlled removal of human stratum corneum by pulsed laser. J Invest Dermatol 88:88–93

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Jain P, Kurmi J, Jain D, Jain R, Chandel S, Sahu A, Mody N, Upadhaya S, Jain A (2014) Novel strategies for effective transdermal drug delivery: a review. Crit Rev Ther Drug Carrier Syst 31:219–272

    Article  CAS  PubMed  Google Scholar 

  • Jain P, Banga AK (2010) Inhibition of crystallization in drug-in-adhesive-type transdermal patches. Int J Pharm 394:68–74

    Article  CAS  PubMed  Google Scholar 

  • Jain P, Banga AK (2013) Induction and inhibition of crystallization in drug-in-adhesive-type transdermal patches. Pharm Res 30:562–571

    Article  CAS  PubMed  Google Scholar 

  • Jessy S, Shripad M, Mansi S (2007) Transdermal penetration enhancers. Curr Drug Ther 2:133–142

    Article  CAS  Google Scholar 

  • Jhawat VC, Saini V, Kamboj S, Maggon N (2013) Transdermal drug delivery systems: approaches and advancements in drug absorption through skin. Int J Pharm Sci Rev Res 20:47–56

    CAS  Google Scholar 

  • Jiang Y, Murnane KS, Bhattaccharjee SA, Blough BE, Banga AK (2019) Skin delivery and irritation potential of phenmetrazine as a candidate transdermal formulation for repurposed indications. AAPS J 21:1–9

    Article  CAS  Google Scholar 

  • Jordan WP Jr, Atkinson LE, Lai C (1998) Comparison of the skin irritation potential of two testosterone transdermal systems: an investigational system and a marketed product. Clin Ther 20:80–87

    Article  CAS  PubMed  Google Scholar 

  • Joshi SA, Jalalpure SS, Kempwade AA, Peram MR (2017) Fabrication and in-vivo evaluation of lipid nanocarriers based transdermal patch of colchicine. J Drug Delivery Sci Technol 41:444–453

    Article  CAS  Google Scholar 

  • Jumbelic MI (2010) Deaths with transdermal fentanyl patches. Am J Forensic Med Pathol 31:18–21

    Article  PubMed  Google Scholar 

  • Kandavilli S, Nair V, Panchagnula R (2002) Polymers in transdermal drug delivery systems. Pharm Technol 26:62–81

    CAS  Google Scholar 

  • Kilo S, Wick J, Vijayan SM, Göen T, Horch R, Ludolph I, Drexler H (2020) Impact of physiologically relevant temperatures on dermal absorption of active substances-an ex-vivo study in human skin. Toxicol In Vitro 68:104954

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Choi H-K (2002) Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix. Int J Pharm 236:81–85

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Zhao H, Lee CH, Kim DD (2001) Formulation of a reservoir-type testosterone transdermal delivery system. Int J Pharm 219:51–59

    Article  CAS  PubMed  Google Scholar 

  • Kitamura M (2004) Controlling factors and mechanism of polymorphic crystallization. Cryst Growth Des 4:1153–1159

    Article  CAS  Google Scholar 

  • Kohli A, Alpar H (2004) Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm 275:13–17

    Article  CAS  PubMed  Google Scholar 

  • Kotiyan PN, Vavia PR (2001) Eudragits: role as crystallization inhibitors in drug-in-adhesive transdermal systems of estradiol. Eur J Pharm Biopharm 52:173–180

    Article  CAS  PubMed  Google Scholar 

  • Kováčik A, Kopečná M, Vávrová K (2020) Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Delivery 17:145–155

    Article  CAS  Google Scholar 

  • Krishnaiah YS, Katragadda U, Khan MA (2014a) Stereomicroscopic imaging technique for the quantification of cold flow in drug-in-adhesive type of transdermal drug delivery systems. J Pharm Sci 103:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Krishnaiah YS, Yang Y, Hunt RL, Khan MA (2014b) Cold flow of estradiol transdermal systems: Influence of drug loss on the in vitro flux and drug transfer across human epidermis. Int J Pharm 477:73–80

    Article  CAS  PubMed  Google Scholar 

  • Kurihara-Bergstrom T, Flynn GL, Higuchi WI (1986) Physicochemical study of percutaneous absorption enhancement by dimethyl sulfoxide: kinetic and thermodynamic determinants of dimethyl sulfoxide mediated mass transfer of alkanols. J Pharm Sci 75:479–486

    Article  CAS  PubMed  Google Scholar 

  • Lawrence XY (2008) Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res 25:781–791

    Article  CAS  Google Scholar 

  • Lawrence XY, Amidon G, Khan MA, Hoag SW, Polli J, Raju G, Woodcock J (2014) Understanding pharmaceutical quality by design. AAPS J 16:771–783

    Article  CAS  Google Scholar 

  • Lee AY, Erdemir D, Myerson AS (2011) Crystal polymorphism in chemical process development. Annu Rev Chem Biomol Eng 2:259–280

    Article  CAS  PubMed  Google Scholar 

  • Lee CK, Uchida T, Kitagawa K, Yagi A, Kim NS, Goto S (1994) Skin permeability of various drugs with different lipophilicity. J Pharm Sci 83:562–565

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kollias N, Mcauliffe DJ, Flotte TJ, Doukas AG (1999) Topical drug delivery in humans with a single photomechanical wave. Pharm Res 16:1717–1721

    Article  CAS  PubMed  Google Scholar 

  • Li J (2002) Elimination of polymer interference in chromatographic analysis of estradiol degradation products in a transdermal drug delivery formulation by proper selection of extraction solvents. J Pharm Sci 91:1873–1879

    Article  CAS  PubMed  Google Scholar 

  • Li C, Liu C, Liu J, Fang L (2011) Correlation between rheological properties, in vitro release, and percutaneous permeation of tetrahydropalmatine. AAPS PharmSciTech 12:1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SB, Durfee LD, Ekeland RA, Mcvie J, Schalau GK (2007) Recent advances in silicone pressure-sensitive adhesives. J Adhes Sci Technol 21:605–623

    Article  CAS  Google Scholar 

  • Lipp R (1998) Pharmaceutics: selection and use of crystallization inhibitors for matrix-type transdermal drug-delivery systems containing sex steroids. J Pharm Pharmacol 50:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Hui M, Quan P, Fang L (2016) Drug in adhesive patch of palonosetron: effect of pressure sensitive adhesive on drug skin permeation and in vitro-in vivo correlation. Int J Pharm 511:1088–1097

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Farah N, Weng W, Jiao B, Shen M, Fang L (2019) Investigation of the permeation enhancer strategy on benzoylaconitine transdermal patch: the relationship between transdermal enhancement strength and physicochemical properties of permeation enhancer. Eur J Pharm Sci 138:105009

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2006) Performance studies of particle acceleration for transdermal drug delivery. Med Biol Eng Comput 44:551–559

    Article  PubMed  Google Scholar 

  • Lobo S, Sachdeva S, Goswami T (2016) Role of pressure-sensitive adhesives in transdermal drug delivery systems. Ther Delivery 7:33–48

    Article  CAS  Google Scholar 

  • Loder EW, Rayhill M, Burch RC (2018) Safety problems with a transdermal patch for migraine: lessons from the development, approval, and marketing process. J Headache Pain 58:1639–1657

    Article  Google Scholar 

  • Ma Q, Zhang Y, Critzer F, Davidson PM, Zivanovic S, Zhong Q (2016) Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocolloids 52:533–542

    Article  CAS  Google Scholar 

  • Maguire J, Peng D (2015) How to identify critical quality attributes and critical process parameters. Publishing FDA/PQRI 2nd Conference North Bethesda, Maryland. Accessed 26 Feb 2021

  • Mathes SH, Ruffner H, Graf-Hausner U (2014) The use of skin models in drug development. Adv Drug Delivery Rev 69:81–102

    Article  CAS  Google Scholar 

  • Mendes TDC, Pinto EC, Cabral LM, De Sousa VP (2020) Rotigotine: a review of analytical methods for the raw material, pharmaceutical formulations, and its impurities. J AOAC Int. https://doi.org/10.1093/jaoacint/qsaa145

    Article  Google Scholar 

  • Menefee LA, Frank ED, Crerand C, Jalali S, Park J, Sanschagrin K, Besser M (2004) The effects of transdermal fentanyl on driving, cognitive performance, and balance in patients with chronic nonmalignant pain conditions. Pain Med 5:42–49

    Article  PubMed  Google Scholar 

  • Minghetti P, Cilurzo F, Casiraghi A (2004) Measuring adhesive performance in transdermal delivery systems. Am J Drug Delivery 2:193–206

    Article  CAS  Google Scholar 

  • Miyazaki T, Kanno H, Yamamoto E, Ando D, Izutsu K-I, Goda Y (2020) Cold flow evaluation in transdermal drug delivery systems by measuring the width of the oozed adhesive. AAPS PharmSciTech 21:1–11

    Article  CAS  Google Scholar 

  • Mohamed LA, Kamal N, Elfakhri KH, Willett D, Wokovich A, Strasinger C, Cruz CN, Raney SG, Ashraf M, Zidan AS (2020) Drug recrystallization in drug-in-adhesive transdermal delivery system: a case study of deteriorating the mechanical and rheological characteristics of testosterone TDS. Int J Pharm 578:119132

    Article  CAS  PubMed  Google Scholar 

  • Mohammed I, Charalambides M, Kinloch A (2016) Modeling the effect of rate and geometry on peeling and tack of pressure-sensitive adhesives. J Non Newtonian Fluid Mech 233:85–94

    Article  CAS  Google Scholar 

  • Moribe K, Shibata M, Furuishi T, Higashi K, Tomono K, Yamamoto K (2010) Effect of particle size on skin permeation and retention of piroxicam in aqueous suspension. Chem Pharm Bull 58:1096–1099

    Article  CAS  Google Scholar 

  • Moser K, Kriwet K, Kalia YN, Guy RH (2001) Enhanced skin permeation of a lipophilic drug using supersaturated formulations. J Controlled Release 73:245–253

    Article  CAS  Google Scholar 

  • Musazzi UM, Ortenzi MA, Gennari CG, Casiraghi A, Minghetti P, Cilurzo F (2020) Design of pressure-sensitive adhesive suitable for the preparation of transdermal patches by hot-melt printing. Int J Pharm 586:119607

    Article  CAS  PubMed  Google Scholar 

  • Mutalik S, Dupa N (2004) Glibenclamide transdermal patches: physicochemical, pharmacodynamic, and pharmacokinetic evaluations. J Pharm Sci 93:1577–1594

    Article  CAS  PubMed  Google Scholar 

  • Nam SH, Xu YJ, Nam H, Jin GW, Jeong Y, An S, Park JS (2011) Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin. Int J Harm 419:114–120

    Article  CAS  Google Scholar 

  • Namjoshi S, Dabbaghi M, Roberts MS, Grice JE, Mohammed Y (2020) Quality by design: development of the quality target product profile (QTPP) for semisolid topical products. Pharmaceutics 12:287

    Article  PubMed Central  Google Scholar 

  • Nanayakkara GR, Bartlett A, Forbes B, Marriott C, Whitfield PJ, Brown MB (2005) The effect of unsaturated fatty acids in benzyl alcohol on the percutaneous permeation of three model penetrants. Int J Pharm 301:129–139

    Article  CAS  PubMed  Google Scholar 

  • O’sullivanHo AJK (1995) A comparison of the effects of oral and transdermal estrogen replacement on insulin sensitivity in postmenopausal women. J Clin Endocrinol Metab 80:1783–1788

    Google Scholar 

  • O’connorWillenbacher AEN (2004) The effect of molecular weight and temperature on tack properties of model polyisobutylenes. Int J Adhes Adhes 24:335–346

    Article  CAS  Google Scholar 

  • Oliveira G, Hadgraft J, Lane ME (2012) The influence of volatile solvents on transport across model membranes and human skin. Int J Pharm 435:38–49

    Article  CAS  PubMed  Google Scholar 

  • Parhi R, Padilam S (2018) In vitro permeation and stability studies on developed drug-in-adhesive transdermal patch of simvastatin. Bull Fac Pharm 56:26–33

    Google Scholar 

  • Parivesh S, Sumeet D, Abhishek D (2010) Design, evaluation, parameters and marketed products of transdermal patches: A review. J Pharm Res 3:235–240

    CAS  Google Scholar 

  • Park JS, Park YJ, Kang HW, Kim CK (2008) Solvent effects on physicochemical behavior of estradiols recrystallized for transdermal delivery. Arch Pharmacal Res 31:111–116

    Article  CAS  Google Scholar 

  • Patel HJ, Trivedi DG, Bhandari AK, Shah DA (2011) Penetration enhancers for transdermal drug delivery system: A review. Ijpi’s J Pharm Cosmetol 1:67–80

    Google Scholar 

  • Patel KK, Gade S, Anjum MM, Singh SK, Maiti P, Agrawal AK, Singh S (2019) Effect of penetration enhancers and amorphization on transdermal permeation flux of raloxifene-encapsulated solid lipid nanoparticles: an ex vivo study on human skin. Appl Nanosci 9:1383–1394

    Article  CAS  Google Scholar 

  • Pegoraro C, Macneil S, Battaglia G (2012) Transdermal drug delivery: from micro to nano. Nanoscale 4:1881–1894

    Article  CAS  PubMed  Google Scholar 

  • Preis M, Knop K, Breitkreutz J (2014) Mechanical strength test for orodispersible and buccal films. Int J Pharm 461:22–29

    Article  CAS  PubMed  Google Scholar 

  • Prodduturi S, Sadrieh N, Wokovich AM, Doub WH, Westenberger BJ, Buhse L (2010) Transdermal deliv0ery of fentanyl from matrix and reservoir systems: effect of heat and compromised skin. J Pharm Sci 99:2357–2366

    Article  CAS  PubMed  Google Scholar 

  • Quaroni GM, Gennari CG, Cilurzo F, Ducouret G, Creton C, Minghetti P (2018) Tuning the rheological properties of an ammonium methacrylate copolymer for the design of adhesives suitable for transdermal patches. Eur J Pharm Sci 111:238–246

    Article  CAS  PubMed  Google Scholar 

  • Qvist MH, Hoeck U, Kreilgaard B, Madsen F, Frokjaer S (2002) Release of chemical permeation enhancers from drug-in-adhesive transdermal patches. Int J Pharm 231:253–263

    Article  CAS  PubMed  Google Scholar 

  • Regenthal R, Voskanian M, Baumann F, Teichert J, Brätter C, Aigner A, Abraham G (2018) Pharmacokinetic evaluation of a transdermal anastrozole-in-adhesive formulation. Drug Des Dev Ther 12:3653

    Article  CAS  Google Scholar 

  • Ren C, Fang L, Ling L, Wang Q, Liu S, Zhao L, He Z (2009) Design and in vivo evaluation of an indapamide transdermal patch. Int J Pharm 370:129–135

    Article  CAS  PubMed  Google Scholar 

  • Reutzel-Edens SM, Stephenson GA (2011) Solid-state pharmaceutical development: ensuring stability through salt and polymorph screening. Pharmaceutical stress testing: predicting drug degradation, 2nd edn. Informa Healthcare, USA, pp 254–285

    Google Scholar 

  • Rodríguez-Hornedo N, Murphy D (1999) Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci 88:651–660

    Article  PubMed  Google Scholar 

  • Roy SD, Gutierrez M, Flynn GL, Cleary GW (1996) Controlled transdermal delivery of fentanyl: Characterizations of pressure-sensitive adhesives for matrix patch design. J Pharm Sci 85:491–495

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva V, Bai Y, Kydonieus A, Banga AK (2013) Formulation and optimization of desogestrel transdermal contraceptive patch using crystallization studies. Int J Pharm 441:9–18

    Article  CAS  PubMed  Google Scholar 

  • Sammeta SM, Repka MA, Narasimha Murthy S (2011) Magnetophoresis in combination with chemical enhancers for transdermal drug delivery. Drug Dev Ind Pharm 37:1076–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos P, Watkinson A, Hadgraft J, Lane M (2010) Oxybutynin permeation in skin: the influence of drug and solvent activity. Int J Pharm 384:67–72

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Panda A, Pradhan A, Zhang J, Thakkar R, Whang C-H, Repka MA, Murthy SN (2018) Solid-state stability issues of drugs in transdermal patch formulations. AAPS PharmSciTech 19:27–35

    Article  CAS  PubMed  Google Scholar 

  • Shekunov BY, Chattopadhyay P, Tong HH, Chow AH (2007) Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 24:203–227

    Article  CAS  PubMed  Google Scholar 

  • Sheth AR, Grant DJ (2005) Relationship between the structure and properties of pharmaceutical crystals. KONA Powder Part J 23:36–48

    Article  CAS  Google Scholar 

  • Simões A, Veiga F, Vitorino C, Figueiras A (2018) A tutorial for developing a topical cream formulation based on the quality by design approach. J Pharm Sci 107:2653–2662

    Article  PubMed  CAS  Google Scholar 

  • Simon A, Amaro MI, Healy AM, Cabral LM, De Sousa VP (2017) Development of a discriminative in vitro release test for rivastigmine transdermal patches using pharmacopeial apparatuses: USP 5 and USP 6. AAPS PharmSciTech 18:2561–2569

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Morris AP (2011) Performance of transdermal therapeutic systems: effects of biological factors. Int J Pharm Invest 1:4

    Article  CAS  Google Scholar 

  • Singhal D, Curatolo W (2004) Drug polymorphism and dosage form design: a practical perspective. Adv Drug Delivery Rev 56:335–347

    Article  CAS  Google Scholar 

  • Sivaraman A, Banga AK (2015) Quality by design approaches for topical dermatological dosage forms. Res Rep Transdermal Drug Delivery 4:9–21

    Article  Google Scholar 

  • Snider DA, Addicks W, Owens W (2004) Polymorphism in generic drug product development. Adv Drug Delivery Rev 56:391–395

    Article  CAS  Google Scholar 

  • Southwell D, Barry BW (1983) Penetration enhancers for human skin: mode of action of 2-pyrrolidone and dimethylformamide on partition and diffusion of model compounds water, n-alcohols, and caffeine. J Invest Dermatol 80:507–514

    Article  CAS  PubMed  Google Scholar 

  • Stott PW, Williams AC, Barry BW (1998) Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Controlled Release 50:297–308

    Article  CAS  Google Scholar 

  • Strasinger C, Raney SG, Tran DC, Ghosh P, Newman B, Bashaw ED, Ghosh T, Shukla CG (2016) Navigating sticky areas in transdermal product development. J Controlled Release 233:1–9

    Article  CAS  Google Scholar 

  • Su R, Fan W, Yu Q, Dong X, Qi J, Zhu Q, Zhao W, Wu W, Chen Z, Li Y (2017) Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget 8:38214

    Article  PubMed  PubMed Central  Google Scholar 

  • Subedi RK, Ryoo JP, Moon C, Choi HK (2011) Influence of formulation variables in transdermal drug delivery system containing zolmitriptan. Int J Pharm 419:209–214

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Fang L, Zhu M, Li W, Meng P, Li L, He Z (2009) A drug-in-adhesive transdermal patch for S-amlodipine free base: in vitro and in vivo characterization. Int J Pharm 382:165–171

    Article  CAS  PubMed  Google Scholar 

  • Tahir MA, Ali ME, Lamprecht A (2020) Nanoparticle formulations as recrystallization inhibitors in transdermal patches. Int J Pharm 575:118886

    Article  CAS  PubMed  Google Scholar 

  • Tan HS, Pfister WR (1999) Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technol Today 2:60–69

    Article  CAS  PubMed  Google Scholar 

  • Thacharodi D, Rao KP (1996) Rate-controlling biopolymer membranes as transdermal delivery systems for nifedipine: development and in vitro evaluations. Biomaterials 17:1307–1311

    Article  CAS  PubMed  Google Scholar 

  • Toddywala R, Ulman K, Walters P, Chien Y (1991) Effect of physicochemical properties of adhesive on the release, skin permeation and adhesiveness of adhesive-type transdermal drug delivery systems (a-TDD) containing silicone-based pressure-sensitive adhesives. Int J Pharm 76:77–89

    Article  CAS  Google Scholar 

  • Tokumoto S, Higo N, Sugibayashi K (2006) Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin. Int J Pharm 326:13–19

    Article  CAS  PubMed  Google Scholar 

  • Tse MF (1989) Studies of triblock copolymer-tackifying resin interactions by viscoelasticity and adhesive performance. J Adhes Sci Technol 3:551–570

    Article  CAS  Google Scholar 

  • Tymes NW, Shah VP, Skelly JP (1990) In vitro release profile of estradiol transdermal therapeutic systems. J Pharm Sci 79:601–602

    Article  CAS  PubMed  Google Scholar 

  • Ulman K, Chi-Long L (1989) Drug permeability of modified silicone polymers. III. Hydrophilic pressure-sensitive adhesives for transdermal controlled drug release applications. J Controlled Release 10:273–281

    Article  CAS  Google Scholar 

  • Vakadapudi AB, Gummidi B, Thamrapalli S (2014) Effect of additives and solvents on inhibition of crystallization in transdermal patches containing repaglinide. Int J Pharma Sci Res 5:25–30

    Google Scholar 

  • Van Buskirk GA, Arsulowicz D, Basu P, Block L, Cai B, Cleary GW, Ghosh T, González MA, Kanios D, Marques M (2012) Passive transdermal systems whitepaper incorporating current chemistry, manufacturing and controls (CMC) development principles. AAPS PharmSciTech 13:218–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Laarhoven J, Kruft M, Vromans H (2002) Effect of supersaturation and crystallization phenomena on the release properties of a controlled release device based on EVA copolymer. J Controlled Release 82:309–317

    Article  Google Scholar 

  • Vandervoort J, Ludwig A (2008) Microneedles for transdermal drug delivery: a minireview. Front Biosci 13:1711–1715

    Article  CAS  PubMed  Google Scholar 

  • Venna D, Khan AB (2012) Role of adhesives in transdermal drug delivery: a review. Int J Pharma Sci Res 3:3559

    CAS  Google Scholar 

  • Vippagunta SR, Brittain HG, Grant DJ (2001) Crystalline Solids. Adv Drug Delivery Rev 48:3–26

    Article  CAS  Google Scholar 

  • Waranis RP, Sloan KB (1987) Effects of vehicles and prodrug properties and their interactions on the delivery of 6-mercaptopurine through skin: bisacyloxymethyl-6-mercaptopurine prodrugs. J Pharm Sci 76:587–595

    Article  CAS  PubMed  Google Scholar 

  • Webster I (1997) Recent developments in pressure-sensitive adhesives for medical applications. Int J Adhes Adhes 17:69–73

    Article  CAS  Google Scholar 

  • Weng W, Quan P, Liu C, Zhao H, Fang L (2016) Design of a drug-in-adhesive transdermal patch for risperidone: effect of drug-additive interactions on the crystallization inhibition and in vitro/in vivo correlation study. J Pharm Sci 105:3153–3161

    Article  CAS  PubMed  Google Scholar 

  • Wokovich AM, Prodduturi S, Doub WH, Hussain AS, Buhse LF (2006) Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur J Pharm Biopharm 64:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wokovich AM, Strasinger C, Kessler J, Cai B, Westenberger B, Rhee MJ, Raw A, Buhse LF (2015) Cold flow measurement of transdermal drug delivery systems (TDDS). Int J Adhes Adhes 59:71–76

    Article  CAS  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48:27–42

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Capomacchia AC (2013) Influence of physicochemical properties on the in vitro skin permeation of the enantiomers, racemate, and eutectics of ibuprofen for enhanced transdermal drug delivery. J Pharm Sci 102:1957–1969

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y (2014) Quantitative detection of cold flow in transdermal drug delivery system. Dissertation, University of Maryland

Download references

Funding

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (Grant number 2020R1I1A307373311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Hyung Choi.

Ethics declarations

Conflict of interest

The authors (Eun Ji Kim and Du Hyung Choi) declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to Journal of Pharmaceutical Investigation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.J., Choi, D.H. Quality by design approach to the development of transdermal patch systems and regulatory perspective. J. Pharm. Investig. 51, 669–690 (2021). https://doi.org/10.1007/s40005-021-00536-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-021-00536-w

Keywords

Navigation