Skip to main content
Log in

Cassia Angustifolia Primed ASCs Accelerate Burn Wound Healing by Modulation of Inflammatory Response

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Thermal traumas impose a huge burden on healthcare systems. This merits the need for advanced but cost-effective remedies with clinical prospects. In this context, we prepared a regenerative 3D-construct comprising of Cassia angustifolia extract (SM) primed adipose-derived stem cells (ASCs) laden amniotic membrane for faster burn wound repair.

Methods:

ASCs were preconditioned with SM (30 µg/ml for 24 h), and subsequently exposed to in-vitro thermal injury (51 °C,10 min). In-vivo thermal injury was induced by placing pre-heated copper-disc (2 cm diameter) on dorsum of the Wistar rats. ASCs (2.0 × 105) pre-treated with SM (SM-ASCs), cultured on stromal side of amniotic membrane (AM) were transplanted in rat heat-injury model. Non-transplanted heat-injured rats and non-heat-injured rats were kept as controls.

Results:

The significantly upregulated expression of IGF1, SDF1A, TGFβ1, VEGF, GSS, GSR, IL4, BCL2 genes and downregulation of BAX, IL6, TNFα, and NFkB1 in SM-ASCs in in-vitro and in-vivo settings confirmed its potential in promoting cell-proliferation, migration, angiogenesis, antioxidant, cell-survival, anti-inflammatory, and wound healing activity. Moreover, SM-ASCs induced early wound closure, better architecture, normal epidermal thickness, orderly-arranged collagen fibers, and well-developed skin appendages in healed rat-skin transplanted with AM+SM-ASCs, additionally confirmed by increased expression of structural genes (Krt1, Krt8, Krt19, Desmin, Vimentin, α-Sma) in comparison to untreated-ASCs laden-AM transplanted in heat injured rats.

Conclusion:

SM priming effectively enabled ASCs to counter thermal injury by significantly enhancing cell survival and reducing inflammation upon transplantation. This study provides bases for development of effective combinational therapies (natural scaffold, medicine, and stem cells) with clinical prospects for treating burn wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data presented in this study are available on request from all the authors.

References

  1. World Health Organization. Fact sheets Burns. 2018. https://www.who.int/news-room/fact-sheets/detail/burns

  2. Ali MB, Ali MB. Psychological and physiological complications of post-burn patients in Pakistan: a narrative review. Sultan Qaboos Univ Med J. 2022;22:8–13.

    PubMed  PubMed Central  Google Scholar 

  3. Hall C, Hardin C, Corkins CJ, Jiwani AZ, Fletcher J, Carlsson A, et al. Pathophysiologic mechanisms and current treatments for cutaneous sequelae of burn wounds. Compr Physiol. 2017;8:371–405.

    PubMed  Google Scholar 

  4. Sun LT, Friedrich E, Heuslein JL, Pferdehirt RE, Dangelo NM, Natesan S, et al. Reduction of burn progression with topical delivery of (antitumor necrosis factor-α)-hyaluronic acid conjugates. Wound Repair Regen. 2012;20:563–72.

    PubMed  PubMed Central  Google Scholar 

  5. Cheng KY, Lin ZH, Cheng YP, Chiu HY, Yeh NL, Wu TK, et al. Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet. Sci Rep. 2018;8:12214.

    PubMed  PubMed Central  Google Scholar 

  6. Setyawati A, Wahyuningsih MSH, Nugrahaningsih DAA, Effendy C, Fneish F, Fortwengel G. Piper crocatum Ruiz & Pav. ameliorates wound healing through p53, E-cadherin and SOD1 pathways on wounded hyperglycemia fibroblasts. Saudi J Biol Sci. 2021;28:7257–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Z, Shi C. Cellular senescence is a promising target for chronic wounds: a comprehensive review. Burns Trauma. 2020;8:tkaa021.

    PubMed  PubMed Central  Google Scholar 

  8. Gasca-Lozano LE, Lucano-Landeros S, Ruiz-Mercado H, Salazar-Montes A, Sandoval-Rodríguez A, Garcia-Bañuelos J, et al. Pirfenidone accelerates wound healing in chronic diabetic foot ulcers: a randomized. Double-Blind Controll Trial J Diabetes Res. 2017;2017:3159798.

    Google Scholar 

  9. Martinelli-Kläy CP, Lunardi LO, Martinelli CR, Lombardi T, Soares EG, Martinelli C. Modulation of MCP-1, TGF-β1, and α-SMA expressions in granulation tissue of cutaneous wounds treated with local vitamin B complex: an experimental study. Dermatopathology. 2014;1:98–107.

    PubMed  PubMed Central  Google Scholar 

  10. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21:103–15.

    CAS  PubMed  Google Scholar 

  11. Huet AS, Dvorshchenko KO, Grebinyk DM, Beregova TV, Ostapchenko LI. Expression of the Cftr, Nfkb1, and ocln genes during restoration of skin integrity. Cytol Genet. 2022;56:236–43.

    Google Scholar 

  12. Morgan M, Deuis JR, Frøsig-Jørgensen M, Lewis RJ, Cabot PJ, Gray PD, et al. Burn pain: a systematic and critical review of epidemiology, pathophysiology, and treatment. Pain Med. 2018;19:708–34.

    PubMed  Google Scholar 

  13. Ahmed SI, Hayat MQ, Tahir M, Mansoor Q, Ismail M, Keck K, et al. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement Altern Med. 2016;16:460.

  14. Wu QP, Wang ZJ, Fu MH, Tang LY, He Y, Fang J, et al. Chemical constituents from the leaves of Cassia angustifolia. Zhong Yao Cai. 2007;30:1250–2.

  15. Cuellar MJ, Giner RM, Recio MC, Manez S, Rıos JL. Topical anti-inflammatory activity of some Asian medicinal plants used in dermatological disorders. Fitoterapia. 2001;72:221–9.

    CAS  PubMed  Google Scholar 

  16. Maria AT, Maumus M, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis. Clin Rev Allergy Immunol. 2017;52:234–59.

    CAS  PubMed  Google Scholar 

  17. Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. J Transl Med. 2020;18:336.

    PubMed  PubMed Central  Google Scholar 

  18. Alvarez-Viejo M, Haider KH. Mesenchymal stem cells: from identification and characterization to clinical applications. In: Handbook of stem cell therapy. Singapore: Springer Singapore; 2022. p. 1–37.

    Google Scholar 

  19. Elloso M, Kambli A, Aijaz A, van de Kamp A, Jeschke MG. Burns in the elderly: potential role of stem cells. Int J Mol Sci. 2020;21:4604.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. Burns Trauma. 2021;9:tkab002.

  21. Magne B, Lataillade JJ, Trouillas M. Mesenchymal stromal cell preconditioning: the next step toward a customized treatment for severe burn. Stem Cells Dev. 2018;27:1385–405.

    PubMed  Google Scholar 

  22. Robson MC, Krizek TJ, Koss N, Samburg JL. Amniotic membranes as a temporary wound dressing. Surg Gynecol Obstet. 1973;136:904–6.

    CAS  PubMed  Google Scholar 

  23. Tseng S, He H, Li W. U.S. Patent No. 8,187,639. Washington, DC: U.S. Patent and Trademark Office; 2012.

  24. Mohammadi A, Johari HG. Amniotic membrane: a skin graft fixator convenient for both patient and surgeon. Burns. 2008;34:1051–2.

    PubMed  Google Scholar 

  25. Mohammadi AA, Johari HG. Anchoring sutures: useful adjuncts for amniotic membrane for skin graft fixation in extensive burns and near the joints. Burns. 2010;36:1134. https://doi.org/10.1016/j.burns.2009.05.015.

    PubMed  Google Scholar 

  26. Ghiasi M, Qomi RT, Kalhor N, Sheykhhasan M. Adipose-derived stem cells: an optimized protocol for isolation and proliferation. Acta Med Int. 2016;3:116.

    Google Scholar 

  27. Shifa Ul Haq HM, Ashfaq R, Mehmood A, Shahid W, Azam G, Azam M, et al. Priming with caffeic acid enhances the potential and survival ability of human adipose-derived stem cells to counteract hypoxia. Regen Ther. 2023;22:115–27.

  28. Butt H, Mehmood A, Ali M, Tasneem S, Anjum MS, Tarar MN, et al. Protective role of vitamin E preconditioning of human dermal fibroblasts against thermal stress in vitro. Life Sci. 2017;184:1–9.

    CAS  PubMed  Google Scholar 

  29. Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. Endod Top. 2011;24:94–129.

    Google Scholar 

  30. Guo R, Chai L, Chen L, Chen W, Ge L, Li X, et al. Stromal cell-derived factor 1 (SDF-1) accelerated skin wound healing by promoting the migration and proliferation of epidermal stem cells. In Vitro Cell Dev Biol Anim. 2015;51:578–85.

    CAS  PubMed  Google Scholar 

  31. Quan C, Cho MK, Shao Y, Mianecki LE, Liao E, Perry D, et al. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin. Protein Cell. 2015;6:890–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hur J, Yang HT, Chun W, Kim JH, Shin SH, Kang HJ, et al. Inflammatory cytokines and their prognostic ability in cases of major burn injury. Ann Lab Med. 2015;35:105.

    CAS  PubMed  Google Scholar 

  33. Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater. 2010;9:90–3.

    CAS  PubMed  Google Scholar 

  34. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FDP. 3D cell culture systems: advantages and applications. J Cell Physiol. 2014;230:16–26.

  35. Hajiiski O, Anatassov N. Amniotic membranes for temporary burn coverage. 1996; 88–92.

  36. Bayat A, McGrouther DA, Ferguson MW. Skin scarring. BMJ. 2003;326:88–92.

  37. Elliott CG, Hamilton DW. Deconstructing fibrosis research: do pro-fibrotic signals point the way for chronic dermal wound regeneration? J Cell Commun Signal. 2011;5:301–15.

    PubMed  PubMed Central  Google Scholar 

  38. Ghufran H, Mehmood A, Azam M, Butt H, Ramzan A, Yousaf MA, et al. Curcumin preconditioned human adipose derived stem cells co-transplanted with platelet rich plasma improve wound healing in diabetic rats. Life Sci. 2020;257:118091.

    CAS  PubMed  Google Scholar 

  39. Azam M, Ghufran H, Butt H, Mehmood A, Ashfaq R, Ilyas AM, et al. Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds. Burns Trauma. 2021;9:tkab021.

  40. Wu JC, Rose LF, Christy RJ, Leung KP, Chan RK. Full-thickness thermal injury delays wound closure in a murine model. Adv Wound Care. 2015;4:83–91.

    Google Scholar 

  41. Ou S, Liu GD, Tan Y, Zhou LS, Bai SR, Xue G, et al. A time course study about gene expression of post-thermal injury with DNA microarray. Int J Dermatol. 2015;54:757–64.

    CAS  PubMed  Google Scholar 

  42. Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Curr Dermatol Rep. 2018;7:350–8.

    PubMed  PubMed Central  Google Scholar 

  43. Raja KS, Garcia MS, Isseroff RR. Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci Landmark. 2007;12:2849–68.

    CAS  Google Scholar 

  44. Koivisto L, Häkkinen L, Larjava H. R e-epithelialization of wounds. Endod Top. 2011;24:59–93.

    Google Scholar 

  45. Lessin SR, Huebner K, Isobe M, Croce CM, Steinert PM. Chromosomal mapping of human keratin genes: evidence of non-linkage. J Invest Dermatol. 1988;91:572–8.

    CAS  PubMed  Google Scholar 

  46. Magin TM, Reichelt J, Chen J, Elias PM, Feingold KR. The role of keratins in epithelial homeostasis. In: Elias PM, Feingold KR, editors. Skin barrier. New York: Taylor and Francis; 2006. p. 141–70.

    Google Scholar 

  47. Savtchenko ES, Schiff TA, Jiang CK, Freedberg IM, Blumenberg M. Embryonic expression of the human 40-kD keratin: evidence from a processed pseudogene sequence. Am J Hum Genet. 1988;43:630–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohan R, Bargagna-Mohan P. The use of withaferin A to study intermediate filaments. In: Methods in enzymology. Academic Press; 2016. p. 187–218.

    Google Scholar 

  49. Ivaska J. Vimentin: Central hub in EMT induction? Small GTPases. 2011;2:1436–48.

    Google Scholar 

  50. Lowery J, Kuczmarski ER, Herrmann H, Goldman RD. Intermediate filaments play a pivotal role in regulating cell architecture and function. J Biol Chem. 2015;290:17145–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng F, Shen Y, Mohanasundaram P, Lindström M, Ivaska J, Ny T, Eriksson JE. Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β–Slug signaling. Proc Natl Acad Sci U S A. 2016;113:E4320–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest. 1990;63:21–9.

    CAS  PubMed  Google Scholar 

  53. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. 2001;12:2730–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Abedin-Do A, Zhang Z, Douville Y, Méthot M, Bernatchez J, Rouabhia M. Electrical stimulation promotes the wound-healing properties of diabetic human skin fibroblasts. J Tissue Eng Regen Med. 2022;16:643–52.

  55. Wang X, Wang T, Pan T, Huang M, Ren W, Xu G, et al. Senna alexandrina extract supplementation reverses hepatic oxidative, inflammatory, and apoptotic effects of cadmium chloride administration in rats. Environ Sci Pollut Res. 2020;27:5981–92.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ST: Conceptualization, Study design, Conduct of Experiments, Interpretation, Data organization and analysis and Manuscript preparation. HG and MA: Performing animal surgical procedures, Photographic data collection and Tissue sampling. AA: histological staining, MBU: Assisted in experimentation. AY: Provided lipoaspirate for isolation of ASCs. KS: Data Interpretation, Reviewing and Editing. AM: Supervision and validation. KM: Provided resources and SR: Reviewing and editing.

Corresponding authors

Correspondence to Azra Mehmood or Sheikh Riazuddin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. The funders had no role in designing the study, in the collection, analysis, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Ethical statement

This study was approved by the Ethical review board (ERB) Committee of the National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan (Ref. D/161/UZ).

All animal procedures performed were approved by the Institutional Animal Ethics Committee (IAEC), National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan (Ref. CEMB/IAEC/17-09).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasneem, S., Ghufran, H., Azam, M. et al. Cassia Angustifolia Primed ASCs Accelerate Burn Wound Healing by Modulation of Inflammatory Response. Tissue Eng Regen Med 21, 137–157 (2024). https://doi.org/10.1007/s13770-023-00594-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00594-1

Keywords

Navigation