Skip to main content
Log in

Preliminary Investigation on Efficacy and Safety of Substance P-Coated Stent for Promoting Re-Endothelialization: A Porcine Coronary Artery Restenosis Model

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Current polymer-based drug-eluting stents (DESs) have fundamental issues about inflammation and delayed re-endothelializaton of the vessel wall. Substance-P (SP), which plays an important role in inflammation and endothelial cells, has not yet been applied to coronary stents. Therefore, this study compares poly lactic-co-glycolic acid (PLGA)-based everolimus-eluting stents (PLGA-EESs) versus 2-methacryloyloxyethyl phosphorylcholine (MPC)-based SP-eluting stents (MPC-SPs) in in-vitro and in-vivo models.

Methods:

The morphology of the stent surface and peptide/drug release kinetics from stents were evaluated. The in-vitro proliferative effect of SP released from MPC-SP is evaluated using human umbilical vein endothelial cell. Finally, the safety and efficacy of the stent are evaluated after inserting it into a pig's coronary artery.

Results:

Similar to PLGA-EES, MPC-SP had a uniform surface morphology with very thin coating layer thickness (2.074 μm). MPC-SP showed sustained drug release of SP for over 2 weeks. Endothelial cell proliferation was significantly increased in groups treated with SP (n = 3) compared with the control (n = 3) and those with everolimus (n = 3) (SP: 118.9 ± 7.61% vs. everolimus: 64.3 ± 12.37% vs. the control: 100 ± 6.64%, p < 0.05). In the animal study, the percent stenosis was higher in MPC-SP group (n = 7) compared to PLGA-EES group (n = 7) (MPC-SP: 28.6 ± 10.7% vs. PLGA-EES: 16.7 ± 6.3%, p < 0.05). MPC-SP group showed, however, lower inflammation (MPC-SP: 0.3 ± 0.26 vs. PLGA-EES: 1.2 ± 0.48, p < 0.05) and fibrin deposition (MPC-SP: 1.0 ± 0.73 vs. PLGA-EES: 1.5 ± 0.59, p < 0.05) around the stent strut. MPC-SP showed more increased expression of cluster of differentiation 31, suggesting enhanced re-endothelialization.

Conclusion:

Compared to PLGA-EES, MPC-SP demonstrated more decreased inflammation of the vascular wall and enhanced re-endothelialization and stent coverage. Hence, MPC-SP has the potential therapeutic benefits for the treatment of coronary artery disease by solving limitations of currently available DESs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.

    PubMed  PubMed Central  Google Scholar 

  2. Scafa Udriste A, Niculescu AG, Grumezescu AM, Bădilă E. Cardiovascular stents: a review of past, current, and emerging devices. Materials. 2021;14:2498.

    PubMed  PubMed Central  Google Scholar 

  3. Nicolas J, Pivato CA, Chiarito M, Beerkens F, Cao D, Mehran R. Evolution of drug-eluting coronary stents: a back-and-forth journey from the bench to bedside. Cardiovasc Res. 2023;119:631–46.

    CAS  PubMed  Google Scholar 

  4. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978;1:263.

    CAS  PubMed  Google Scholar 

  5. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med. 1994;331:489–95.

    CAS  PubMed  Google Scholar 

  6. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med. 1994;331:496–501.

    CAS  PubMed  Google Scholar 

  7. Schatz RA, Baim DS, Leon M, Ellis SG, Goldberg S, Hirshfeld JW, et al. Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation. 1991;83:148–61.

    CAS  PubMed  Google Scholar 

  8. Stone GW, Ellis SG, Cannon L, Mann JT, Greenberg JD, Spriggs D, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. JAMA. 2005;294:1215–23.

    CAS  PubMed  Google Scholar 

  9. Oh S, Hyun DY, Cho KH, Kim JH, Jeong MH. Long-term outcomes in ST-elevation myocardial infarction patients treated according to hospital visit time. Korean J Intern Med. 2022;37:605–17.

    PubMed  Google Scholar 

  10. Habib A, Finn AV. Endothelialization of drug eluting stents and its impact on dual anti-platelet therapy duration. Pharmacol Res. 2015;93:22–7.

    CAS  PubMed  Google Scholar 

  11. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48:193–202.

    PubMed  Google Scholar 

  12. Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 2007;115:2435–41.

    PubMed  Google Scholar 

  13. Kim HS, Kang J, Hwang D, Han JK, Yang HM, Kang HJ, et al. Durable polymer versus biodegradable polymer drug-eluting stents after percutaneous coronary intervention in patients with acute coronary syndrome: the host-reduce-polytech-acs trial. Circulation. 2021;143:1081–91.

    CAS  PubMed  Google Scholar 

  14. Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;73:4249–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Redkiewicz P. The regenerative potential of substance P. Int J Mol Sci. 2022;23:750.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Suvas S. Role of substance P neuropeptide in inflammation, wound healing, and tissue homeostasis. J Immunol. 2017;199:1543–52.

    CAS  PubMed  Google Scholar 

  17. Zieglgansberger W. Substance P and pain chronicity. Cell Tissue Res. 2019;375:227–41.

    CAS  PubMed  Google Scholar 

  18. Katsanos GS, Anogeianaki A, Orso C, Tete S, Salini V, Antinolfi PL, et al. Impact of substance P on cellular immunity. J Biol Regul Homeost Agents. 2008;22:93–8.

    CAS  PubMed  Google Scholar 

  19. Castellani ML, Galzio RJ, Felaco P, Tripodi D, Toniato E, De Lutiis MA, et al. VEGF, substance P and stress, new aspects: a revisited study. J Biol Regul Homeost Agents. 2010;24:229–37.

    CAS  PubMed  Google Scholar 

  20. Kohara H, Tajima S, Yamamoto M, Tabata Y. Angiogenesis induced by controlled release of neuropeptide substance P. Biomaterials. 2010;31:8617–25.

    CAS  PubMed  Google Scholar 

  21. Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, et al. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest. 1997;99:2625–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mouritzen MV, et al. Neurotensin, substance P, and insulin enhance cell migration. J Pept Sci. 2018;24: e3093.

    PubMed  Google Scholar 

  23. Liu Y, Munisso MC, Mahara A, Kambe Y, Yamaoka T. Anti-platelet adhesion and in situ capture of circulating endothelial progenitor cells on ePTFE surface modified with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and hemocompatible peptide 1 (HCP-1). Colloids Surf B Biointerfaces. 2020;193:111113.

    CAS  PubMed  Google Scholar 

  24. Xu Y, Takai M, Ishihara K. Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials. 2009;30:4930–8.

    CAS  PubMed  Google Scholar 

  25. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3:829–36.

    CAS  PubMed  Google Scholar 

  26. Ranucci M, Isgrò G, Soro G, Canziani A, Menicanti L, Frigiola A. Reduced systemic heparin dose with phosphorylcholine coated closed circuit in coronary operations. Int J Artif Organs. 2004;27:311–9.

    CAS  PubMed  Google Scholar 

  27. Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with Alkyl Methacrylates and their blood compatibility. Polym J. 1992;24:1259–69.

    CAS  Google Scholar 

  28. Xie R, Tian Y, Peng S, Zhang L, Men Y, Yang W. Poly(2-methacryloyloxyethyl phosphorylcholine)-based biodegradable nanogels for controlled drug release. Polym Chem. 2018;9:4556–65.

    CAS  Google Scholar 

  29. Bae IH, Lim KS, Park JK, Park DS, Lee SY, Jang EJ, et al. Mechanical behavior and in vivo properties of newly designed bare metal stent for enhanced flexibility. J Ind Eng Chem. 2015;21:1295–300.

    CAS  Google Scholar 

  30. Cho KH, Jeong MH, Park DS, Kim M, Kim J, Park JK, et al. Preclinical evaluation of a novel polymer-free Everolimus-Eluting stent in a mid-term porcine coronary restenosis model. J Korean Med Sci. 2021;36:e259.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahn YK, Jeong MH, Kim JW, Kim SH, Cho JH, Cho JG, et al. Preventive effects of the heparin-coated stent on restenosis in the porcine model. Catheter Cardiovasc Interv. 1999;48:324–30.

    CAS  PubMed  Google Scholar 

  32. Schwartz RS, Edelman E, Virmani R, Carter A, Granada JF, Kaluza GL, et al. Drug-eluting stents in preclinical studies: updated consensus recommendations for preclinical evaluation. Circ Cardiovasc Interv. 2008;1:143–53.

    PubMed  PubMed Central  Google Scholar 

  33. Schwartz RS, Huber KC, Murphy JG, Edwards WD, Camrud AR, Vlietstra RE, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol. 1992;19:267–74.

    CAS  PubMed  Google Scholar 

  34. Viele K, Berry S, Neuenschwander B, Amzal B, Chen F, Enas N, et al. Use of historical control data for assessing treatment effects in clinical trials. Pharm Stat. 2014;13:41–54.

    PubMed  Google Scholar 

  35. Regar E, Sianos G, Serruys PW. Stent development and local drug delivery. Br Med Bull. 2001;59:227–48.

    CAS  PubMed  Google Scholar 

  36. Shi W, Fuad ARM, Li Y, Wang Y, Huang J, Du R, et al. Biodegradable polymeric nanoparticles increase risk of cardiovascular diseases by inducing endothelium dysfunction and inflammation. J Nanobiotechnology. 2023;21:65.

    CAS  Google Scholar 

  37. Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109:701–5.

    PubMed  Google Scholar 

  38. Kastrati A, Mehilli J, Dirschinger J, Dotzer F, Schühlen H, Neumann FJ, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 2001;103:2816–21.

    CAS  PubMed  Google Scholar 

  39. Pache J, Kastrati A, Mehilli J, Schühlen H, Dotzer F, Hausleiter J, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol. 2003;41:1283–8.

    PubMed  Google Scholar 

  40. Palmerini T, Biondi-Zoccai G, Della Riva D, Mariani A, Sabaté M, Smits PC, et al. Clinical outcomes with bioabsorbable polymer- versus durable polymer-based drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2014;63:299–307.

    CAS  PubMed  Google Scholar 

  41. Park DS, Bae IH, Jeong MH, Lim KS, Sim DS, Hong YJ, et al. In vitro and in vivo evaluation of a novel polymer-free everolimus-eluting stent by nitrogen-doped titanium dioxide film deposition. Mater Sci Eng C Mater Biol Appl. 2018;91:615–23.

    CAS  PubMed  Google Scholar 

  42. Ishihara K, Takayama R, Nakabayashi N, Fukumoto K, Aoki J. Improvement of blood compatibility on cellulose dialysis membrane. 2. Blood compatibility of phospholipid polymer grafted cellulose membrane. Biomaterials. 1992;13:235–9.

    CAS  PubMed  Google Scholar 

  43. O'Connor TM, O'Connell J, O'Brien DI, Goode T, Bredin CP, Shanahan F. The role of substance P in inflammatory disease. J Cell Physiol. 2004;201:167–80.

    CAS  PubMed  Google Scholar 

  44. Sim DS, Kim W, Lee KH, Song HC, Kim JH, Park DS, et al. Cardioprotective effect of substance P in a porcine model of acute myocardial infarction. Int J Cardiol. 2018;271:228–32.

    PubMed  Google Scholar 

  45. Kim JH, Jung Y, Kim BS, Kim SH. Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials. 2013;34:1657–68.

    CAS  PubMed  Google Scholar 

  46. Hong HS, Lee J, Lee E, Kwon YS, Lee E, Ahn W, et al. A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med. 2009;15:425–35.

    CAS  PubMed  Google Scholar 

  47. Amadesi S, Reni C, Katare R, Meloni M, Oikawa A, Beltrami AP, et al. Role for substance p-based nociceptive signaling in progenitor cell activation and angiogenesis during ischemia in mice and in human subjects. Circulation. 2012;125:1774–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater. 2012;13:064101.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Giessen WJ, Serruys PW, van Beusekom HM, van Woerkens LJ, van Loon H, Soei LK, et al. Coronary stenting with a new, radiopaque, balloon-expandable endoprosthesis in pigs. Circulation. 1991;83:1788–98.

    PubMed  Google Scholar 

  50. Anderson PG, Bajaj RK, Baxley WA, Roubin GS. Vascular pathology of balloon-expandable flexible coil stents in humans. J Am Coll Cardiol. 1992;19:372–81.

    CAS  PubMed  Google Scholar 

  51. Ziche M, Morbidelli L, Pacini M, Geppetti P, Alessandri G, Maggi CA. Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc Res. 1990;40:264–78.

    CAS  PubMed  Google Scholar 

  52. Villablanca AC, Murphy CJ, Reid TW. Growth-promoting effects of substance P on endothelial cells in vitro. Synergism with calcitonin gene-related peptide, insulin, and plasma factors. Circ Res. 1994;75:1113–20.

    CAS  PubMed  Google Scholar 

  53. Liu L, Shi GP. CD31: beyond a marker for endothelial cells. Cardiovasc Res. 2012;94:3–5.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (1711138916, KMDF_PR_20200901_0280 & 1711137864, KMDF_PR_20200901_0005). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A3A04036675). We wish to thank YOOYOUNG Pharm. Co., Ltd. (33 Yongso 2-gil, Gwanghyewon-myeon, jincheon-gun, Chungcheongbuk-do, Korea) for support with the experiments (2018-3231). Korea Medical Device Development Fund, 1711138916, Myung Ho Jeong, KMDF_PR_20200901_0280, Myung Ho Jeong, 1711137864, Myung Ho Jeong, KMDF_PR_20200901_0005, Myung Ho Jeong, YOOYOUNG Pharm (KR), 2018-3231, Myung Ho Jeong.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SDS, JMH. Data curation: PDS, OS, JYJ, NMH, KM, KJH, HDY, CKH, LKS, PJK, BDH. Formal analysis: PDS, OS, HYJ, KJH, AY, H-PM, VRJM, G-CJL, MPL. Funding acquisition: JMH. Investigation: PDS, OS, JYJ, NMH, KM, KJH, HDY, CKH, CYN, KSJ, LKS, PJK, BDH. Methodology: PDS, OS, H-PM, VRJM, G-CJL, MPL. Software: PDS, OS, JYJ, NMH, KM. Supervision: SDS, JMH. Visualization: PDS, OS, JYJ, NMH, KM, KJH Writing—original draft: PDS and OS. Writing—review and editing: HYJ, KJH, AY, PMH, RJMV, CJLG, PLM, SDS, JMH.

Corresponding authors

Correspondence to Doo Sun Sim or Myung Ho Jeong.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

The animal studies were performed after receiving approval of the Institutional Animal Care and Use Committee (IACUC) in Chonnam National University Hospital (IACUC approval No. CNUHIACUC-20019).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13770_2023_608_MOESM1_ESM.tif

Schematic diagrams of the stent fabrication. A Coronary artery anatomy and stents. B Bare metal stent. C Drug-eluting stent. D Substance P-coated stent.

13770_2023_608_MOESM2_ESM.tif

Example of measurements by QCA. A CAG pre-implantation. BC CAG during implantation. D CAG post-implantation. EH CAG at 4-week follow-up. CAG, coronary angiogram; QCA, quantitative coronary analysis.

13770_2023_608_MOESM3_ESM.tif

Histopathological analysis of the porcine coronary restenosis model at 4-week follow-up. BMS, bare-metal stent; IEL, internal elastic lamina; MPC-SP, 2-methacryloyloxyethyl phosphorylcholine-based substance P-eluting stent; PLGA-EES, poly lactic-co-glycolic acid-based everolimus-eluting stent.

13770_2023_608_MOESM4_ESM.tif

In-vitro whole blood platelet aggregation test of PLGA-EES and MPC-SP. AD In-vitro circulation equipment for mimicking the body’s circulation system. E, F Whole blood platelet aggregation test. G, HSEM images of surfaces of PLGA-EES and MPC-SP after anti-platelet aggregation test. MPC-SP, 2-methacryloyloxyethyl phosphorylcholine-based substance P-eluting stent; PLGA-EES, poly lactic-co-glycolic acid-based everolimus-eluting stent

Supplementary file5 (DOCX 24 kb)

Supplementary file6 (DOCX 30 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D.S., Oh, S., Jin, Y.J. et al. Preliminary Investigation on Efficacy and Safety of Substance P-Coated Stent for Promoting Re-Endothelialization: A Porcine Coronary Artery Restenosis Model. Tissue Eng Regen Med 21, 53–64 (2024). https://doi.org/10.1007/s13770-023-00608-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00608-y

Keywords

Navigation