Skip to main content
Log in

Thermal behavior of furosemide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Data from theoretical, thermal, and spectroscopic methods were compared in order to map a possible mechanism for the thermal decomposition of furosemide, a diuretic compound, in solid state. TG/DTG curves suggested a two-stage decomposition process. The first product of decomposition is water (m/z = 18), released due to a dimerization resulting in the formation of an amide. Then carbon dioxide (m/z = 44), nitroxide (m/z = 30), and 2-methyl-furanyl ion (m/z = 81) are released in the second stage. The chlorine substituted benzene ring, due to the double bond conjugated system, being the last fraction to decompose. Theoretical calculations presented are in agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dias ILT, Oliveira Neto G, Martins JLS. Metodologias analíticas para a determinação da furosemida. Lecta. 2004;22:9–26.

    Google Scholar 

  2. Kreaz RMA, Novák Cs, Eros I, Kata M. Thermoanalytical studies on complexes of furosemide with b-cyclodextrin derivatives. J Therm Anal Calorim. 1999;55:115–22.

    Article  Google Scholar 

  3. Shin SC, Kim J. Physicochemical characterization of solid dispersion of furosemide with TGPS. Int J Pharm. 2003;251:79–84.

    Article  CAS  Google Scholar 

  4. Beyers H, Malan SF, van der Watt JG, Villiers MM. Structure-solubility relationship and thermal decomposition of furosemide. Drug Dev Ind Pharm. 2000;26:1077–83.

    Article  CAS  Google Scholar 

  5. Kotev MI, Goto H, Ivanov PMJ. Molecular mechanics (CONFLEX/MM3) search/minimization study of the conformations of ornoside and escuside. J Mol Struct. 2005;748:9–16.

    Article  CAS  Google Scholar 

  6. Allinger NL. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc. 1977;99:8127–34.

    Article  CAS  Google Scholar 

  7. Allinger NL, Yuh YH, Lii JH. Molecular mechanics. The MM3 force field for hydrocarbons. J Am Chem Soc. 1989;111:8551–65.

    Article  CAS  Google Scholar 

  8. Bowen JP, Shim JY. Molecular mechanics studies of acyl halides: I. Molecular structures and conformational analysis. J Comput Chem. 1998;19:1370–86.

    Article  Google Scholar 

  9. Dewar MJS, Zoebisch EG, Healy Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc. 1985;107:3902–9.

    Article  CAS  Google Scholar 

  10. Matsuda Y, Tatsumi E. Physicochemical characterization of furosemide modifications. Int J Pharm. 1990;60:11–26.

    Article  CAS  Google Scholar 

  11. Brown ME, Novák Cs, Glass BD. The thermal and photostability of solid pharmaceuticals. J Therm Anal Calorim. 2004;77:1013–36.

    Article  Google Scholar 

  12. Shin SC, OH IJ, Lee YB, Choi HK, Choi JS. Enhanced dissolution of furosemide by coprecipitation or cogrinding with crospovidone. Int J Pharm. 1998;175:17–24.

    Article  CAS  Google Scholar 

  13. Silverstein RM, Webster FX, Kiemle DJ. Identificações espectrométricas de compostos orgânicos. 5th ed. Rio de Janeiro: Guanabara Koogan; 1994. p. 387.

    Google Scholar 

Download references

Acknowledgements

Authors are also grateful to Dr. Samuel Pitta (UFRJ, Brazil), for his contribution and discussions regarding theoretical calculations, as well as to Brazilian Agencies CAPES and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eder Tadeu Gomes Cavalheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Cássia da Silva, R., Semaan, F.S., Novák, C. et al. Thermal behavior of furosemide. J Therm Anal Calorim 111, 1933–1937 (2013). https://doi.org/10.1007/s10973-011-2058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2058-8

Keywords

Navigation