Skip to main content

Advertisement

Log in

Multifunctional nano-sized fullerenes for advanced tumor therapy

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

There is an increasing demand for the development of functional photosensitizing nano-sized drugs. Fullerene, one of the new carbon molecules, has been considered to be a useful and versatile material for this purpose. Notably, fullerenes are water-insoluble, and they readily aggregate in aqueous solution. Therefore, fullerenes usually have been coupled with water-soluble, biocompatible, biodegradable polymers (e.g., polysaccharides, proteins, and other functional polymers), achieving their improved water-solubility and biocompatible properties. In particular, when fullerenes are paired with tumor-targeting ligands or stimuli-responsive polymers, these conjugates exhibit enhanced tumor recognition ability and improved tumor inhibition. Some groups encapsulated fullerenes into liposomes or nanoemulsions for various pharmaceutical purposes. This review provides an in-depth understanding of fullerene/polymer nanoparticles for effective fullerene-mediated tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asada R, Liao F, Saitoh Y, Miwa N (2014) Photodynamic anti-cancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Mol Cell Biochem 390:175–184

    Article  CAS  PubMed  Google Scholar 

  • Blazkova I, Viet Nguyen H, Kominkova M, Konecna R, Chudobova D, Krejcova L, Kopel P, Hynek D, Zitka O, Beklova M, Adam V, Kizek R (2014) Fullerene as a transporter for doxorubicin investigated by analytical methods and in vivo imaging. Electrophoresis 35:1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri P, Paraskar A, Soni S, Mashelkar RA, Sengupta S (2009) Fullerenol–cytotoxic conjugates for cancer chemotherapy. ACS Nano 3:2505–2514

    Article  CAS  PubMed  Google Scholar 

  • Cherniavskyi YK, Ramseyer C, Yesylevskyy SO (2016) Interaction of C60 fullerenes with asymmetric and curved lipid membranes: a molecular dynamics study. Phys Chem Chem Phys 18:278–284

    Article  CAS  PubMed  Google Scholar 

  • Dou Z, Xu Y, Sun H, Liu Y (2012) Synthesis of PEGylated fullerene–5-fluorouracil conjugates to enhance the antitumor effect of 5-fluorouracil. Nanoscale 4:4624–4630

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Fang G, Zeng F, Wang X, Wu S (2013) Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small 9:613–621

    Article  CAS  PubMed  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  CAS  PubMed  Google Scholar 

  • Grobmyer SR, Krishna V (2012) Minimally invasive cancer therapy using polyhydroxy fullerenes. Eur J Radiol 81(Suppl 1):S51–S53

    Article  PubMed  Google Scholar 

  • Guan M, Ge J, Wu J, Zhang G, Chen D, Zhang W, Zhang Y, Zou T, Zhen M, Wang C, Chu T, Hao X, Shu C (2016) Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials 103:75–85

    Article  CAS  PubMed  Google Scholar 

  • Han B, Karim MN (2008) Cytotoxicity of aggregated fullerene C60 particles on CHO and MDCK cells. Scanning 30:213–220

    Article  CAS  PubMed  Google Scholar 

  • Higashi N, Shosu T, Koga T, Niwa M, Tanigawa T (2006) pH-responsive, self-assembling nanoparticle from a fullerene-tagged poly(l-glutamic acid) and its superoxide dismutase mimetic property. J Colloid Interface Sci 298:118–123

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multiwall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee DJ, Kwag DS, Lee UY, Youn YS, Lee ES (2014) Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy. Carbohydr Polym 101:692–698

    Article  CAS  PubMed  Google Scholar 

  • Kraszewski S, Tarek M, Ramseyer C (2011) Uptake and translocation mechanisms of cationic amino derivatives functionalized on pristine C60 by lipid membranes: a molecular dynamics simulation study. ACS Nano 5:8571–8578

    Article  CAS  PubMed  Google Scholar 

  • Kuang L, Chen Q, Sargent EH, Wang ZY (2003) [60] Fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths. J Am Chem Soc 125:13648–13649

    Article  CAS  PubMed  Google Scholar 

  • Kwag DS, Oh NM, Oh YT, Oh KT, Youn YS, Lee ES (2012) Photodynamic therapy using glycol chitosan grafted fullerenes. Int J Pharm 431:204–209

    Article  CAS  PubMed  Google Scholar 

  • Kwag DS, Park K, Oh KT, Lee ES (2013) Hyaluronated fullerenes with photoluminescent and antitumoral activity. Chem Commun 49:282–284

    Article  CAS  Google Scholar 

  • Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Control Release 132:164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang FL, Wang Z, Pan LL, Shen YY, Zhang ZZ (2013) Fullerene (C60) nanoparticles exert photocytotoxicity through modulation of reactive oxygen species and p38 mitogen-activated protein kinase activation in the MCF-7 cancer cell line. J Nanopart Res 15:2102–2112

    Article  Google Scholar 

  • Li X, Watanabe Y, Yuba E, Harada A, Haino T, Kono K (2015a) Facile construction of well-defined fullerene-dendrimer supramolecular nanocomposites for bioapplications. Chem Commun 51:2851–2854

    Article  CAS  Google Scholar 

  • Li Z, Zhang FL, Pan LL, Zhu XL, Zhang ZZ (2015b) Preparation and characterization of injectable Mitoxantrone poly(lactic acid)/fullerene implants for in vivo chemo-photodynamic therapy. J Photochem Photobiol B 149:51–57

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liu C, Li H (2016) Induction of endogenous reactive oxygen species in mitochondria by fullerene-based photodynamic therapy. J Nanosci Nanotechnol 16:5592–5597

    Article  CAS  PubMed  Google Scholar 

  • Lin CM, Lu TY (2012) C60 fullerene derivatized nanoparticles and their application to therapeutics. Recent Pat Nanotechnol 6:105–113

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu H, Yin Z, Guo K, Gao X (2012) Cytotoxicity of pristine C60 fullerene on baby hamster kidney cells in solution. J Biomat Nanobiotechnol 3:385–390

    Article  CAS  Google Scholar 

  • Liu Q, Xu L, Zhang X, Li N, Zheng J, Guan M, Fang X, Wang C, Shu C (2013) Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells. Chem Asian J 8:2370–2376

    Article  CAS  PubMed  Google Scholar 

  • Maeda-Mamiya R, Noiri E, Isobe H, Nakanishi W, Okamoto K, Doi K, Sugaya T, Izumi T, Homma T, Nakamura E (2010) In vivo gene delivery by cationic tetraamino fullerene. Proc Natl Acad Sci USA 107:5339–5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjón F, Santana-Magaña M, García-Fresnadillo D, Orellana G (2014) Are silicone-supported [C60] fullerenes an alternative to Ru(II) polypyridyls for photodynamic solar water disinfection? Photochem Photobiol Sci 13:397–406

    Article  PubMed  Google Scholar 

  • Manzetti S, Hadi B, Andersen O, van der David S (2013) Fullerenes toxicity and electronic properties. Environ Chem Let 11:105–118

    Article  Google Scholar 

  • Minami K, Okamoto K, Doi K, Harano K, Noiri E, Nakamura E (2014) siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene. Sci Rep 4:4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro-Riviere NA, Linder KE, Inman AO, Saathoff JG, Xia XR, Riviere JE (2012) Lack of hydroxylated fullerene toxicity after intravenous administration to female Sprague-Dawley rats. J Toxicol Environ Health A 75:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montellano A, Da Ros T, Bianco A, Prato M (2011) Review fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041

    Article  CAS  PubMed  Google Scholar 

  • Nedumpully Govindan P, Monticelli L, Salonen E (2012) Mechanism of taq DNA polymerase inhibition by fullerene derivatives: insight from computer simulations. J Phys Chem B 116:10676–10683

    Article  CAS  PubMed  Google Scholar 

  • Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E (2014) Physicochemical characterization and thermodynamic studies of nanoemulsion-based transdermal delivery system for fullerene. Sci World J 2014:219035

    Article  Google Scholar 

  • Prylutska SV, Burlaka AP, Klymenko PP, Grynyuk II, Prylutskyy YI, Schütze C, Ritter U (2011) Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol 2:105–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  • Shi J, Zhang H, Wang L, Li L, Wang H, Wang Z, Li Z, Chen C, Hou L, Zhang C, Zhang Z (2013) PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials 34:251–261

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang L, Gao J, Liu Y, Zhang J, Ma R, Liu R, Zhang Z (2014a) A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials 35:5771–5784

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Liu Y, Wang L, Gao J, Zhang J, Yu X, Ma R, Liu R, Zhang Z (2014b) A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomater 10:1280–1291

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang B, Wang L, Lu T, Fu Y, Zhang H, Zhang Z (2016) Fullerene (C60)-based tumor-targeting nanoparticles with “off–on” state for enhanced treatment of cancer. J Control Release 235:245–258

    Article  CAS  PubMed  Google Scholar 

  • Song P, Zhu Y, Tong L, Fang Z (2008) C(60) reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network. Nanotechnology 19:225707

    Article  PubMed  Google Scholar 

  • Sun M, Kiourti A, Wang H, Zhao S, Zhao G, Lu X, Volakis JL, He X (2016) Enhanced microwave hyperthermia of cancer cells with fullerene. Mol Pharm 13:2184–2192

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Wu T, Tang ZW, Xiao JY, Zhuo RX, Shi B, Liu CJ (2016) Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging. Nanotechnology 27:315104–315113

    Article  PubMed  Google Scholar 

  • Tanimoto S, Sakai S, Kudo E, Okada S, Matsumura S, Takahashi D, Toshima K (2012) Target-selective photodegradation of HIV-1 protease and inhibition of HIV-1 replication in living cells by designed fullerene-sugar hybrids. Chem Asian J 7:911–914

    Article  CAS  PubMed  Google Scholar 

  • Trpkovic A, Todorovic-Markovic B, Trajkovic V (2012) Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress. Arch Toxicol 86:1809–1827

    Article  CAS  PubMed  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon N Y 45:1891–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Agarwal P, Zhao S, Yu J, Lu X, He X (2016) Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials 97:62–73

    Article  CAS  PubMed  Google Scholar 

  • Wrobel D, Graja A (2006) Modification of electronic structure in supramolecular fullerene–porphyrin systems studied by fluorescence, photoacoustic and photothermal spectroscopy. J Photochem Photobiol A 183:79–88

    Article  CAS  Google Scholar 

  • Xiao SL, Wang Q, Yu F, Peng YY, Yang M, Sollogoub M, Sinaÿ P, Zhang YM, Zhang LH, Zhou DM (2012) Conjugation of cyclodextrin with fullerene as a new class of HCV entry inhibitors. Bioorg Med Chem 20:5616–5622

    Article  CAS  PubMed  Google Scholar 

  • Yumita N, Iwase Y, Imaizumi T, Sakurazawa A, Kaya Y, Nishi K, Ikeda T, Umemura S, Chen FS, Momose Y (2013) Sonodynamically-induced anticancer effects by functionalized fullerenes. Anticancer Res 33:3145–3151

    CAS  PubMed  Google Scholar 

  • Zhen M, Zheng J, Ye L, Li S, Jin C, Li K, Qiu D, Han H, Shu C, Yang Y, Wang C (2012) Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene. ACS Appl Mater Interfaces 4:3724–3729

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z (2013) Liposome formulation of fullerene-based molecular diagnostic and therapeutic agents. Pharmaceutics 5:525–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Lenk RP, Dellinger A, Wilson SR, Sadler R, Kepley CL (2010) Liposomal formulation of amphiphilic fullerene antioxidants. Bioconjug Chem 21:1656–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This article does not contain any studies with human and animal subjects performed by any of the authors. This work was supported by a grant (16173MFDS542) from Ministry of Food and Drug Safety in 2016, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2015R1A4A1042350), by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01056590), and by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant No. HI14C1835).

Conflict of Interest

Y. S. Youn, D. S. Kwag and E. S. Lee declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Seong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, Y.S., Kwag, D.S. & Lee, E.S. Multifunctional nano-sized fullerenes for advanced tumor therapy. Journal of Pharmaceutical Investigation 47, 1–10 (2017). https://doi.org/10.1007/s40005-016-0282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0282-8

Keywords

Navigation