Skip to main content

Advertisement

Log in

Role of drug transporters: an overview based on knockout animal model studies

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Drug transporters play an important role in the absorption, distribution, and elimination of drugs and their metabolites. Drug transporters can be subdivided into solute carrier (SLC) and ATP-binding cassette (ABC) family. SLC transporters are secondary active transporters that work as uptake transporters, whereas ABC transporters are primary active transporters that work as efflux transporters. Knockout animal models that lack a specific transporter gene(s) are excellent tools to study the function of a drug transporter. In recent times, various gene knockout animal models have been developed that have significantly contributed in defining the roles of these transporters in vivo; for example, the roles of multidrug resistance protein, breast cancer resistance protein, multidrug resistance–related proteins, organic anionic transporters, organic cationic transporters, and organic anion transporting polypeptides have received great attention after their knockout models were generated. In this review, we aim to summarize the in vivo roles of drug transporters based on studies using knockout animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi M, Reid G, Schuetz JD (2002) Therapeutic and biological importance of getting nucleotides out of cells: a case for the ABC transporters, MRP4 and 5. Adv Drug Deliv Rev 54(10):1333–1342

    CAS  PubMed  Google Scholar 

  • Agarwal S, Sane R, Ohlfest JR, Elmquist WF (2011) The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 336(1):223–233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Agarwal S, Uchida Y, Mittapalli RK, Sane R, Terasaki T, Elmquist WF (2012) Quantitative proteomics of transporter expression in brain capillary endothelial cells isolated from P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and P-gp/Bcrp knockout mice. Drug Metab Dispos 40(6):1164–1169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alvarez AI, Vallejo F, Barrera B, Merino G, Prieto JG, Tomas-Barberan F, Espin JC (2011) Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab Dispos 39(11):2008–2012

    CAS  PubMed  Google Scholar 

  • Belinsky MG, Guo P, Lee K, Zhou F, Kotova E, Grinberg A, Westphal H, Shchaveleva I, Klein-Szanto A, Gallo JM, Kruh GD (2007) Multidrug resistance protein 4 protects bone marrow, thymus, spleen, and intestine from nucleotide analogue-induced damage. Cancer Res 67(1):262–268

    CAS  PubMed  Google Scholar 

  • Brouwer KL, Keppler D, Hoffmaster KA, Bow DA, Cheng Y, Lai Y, Palm JE, Stieger B, Evers R (2013) In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther 94(1):95–112

    CAS  PubMed  Google Scholar 

  • Brown SM, Campbell SD, Crafford A, Regina KJ, Holtzman MJ, Kharasch ED (2012) P-glycoprotein is a major determinant of norbuprenorphine brain exposure and antinociception. J Pharmacol Exp Ther 343(1):53–61

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen C, Pollack GM (1998) Altered disposition and antinociception of [D-penicillamine(2,5)] enkephalin in mdr1a-gene-deficient mice. J Pharmacol Exp Ther 287(2):545–552

    CAS  PubMed  Google Scholar 

  • Choi MK, Song IS (2012) Involvement of multidrug resistance proteins (MRPs) in the efflux of vardenafil. J Pharm Investig 42(2):65–70

    CAS  Google Scholar 

  • Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, am Zehnhoff-Dinnesen A, Schinkel AH, Koepsell H, Jurgens H, Schlatter E (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176(3):1169–1180

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ciarimboli G, Lancaster CS, Schlatter E, Franke RM, Sprowl JA, Pavenstadt H, Massmann V, Guckel D, Mathijssen RH, Yang W, Pui CH, Relling MV, Herrmann E, Sparreboom A (2012) Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin Cancer Res 18(4):1101–1108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cisternino S, Rousselle C, Lorico A, Rappa G, Scherrmann JM (2003) Apparent lack of Mrp1-mediated efflux at the luminal side of mouse blood–brain barrier endothelial cells. Pharm Res 20(6):904–909

    CAS  PubMed  Google Scholar 

  • Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM (2004) Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood–brain barrier. Cancer Res 64(9):3296–3301

    CAS  PubMed  Google Scholar 

  • Cox DS, Scott KR, Gao H, Raje S, Eddington ND (2001) Influence of multidrug resistance (MDR) proteins at the blood–brain barrier on the transport and brain distribution of enaminone anticonvulsants. J Pharm Sci 90(10):1540–1552

    CAS  PubMed  Google Scholar 

  • Csanaky IL, Lu H, Zhang Y, Ogura K, Choudhuri S, Klaassen CD (2011) Organic anion-transporting polypeptide 1b2 (Oatp1b2) is important for the hepatic uptake of unconjugated bile acids: studies in Oatp1b2-null mice. Hepatology 53(1):272–281

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dagenais C, Ducharme J, Pollack GM (2002) Interaction of nonpeptidic delta agonists with P-glycoprotein by in situ mouse brain perfusion: liquid chromatography–mass spectrometry analysis and internal standard strategy. J Pharm Sci 91(1):244–252

    CAS  PubMed  Google Scholar 

  • Daniel H, Kottra G (2004) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 447(5):610–618

    CAS  PubMed  Google Scholar 

  • de Lange EC, de Bock G, Schinkel AH, de Boer AG, Breimer DD (1998) BBB transport and P-glycoprotein functionality using MDR1A (-/-) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm Res 15(11):1657–1665

    PubMed  Google Scholar 

  • de Vries NA, Buckle T, Zhao J, Beijnen JH, Schellens JH, van Tellingen O (2012) Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs 30(2):443–449

    CAS  PubMed  Google Scholar 

  • Deeken JF, Loscher W (2007) The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13(6):1663–1674

    CAS  PubMed  Google Scholar 

  • Eisenblatter T, Galla HJ (2002) A new multidrug resistance protein at the blood–brain barrier. Biochem Biophys Res Commun 293(4):1273–1278

    PubMed  Google Scholar 

  • Eisner C, Faulhaber-Walter R, Wang Y, Leelahavanichkul A, Yuen PS, Mizel D, Star RA, Briggs JP, Levine M, Schnermann J (2010) Major contribution of tubular secretion to creatinine clearance in mice. Kidney Int 77(6):519–526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elmquist WF, Miller DW (2001) The use of transgenic mice in pharmacokinetic and pharmacodynamic studies. J Pharm Sci 90(4):422–435

    CAS  PubMed  Google Scholar 

  • Emslie D, D’Costa K, Hasbold J, Metcalf D, Takatsu K, Hodgkin PO, Corcoran LM (2008) Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor alpha chain expression on activated B cells. J Exp Med 205(2):409–421

    PubMed Central  CAS  PubMed  Google Scholar 

  • Enokizono J, Kusuhara H, Sugiyama Y (2007) Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol 72(4):967–975

    CAS  PubMed  Google Scholar 

  • Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, Barshop BA, Kaler G, Nigam SK (2006) Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem 281(8):5072–5083

    CAS  PubMed  Google Scholar 

  • Estudante M, Morais JG, Soveral G, Benet LZ (2013) Intestinal drug transporters: an overview. Adv Drug Deliv Rev 65(10):1340–1356

    CAS  PubMed  Google Scholar 

  • Foucaud-Vignault M, Soayfane Z, Menez C, Bertrand-Michel J, Martin PG, Guillou H, Collet X, Lespine A (2011) P-glycoprotein dysfunction contributes to hepatic steatosis and obesity in mice. PLoS One 6(9):e23614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franke RM, Kosloske AM, Lancaster CS, Filipski KK, Hu C, Zolk O, Mathijssen RH, Sparreboom A (2010) Influence of Oct1/Oct2-deficiency on cisplatin-induced changes in urinary N-acetyl-beta-d-glucosaminidase. Clin Cancer Res 16(16):4198–4206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao B, Stieger B, Noe B, Fritschy JM, Meier PJ (1999) Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J Histochem Cytochem 47(10):1255–1264

    CAS  PubMed  Google Scholar 

  • Higgins JW, Bao JQ, Ke AB, Manro JR, Fallon JK, Smith PC, Zamek-Gliszczynski MJ (2014) Utility of Oatp1a/1b-knockout and OATP1B1/3-humanized mice in the study of OATP-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein. Drug Metab Dispos 42(1):182–192

    CAS  PubMed  Google Scholar 

  • Hirrlinger J, Konig J, Dringen R (2002) Expression of mRNAs of multidrug resistance proteins (Mrps) in cultured rat astrocytes, oligodendrocytes, microglial cells and neurones. J Neurochem 82(3):716–719

    CAS  PubMed  Google Scholar 

  • Hopper-Borge EA, Churchill T, Paulose C, Nicolas E, Jacobs JD, Ngo O, Kuang Y, Grinberg A, Westphal H, Chen ZS, Klein-Szanto AJ, Belinsky MG, Kruh GD (2011) Contribution of Abcc10 (Mrp7) to in vivo paclitaxel resistance as assessed in Abcc10(-/-) mice. Cancer Res 71(10):3649–3657

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hosten B, Boisgard R, Jacob A, Goutal S, Saubamea B, Dolle F, Scherrmann JM, Cisternino S, Tournier N (2013) [(1)(1)C]befloxatone brain kinetics is not influenced by Bcrp function at the blood–brain barrier: a PET study using Bcrp TGEM knockout rats. Eur J Pharm Sci 50(3–4):520–525

    CAS  PubMed  Google Scholar 

  • Hu Y, Smith DE, Ma K, Jappar D, Thomas W, Hillgren KM (2008) Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipeptide absorption in intestine. Mol Pharm 5(6):1122–1130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang L, Be X, Tchaparian EH, Colletti AE, Roberts J, Langley M, Ling Y, Wong BK, Jin L (2012) Deletion of Abcg2 has differential effects on excretion and pharmacokinetics of probe substrates in rats. J Pharmacol Exp Ther 343(2):316–324

    CAS  PubMed  Google Scholar 

  • Imaoka T, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y (2007) Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol 71(2):619–627

    CAS  PubMed  Google Scholar 

  • International Transporter Consortium (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9(3):215–236

    Google Scholar 

  • Irie M, Terada T, Okuda M, Inui K (2004) Efflux properties of basolateral peptide transporter in human intestinal cell line Caco-2. Pflugers Arch 449(2):186–194

    CAS  PubMed  Google Scholar 

  • Jappar D, Wu SP, Hu Y, Smith DE (2010) Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and Pept1 knockout mice. Drug Metab Dispos 38(10):1740–1746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson DR, Finch RA, Lin ZP, Zeiss CJ, Sartorelli AC (2001) The pharmacological phenotype of combined multidrug-resistance mdr1a/1b- and mrp1-deficient mice. Cancer Res 61(4):1469–1476

    CAS  PubMed  Google Scholar 

  • Jonker JW, Wagenaar E, Mol CA, Buitelaar M, Koepsell H, Smit JW, Schinkel AH (2001) Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene. Mol Cell Biol 21(16):5471–5477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, Plosch T, Kuipers F, Elferink RP, Rosing H, Beijnen JH, Schinkel AH (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 99(24):15649–15654

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH (2003) Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 23(21):7902–7908

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kannan P, Telu S, Shukla S, Ambudkar SV, Pike VW, Halldin C, Gottesman MM, Innis RB, Hall MD (2011) The “specific” P-glycoprotein inhibitor Tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem Neurosci 2(2):82–89

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karssen AM, Meijer OC, van der Sandt IC, De Boer AG, De Lange EC, De Kloet ER (2002) The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. J Endocrinol 175(1):251–260

    CAS  PubMed  Google Scholar 

  • Kawahara M, Sakata A, Miyashita T, Tamai I, Tsuji A (1999) Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice. J Pharm Sci 88(12):1281–1287

    CAS  PubMed  Google Scholar 

  • Kayouka M, Houze P, Baud FJ, Cisternino S, Debray M, Risede P, Schinkel AH, Warnet JM (2011) Does modulation of organic cation transporters improve pralidoxime activity in an animal model of organophosphate poisoning? Crit Care Med 39(4):803–811

    CAS  PubMed  Google Scholar 

  • Kido Y, Tamai I, Ohnari A, Sai Y, Kagami T, Nezu J, Nikaido H, Hashimoto N, Asano M, Tsuji A (2001) Functional relevance of carnitine transporter OCTN2 to brain distribution of L-carnitine and acetyl-L-carnitine across the blood–brain barrier. J Neurochem 79(5):959–969

    CAS  PubMed  Google Scholar 

  • Kikuchi T, Okamura T, Wakizaka H, Okada M, Odaka K, Yui J, Tsuji AB, Fukumura T, Zhang MR (2014) OAT3-mediated extrusion of the 99mTc-ECD metabolite in the mouse brain. J Cereb Blood Flow Metab 34(4):585–588

    CAS  PubMed  Google Scholar 

  • Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101(2):289–294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kohler JJ, Hosseini SH, Green E, Abuin A, Ludaway T, Russ R, Santoianni R, Lewis W (2011) Tenofovir renal proximal tubular toxicity is regulated by OAT1 and MRP4 transporters. Lab Invest 91(6):852–858

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kwei GY, Alvaro RF, Chen Q, Jenkins HJ, Hop CE, Keohane CA, Ly VT, Strauss JR, Wang RW, Wang Z, Pippert TR, Umbenhauer DR (1999) Disposition of ivermectin and cyclosporin A in CF-1 mice deficient in mdr1a P-glycoprotein. Drug Metab Dispos 27(5):581–587

    CAS  PubMed  Google Scholar 

  • Lagas JS, Fan L, Wagenaar E, Vlaming ML, van Tellingen O, Beijnen JH, Schinkel AH (2010) P-glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide. Clin Cancer Res 16(1):130–140

    CAS  PubMed  Google Scholar 

  • Lancaster CS, Hu C, Franke RM, Filipski KK, Orwick SJ, Chen Z, Zuo Z, Loos WJ, Sparreboom A (2010) Cisplatin-induced downregulation of OCTN2 affects carnitine wasting. Clin Cancer Res 16(19):4789–4799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee YJ, Kusuhara H, Sugiyama Y (2004) Do multidrug resistance-associated protein-1 and -2 play any role in the elimination of estradiol-17 beta-glucuronide and 2,4-dinitrophenyl-S-glutathione across the blood–cerebrospinal fluid barrier? J Pharm Sci 93(1):99–107

    CAS  PubMed  Google Scholar 

  • Lee YJ, Kusuhara H, Jonker JW, Schinkel AH, Sugiyama Y (2005) Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood–brain barrier: a minor role of breast cancer resistance protein. J Pharmacol Exp Ther 312(1):44–52

    CAS  PubMed  Google Scholar 

  • Lin F, Marchetti S, Pluim D, Iusuf D, Mazzanti R, Schellens JH, Beijnen JH, van Tellingen O (2013) Abcc4 together with abcb1 and abcg2 form a robust cooperative drug efflux system that restricts the brain entry of camptothecin analogues. Clin Cancer Res 19(8):2084–2095

    CAS  PubMed  Google Scholar 

  • Lu H, Choudhuri S, Ogura K, Csanaky IL, Lei X, Cheng X, Song PZ, Klaassen CD (2008) Characterization of organic anion transporting polypeptide 1b2-null mice: essential role in hepatic uptake/toxicity of phalloidin and microcystin-LR. Toxicol Sci 103(1):35–45

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marchetti S, de Vries NA, Buckle T, Bolijn MJ, van Eijndhoven MA, Beijnen JH, Mazzanti R, van Tellingen O, Schellens JH (2008) Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther 7(8):2280–2287

    CAS  PubMed  Google Scholar 

  • Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER (1998) Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 139(4):1789–1793

    CAS  PubMed  Google Scholar 

  • Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, Dringen R (2006) The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97(2):373–384

    CAS  PubMed  Google Scholar 

  • Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF (2012) Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther 342(1):33–40

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miyajima M, Kusuhara H, Fujishima M, Adachi Y, Sugiyama Y (2011) Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood–brain barrier in mice. Drug Metab Dispos 39(5):814–819

    CAS  PubMed  Google Scholar 

  • Miyama T, Takanaga H, Matsuo H, Yamano K, Yamamoto K, Iga T, Naito M, Tsuruo T, Ishizuka H, Kawahara Y, Sawada Y (1998) P-glycoprotein-mediated transport of itraconazole across the blood–brain barrier. Antimicrob Agents Chemother 42(7):1738–1744

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mizuno N, Suzuki M, Kusuhara H, Suzuki H, Takeuchi K, Niwa T, Jonker JW, Sugiyama Y (2004) Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (BCRP1/ABCG2) knockout mice. Drug Metab Dispos 32(9):898–901

    CAS  PubMed  Google Scholar 

  • Morimoto K, Nakakariya M, Shirasaka Y, Kakinuma C, Fujita T, Tamai I, Ogihara T (2008) Oseltamivir (Tamiflu) efflux transport at the blood–brain barrier via P-glycoprotein. Drug Metab Dispos 36(1):6–9

    CAS  PubMed  Google Scholar 

  • Morrissey KM, Wen CC, Johns SJ, Zhang L, Huang SM, Giacomini KM (2012) The UCSF-FDA TransPortal: a public drug transporter database. Clin Pharmacol Ther 92(5):545–546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muller MB, Keck ME, Binder EB, Kresse AE, Hagemeyer TP, Landgraf R, Holsboer F, Uhr M (2003) ABCB1 (MDR1)-type P-glycoproteins at the blood–brain barrier modulate the activity of the hypothalamic-pituitary-adrenocortical system: implications for affective disorder. Neuropsychopharmacology 28(11):1991–1999

    PubMed  Google Scholar 

  • Naba H, Kuwayama C, Kakinuma C, Ohnishi S, Ogihara T (2004) Eisai hyperbilirubinemic rat (EHBR) as an animal model affording high drug-exposure in toxicity studies on organic anions. Drug Metab Pharmacokinet 19(5):339–351

    CAS  PubMed  Google Scholar 

  • Nagle MA, Wu W, Eraly SA, Nigam SK (2013) Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neurosci Lett 534:133–138

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura T, Satoh T, Horie T, Sagami F, Tagaya O (1989) Strain differences of rat liver carboxylesterase activities related to the phenotype difference of esterase-3 (egasyn). Res Commun Chem Pathol Pharmacol 66(3):451–459

    CAS  PubMed  Google Scholar 

  • Nishino J, Suzuki H, Sugiyama D, Kitazawa T, Ito K, Hanano M, Sugiyama Y (1999) Transepithelial transport of organic anions across the choroid plexus: possible involvement of organic anion transporter and multidrug resistance-associated protein. J Pharmacol Exp Ther 290(1):289–294

    CAS  PubMed  Google Scholar 

  • Ocheltree SM, Shen H, Hu Y, Keep RF, Smith DE (2005) Role and relevance of peptide transporter 2 (PEPT2) in the kidney and choroid plexus: in vivo studies with glycylsarcosine in wild-type and PEPT2 knockout mice. J Pharmacol Exp Ther 315(1):240–247

    CAS  PubMed  Google Scholar 

  • Ose A, Kusuhara H, Endo C, Tohyama K, Miyajima M, Kitamura S, Sugiyama Y (2010) Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood–brain barrier. Drug Metab Dispos 38(1):168–176

    CAS  PubMed  Google Scholar 

  • Oude Elferink RP, Meijer DK, Kuipers F, Jansen PL, Groen AK, Groothuis GM (1995) Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim Biophys Acta 1241(2):215–268

    PubMed  Google Scholar 

  • Polli JW, Olson KL, Chism JP, John-Williams LS, Yeager RL, Woodard SM, Otto V, Castellino S, Demby VE (2009) An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos 37(2):439–442

    CAS  PubMed  Google Scholar 

  • Rao VV, Dahlheimer JL, Bardgett ME, Snyder AZ, Finch RA, Sartorelli AC, Piwnica-Worms D (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood–cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci U S A 96(7):3900–3905

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rappa G, Finch RA, Sartorelli AC, Lorico A (1999) New insights into the biology and pharmacology of the multidrug resistance protein (MRP) from gene knockout models. Biochem Pharmacol 58(4):557–562

    CAS  PubMed  Google Scholar 

  • Romermann K, Wanek T, Bankstahl M, Bankstahl JP, Fedrowitz M, Muller M, Loscher W, Kuntner C, Langer O (2013) (R)-[(11)C]verapamil is selectively transported by murine and human P-glycoprotein at the blood–brain barrier, and not by MRP1 and BCRP. Nucl Med Biol 40(7):873–878

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77(4):491–502

    CAS  PubMed  Google Scholar 

  • Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P (1995) Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 96(4):1698–1705

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CA, van Deemter L (1996) P-glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97(11):2517–2524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zijlmans JM, Fibbe WE, Borst P (1997) Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci U S A 94(8):4028–4033

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen H, Ocheltree SM, Hu Y, Keep RF, Smith DE (2007) Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab Dispos 35(7):1209–1216

    PubMed  Google Scholar 

  • Shin YJ, Lee JH, Oh JH, Lee YJ (2013) Low-dose probenecid selectively inhibits urinary excretion of phenolsulfonphthalein in rats without affecting biliary excretion. J Appl Toxicol 33(6):511–515

    CAS  PubMed  Google Scholar 

  • Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y (2013) Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 34(1):45–78

    CAS  PubMed  Google Scholar 

  • Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM, Giacomini KM (2007) Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117(5):1422–1431

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shukla S, Zaher H, Hartz A, Bauer B, Ware JA, Ambudkar SV (2009) Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice. Pharm Res 26(2):480–487

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith BJ, Doran AC, McLean S, Tingley FD 3rd, O’Neill BT, Kajiji SM (2001) P-glycoprotein efflux at the blood–brain barrier mediates differences in brain disposition and pharmacodynamics between two structurally related neurokinin-1 receptor antagonists. J Pharmacol Exp Ther 298(3):1252–1259

    CAS  PubMed  Google Scholar 

  • Sprowl JA, Ciarimboli G, Lancaster CS, Giovinazzo H, Gibson AA, Du G, Janke LJ, Cavaletti G, Shields AF, Sparreboom A (2013) Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc Natl Acad Sci U S A 110(27):11199–11204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Swain MD, Orzechowski KL, Swaim HL, Jones YL, Robl MG, Tinaza CA, Myers MJ, Jhingory MV, Buckely LE, Lancaster VA, Yancy HF (2013) P-gp substrate-induced neurotoxicity in an Abcb1a knock-in/Abcb1b knock-out mouse model with a mutated canine ABCB1 targeted insertion. Res Vet Sci 94(3):656–661

    CAS  PubMed  Google Scholar 

  • Sweeney DE, Vallon V, Rieg T, Wu W, Gallegos TF, Nigam SK (2011) Functional maturation of drug transporters in the developing, neonatal, and postnatal kidney. Mol Pharmacol 80(1):147–154

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK (2002) Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem 277(30):26934–26943

    CAS  PubMed  Google Scholar 

  • Tahara H, Kusuhara H, Fuse E, Sugiyama Y (2005) P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood–brain barrier, but only a limited role in its biliary excretion. Drug Metab Dispos 33(7):963–968

    CAS  PubMed  Google Scholar 

  • Takenaka K, Morgan JA, Scheffer GL, Adachi M, Stewart CF, Sun D, Leggas M, Ejendal KF, Hrycyna CA, Schuetz JD (2007) Substrate overlap between Mrp4 and Abcg2/Bcrp affects purine analogue drug cytotoxicity and tissue distribution. Cancer Res 67(14):6965–6972

    CAS  PubMed  Google Scholar 

  • Tang SC, Hendrikx JJ, Beijnen JH, Schinkel AH (2013) Genetically modified mouse models for oral drug absorption and disposition. Curr Opin Pharmacol 13(6):853–858

    CAS  PubMed  Google Scholar 

  • Tian X, Swift B, Zamek-Gliszczynski MJ, Belinsky MG, Kruh GD, Brouwer KL (2008) Impact of basolateral multidrug resistance-associated protein (Mrp) 3 and Mrp4 on the hepatobiliary disposition of fexofenadine in perfused mouse livers. Drug Metab Dispos 36(5):911–915

    PubMed Central  CAS  PubMed  Google Scholar 

  • Torres AM, Dnyanmote AV, Bush KT, Wu W, Nigam SK (2011) Deletion of multispecific organic anion transporter Oat1/Slc22a6 protects against mercury-induced kidney injury. J Biol Chem 286(30):26391–26395

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toyama K, Yonezawa A, Masuda S, Osawa R, Hosokawa M, Fujimoto S, Inagaki N, Inui K, Katsura T (2012) Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis. Br J Pharmacol 166(3):1183–1191

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K (2009) Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol 75(6):1280–1286

    CAS  PubMed  Google Scholar 

  • Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, Ahn SY, Mahapatra NR, Mahata SK, Gangoiti JA, Wu W, Barshop BA, Siuzdak G, Nigam SK (2008a) Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol 19(9):1732–1740

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK (2008b) Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol 294(4):F867–F873

    CAS  PubMed  Google Scholar 

  • Vallon V, Eraly SA, Rao SR, Gerasimova M, Rose M, Nagle M, Anzai N, Smith T, Sharma K, Nigam SK, Rieg T (2012) A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am J Physiol Renal Physiol 302(10):F1293–F1299

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Asperen J, van Tellingen O, Schinkel AH, Beijnen JH (1999) Comparative pharmacokinetics of vinblastine after a 96-hour continuous infusion in wild-type mice and mice lacking mdr1a P-glycoprotein. J Pharmacol Exp Ther 289(1):329–333

    PubMed  Google Scholar 

  • van de Steeg E, Wagenaar E, van der Kruijssen CM, Burggraaff JE, de Waart DR, Elferink RP, Kenworthy KE, Schinkel AH (2010) Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest 120(8):2942–2952

    PubMed Central  PubMed  Google Scholar 

  • van de Steeg E, van Esch A, Wagenaar E, Kenworthy KE, Schinkel AH (2013) Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clin Pharmacol Ther 19(4):821–832

    Google Scholar 

  • van der Deen M, Timens W, Timmer-Bosscha H, van der Strate BW, Scheper RJ, Postma DS, de Vries EG, Kerstjens HA (2007) Reduced inflammatory response in cigarette smoke exposed Mrp1/Mdr1a/1b deficient mice. Respir Res 8:49

    PubMed Central  PubMed  Google Scholar 

  • Vanwert AL, Bailey RM, Sweet DH (2007) Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol 293(4):F1332–F1341

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vanwert AL, Srimaroeng C, Sweet DH (2008) Organic anion transporter 3 (oat3/slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharmacol 74(1):122–131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vialou V, Amphoux A, Zwart R, Giros B, Gautron S (2004) Organic cation transporter 3 (Slc22a3) is implicated in salt-intake regulation. J Neurosci 24(11):2846–2851

    CAS  PubMed  Google Scholar 

  • Vialou V, Balasse L, Callebert J, Launay JM, Giros B, Gautron S (2008) Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice. J Neurochem 106(3):1471–1482

    CAS  PubMed  Google Scholar 

  • Vlaming ML, Mohrmann K, Wagenaar E, de Waart DR, Elferink RP, Lagas JS, van Tellingen O, Vainchtein LD, Rosing H, Beijnen JH, Schellens JH, Schinkel AH (2006) Carcinogen and anticancer drug transport by Mrp2 in vivo: studies using Mrp2 (Abcc2) knockout mice. J Pharmacol Exp Ther 318(1):319–327

    CAS  PubMed  Google Scholar 

  • Walker AL, Lancaster CS, Finkelstein D, Ware RE, Sparreboom A (2013) Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics. Am J Physiol Cell Physiol 305(12):C1223–C1229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walters HC, Craddock AL, Fusegawa H, Willingham MC, Dawson PA (2000) Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am J Physiol Gastrointest Liver Physiol 279(6):G1188–G1200

    CAS  PubMed  Google Scholar 

  • Watanabe S, Tsuda M, Terada T, Katsura T, Inui K (2010) Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1-deficient mice. J Pharmacol Exp Ther 334(2):651–656

    CAS  PubMed  Google Scholar 

  • Wijnholds J, deLange EC, Scheffer GL, van den Berg DJ, Mol CA, van der Valk M, Schinkel AH, Scheper RJ, Breimer DD, Borst P (2000a) Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood–cerebrospinal fluid barrier. J Clin Invest 105(3):279–285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wijnholds J, Mol CA, van Deemter L, de Haas M, Scheffer GL, Baas F, Beijnen JH, Scheper RJ, Hatse S, De Clercq E, Balzarini J, Borst P (2000b) Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci U S A 97(13):7476–7481

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK (2011) Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J Proteome Res 10(6):2842–2851

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu SP, Smith DE (2013) Impact of intestinal PepT1 on the kinetics and dynamics of N-formyl-methionyl-leucyl-phenylalanine, a bacterially-produced chemotactic peptide. Mol Pharm 10(2):677–684

    CAS  PubMed  Google Scholar 

  • Xue X, Gong LK, Maeda K, Luan Y, Qi XM, Sugiyama Y, Ren J (2011) Critical role of organic anion transporters 1 and 3 in kidney accumulation and toxicity of aristolochic acid I. Mol Pharm 8(6):2183–2192

    CAS  PubMed  Google Scholar 

  • Yang B, Smith DE (2013) Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice. Drug Metab Dispos 41(3):608–614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Z, Zhu W, Gao S, Yin T, Jiang W, Hu M (2012) Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab Dispos 40(10):1883–1893

    PubMed Central  CAS  PubMed  Google Scholar 

  • You G, Morris ME (2007) Drug transporters : molecular characterization and role in drug disposition. Wiley, Hoboken

    Google Scholar 

  • Zaher H, Khan AA, Palandra J, Brayman TG, Yu L, Ware JA (2006) Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol Pharm 3(1):55–61

    CAS  PubMed  Google Scholar 

  • Zaher H, Meyer zu Schwabedissen HE, Tirona RG, Cox ML, Obert LA, Agrawal N, Palandra J, Stock JL, Kim RB, Ware JA (2008) Targeted disruption of murine organic anion-transporting polypeptide 1b2 (Oatp1b2/Slco1b2) significantly alters disposition of prototypical drug substrates pravastatin and rifampin. Mol Pharmacol 74(2):320–329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Nezasa K, Tian X, Bridges AS, Lee K, Belinsky MG, Kruh GD, Brouwer KL (2006a) Evaluation of the role of multidrug resistance-associated protein (Mrp) 3 and Mrp4 in hepatic basolateral excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in Abcc3-/- and Abcc4-/- mice. J Pharmacol Exp Ther 319(3):1485–1491

    CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Nezasa K, Tian X, Kalvass JC, Patel NJ, Raub TJ, Brouwer KL (2006b) The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol Pharmacol 70(6):2127–2133

    CAS  PubMed  Google Scholar 

  • Zhang Y, Han H, Elmquist WF, Miller DW (2000) Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res 876(1–2):148–153

    CAS  PubMed  Google Scholar 

  • Zhang Y, Csanaky IL, Lehman-McKeeman LD, Klaassen CD (2011) Loss of organic anion transporting polypeptide 1a1 increases deoxycholic acid absorption in mice by increasing intestinal permeability. Toxicol Sci 124(2):251–260

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Limaye PB, Lehman-McKeeman LD, Klaassen CD (2012) Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice. PLoS ONE 7(4):e34522

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Csanaky IL, Selwyn FP, Lehman-McKeeman LD, Klaassen CD (2013) Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism. Biochem Pharmacol 86(3):437–445

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, Pollack GM (2009) Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood–brain barrier. Drug Metab Dispos 37(6):1251–1258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu P, Hata R, Ogasawara M, Cao F, Kameda K, Yamauchi K, Schinkel AH, Maeyama K, Sakanaka M (2012) Targeted disruption of organic cation transporter 3 (Oct3) ameliorates ischemic brain damage through modulating histamine and regulatory T cells. J Cereb Blood Flow Metab 32(10):1897–1908

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zolk O, Fromm MF (2011) Transporter-mediated drug uptake and efflux: important determinants of adverse drug reactions. Clin Pharmacol Ther 89(6):798–805

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors (N. Shin, J.-H. Oh, and Y.-J. Lee) declare that they have no conflict of interest. This work was supported by a Grant from the Kyung Hee University (KHU-20090598).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Joo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, N., Oh, JH. & Lee, YJ. Role of drug transporters: an overview based on knockout animal model studies. Journal of Pharmaceutical Investigation 45, 101–114 (2015). https://doi.org/10.1007/s40005-015-0178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-015-0178-z

Keywords

Navigation