Skip to main content
Log in

Fabrication of Microchannels and Evaluation of Guided Vascularization in Biomimetic Hydrogels

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

The fabrication of microchannels in hydrogel can facilitate the perfusion of nutrients and oxygen, which leads to guidance cues for vasculogenesis. Microchannel patterning in biomimetic hydrogels is a challenging issue for tissue regeneration because of the inherent low formability of hydrogels in a complex configuration. We fabricated microchannels using wire network molding and immobilized the angiogenic factors in the hydrogel and evaluated the vasculogenesis in vitro and in vivo.

METHODS:

Microchannels were fabricated in a hyaluronic acid-based biomimetic hydrogel by using “wire network molding” technology. Substance P was immobilized in acrylated hyaluronic acid for angiogenic cues using Michael type addition reaction. In vitro and in vivo angiogenic activities of hydrogel with microchannels were evaluated.

RESULTS:

In vitro cell culture experiment shows that cell viability in two experimental biomimetic hydrogels (with microchannels and microchannels + SP) was higher than that of a biomimetic hydrogel without microchannels (bulk group). Evaluation on differentiation of human mesenchymal stem cells (hMSCs) in biomimetic hydrogels with fabricated microchannels shows that the differentiation of hMSC into endothelial cells was significantly increased compared with that of the bulk group. In vivo angiogenesis analysis shows that thin blood vessels of approximately 25–30 μm in diameter were observed in the microchannel group and microchannel + SP group, whereas not seen in the bulk group.

CONCLUSION:

The strategy of fabricating microchannels in a biomimetic hydrogel and simultaneously providing a chemical cue for angiogenesis is a promising formula for large-scale tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–41.

    Article  PubMed  CAS  Google Scholar 

  2. Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol. 2005;23:821–3.

    Article  PubMed  CAS  Google Scholar 

  3. Hall H. Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis. Curr Pharm Des. 2007;13:3597–607.

    Article  PubMed  CAS  Google Scholar 

  4. Tabata Y, Miyao M, Ozeki M, Ikada Y. Controlled release of vascular endothelial growth factor by use of collagen hydrogels. J Biomater Sci Polym Ed. 2000;11:915–30.

    Article  PubMed  CAS  Google Scholar 

  5. Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol. 2001;19:1029–34.

    Article  PubMed  CAS  Google Scholar 

  6. Zieris A, Chwalek K, Prokoph S, Levental KR, Welzel PB, Freudenberg U, et al. Dual independent delivery of pro-angiogenic growth factors from starpeg-heparin hydrogels. J Control Release. 2011;156:28–36.

    Article  PubMed  CAS  Google Scholar 

  7. Kim SK, Cho TH, Han JJ, Kim IK, Park Y, Hwang SJ. Comparative study of BMP-2 alone and combined with VEGF carried by hydrogel for maxillary alveolar bone regeneration. Tissue Eng Regen Med. 2016;13:171–81.

    Article  CAS  Google Scholar 

  8. Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B–PDGFRbeta signaling. J Cell Sci. 2005;118:3759–68.

    Article  PubMed  CAS  Google Scholar 

  9. Chwalek K, Tsurkan MV, Freudenberg U, Werner C. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci Rep. 2014;4:4414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, et al. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol (Camb). 2014;6:555–63.

    Article  CAS  Google Scholar 

  11. Kim SK, Lee J, Song M, Kim M, Hwang SJ, Jang H, et al. Combination of three angiogenic growth factors has synergistic effects on sprouting of endothelial cell/mesenchymal stem cell-based spheroids in a 3D matrix. J Biomed Mater Res B Appl Biomater. 2016;104:1535–43.

    Article  PubMed  CAS  Google Scholar 

  12. Kirchmair R, Gander R, Egger M, Hanley A, Silver M, Ritsch A, et al. The neuropeptide secretoneurin acts as a direct angiogenic cytokine in vitro and in vivo. Circulation. 2004;109:777–83.

    Article  PubMed  CAS  Google Scholar 

  13. Song M, Jang H, Lee J, Kim JH, Kim SH, Sun K, et al. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials. 2014;35:2436–45.

    Article  PubMed  CAS  Google Scholar 

  14. Kohara H, Tajima S, Yamamoto M, Tabata Y. Angiogenesis induced by controlled release of neuropeptide substance P. Biomaterials. 2010;31:8617–25.

    Article  PubMed  CAS  Google Scholar 

  15. Kim JH, Jung Y, Kim BS, Kim SH. Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials. 2013;34:1657–68.

    Article  PubMed  CAS  Google Scholar 

  16. Charles PT, Goldman ER, Rangasammy JG, Schauer CL, Chen MS, Taitt CR. Fabrication and characterization of 3d hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens Bioelectron. 2004;20:753–64.

    Article  PubMed  CAS  Google Scholar 

  17. Kim G, Park K. Alginate-nanofibers fabricated by an electrohydrodynamic process. Polym Eng Sci. 2009;49:2242–8.

    Article  CAS  Google Scholar 

  18. Liu C, Kray J, Chan C. Schwann cells enhance penetration of regenerated axons into three-dimensional microchannels. Tissue Eng Regen Med. 2018;15:351–61.

    Article  CAS  Google Scholar 

  19. Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJ. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 2007;13:1905–25.

    Article  PubMed  CAS  Google Scholar 

  20. Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep. 2016;6:24474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fedorovich NE, de Wijn JR, Verbout AJ, Alblas J, Dhert WJ. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A. 2008;14:127–33.

    Article  PubMed  CAS  Google Scholar 

  22. Muehleder S, Ovsianikov A, Zipperle J, Redl H, Holnthoner W. Connections matter: channeled hydrogels to improve vascularization. Front Bioeng Biotechnol. 2014;2:52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14:2202–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11:768–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tseng TC, Hsieh FY, Theato P, Wei Y, Hsu SH. Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials. 2017;133:20–8.

    Article  PubMed  CAS  Google Scholar 

  26. Lee SH, Jo AR, Choi GP, Woo CH, Lee SJ, Kim B, et al. Fabrication of 3d alginate scaffold with interconnected pores using wire-network molding technique. Tissue Eng Regen Med. 2013;10:53–9.

    Article  CAS  Google Scholar 

  27. Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28:1830–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kim J, Park Y, Tae G, Lee KB, Hwang SJ, Kim IS, et al. Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels. J Mater Sci Mater Med. 2008;19:3311–8.

    Article  PubMed  CAS  Google Scholar 

  29. Radisic M, Deen W, Langer R, Vunjak-Novakovic G. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol. 2005;288:H1278–89.

    Article  PubMed  CAS  Google Scholar 

  30. Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev. 2009;15:353–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wray LS, Rnjak-Kovacina J, Mandal BB, Schmidt DF, Gil ES, Kaplan DL. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials. 2012;33:9214–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ziche M, Morbidelli L, Pacini M, Geppetti P, Alessandri G, Maggi CA. Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc Res. 1990;40:264–78.

    Article  PubMed  CAS  Google Scholar 

  33. Hribar KC, Meggs K, Liu J, Zhu W, Qu X, Chen S. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Sci Rep. 2015;5:17203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater. 2016;28:677–84.

    Article  PubMed  CAS  Google Scholar 

  35. Kinstlinger IS, Miller JS. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip. 2016;16:2025–43.

    Article  PubMed  CAS  Google Scholar 

  36. Richards D, Jia J, Yost M, Markwald R, Mei Y. 3D bioprinting for vascularized tissue fabrication. Ann Biomed Eng. 2017;45:132–47.

    Article  PubMed  Google Scholar 

  37. Janeczek Portalska K, Leferink A, Groen N, Fernandes H, Moroni L, van Blitterswijk C, et al. Endothelial differentiation of mesenchymal stromal cells. PLoS One. 2012;7:e46842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rnjak-Kovacina J, Wray LS, Golinski JM, Kaplan DL. Arrayed hollow channels in silk-based scaffolds provide functional outcomes for engineering critically-sized tissue constructs. Adv Funct Mater. 2014;24:2188–96.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang W, Wray LS, Rnjak-Kovacina J, Xu L, Zou D, Wang S, et al. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration. Biomaterials. 2015;56:68–77.

    Article  PubMed  CAS  Google Scholar 

  40. Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, et al. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J Biomed Mater Res A. 2010;95:673–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Ministry of Health and Welfare in the Republic of Korea (HI14C2143).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Sam Cho or Yongdoo Park.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

The animal experiment procedures were approved by the institutional animal care and use committee of Korea University College of Medicine (KUIACUC-2015-165).

Additional information

Jaeyeon Lee and Se-Hwan Lee contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, SH., Lee, BK. et al. Fabrication of Microchannels and Evaluation of Guided Vascularization in Biomimetic Hydrogels. Tissue Eng Regen Med 15, 403–413 (2018). https://doi.org/10.1007/s13770-018-0130-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-018-0130-1

Keywords

Navigation