Skip to main content
Log in

New Advances in Human X Chromosome Status from a Developmental and Stem Cell Biology

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

A Correction to this article was published on 19 January 2018

This article has been updated

Abstract

Recent advances in stem cell biology have dramatically increased the understanding of molecular and cellular mechanism of pluripotency and cell fate determination. Additionally, pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells, arose as essential resources for disease modeling and cellular therapeutics. Despite these advancements, the epigenetic dysregulation in pluripotency such as the imprinting status, and X chromosome dosage compensation, and its consequences on future utility of PSCs yet remain unresolved. In this review, we will focus on the X chromosome regulation in human PSCs (hPSCs). We will introduce the previous findings in the dosage compensation process on mouse model, and make comparison with those of human systems. Particularly, the X chromosome activation status of human preimplantation embryos, and the regulation of the active X chromosome by human specific lincRNA, X Active Coating Transcript (XACT), will be discussed. We will also discuss the recent findings on higher order X chromosome architecture, and abnormal X chromosome status in hPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 19 January 2018

    Unfortunately, Acknowledgements section was missing in the originally published article.

References

  1. Clarke D, Frisen J. Differentiation potential of adult stem cells. Curr Opin Genet Dev. 2001;11:575–80.

    Article  CAS  PubMed  Google Scholar 

  2. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949–53.

    Article  CAS  PubMed  Google Scholar 

  3. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322(5903):945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jeong J, Kim KN, Chung MS, Kim HJ. Functional comparison of human embryonic stem cells and induced pluripotent stem cells as sources of hepatocyte-like cells. Tissue Eng Regen Med. 2016;13:740–9.

    Article  CAS  Google Scholar 

  5. Hong K. Cellular reprogramming and its application in regenerative medicine. Tissue Eng Regen Med. 2015;12:80–9.

    Article  CAS  Google Scholar 

  6. Okamoto I, Patrat C, Thépot D, Peynot N, Fauque P, Daniel N, et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature. 2011;472:370–4.

    Article  CAS  PubMed  Google Scholar 

  7. Vallot C, Patrat C, Collier AJ, Huret C, Casanova M, Liyakat Ali TM, et al. XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell. 2017;20:102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;167:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 1997;11(2):156–66.

    Article  CAS  PubMed  Google Scholar 

  10. Sangrithi MN, Royo H, Mahadevaiah SK, Ojarikre O, Bhaw L, Sesay A, et al. Non-canonical and sexually dimorphic X dosage compensation states in the mouse and human germline. Dev Cell. 2017;40:289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burgoyne PS, Biggers JD. The consequences of X-dosage deficiency in the germ line: impaired development in vitro of preimplantation embryos from XO mice. Dev Biol. 1976;51:109–17.

    Article  CAS  PubMed  Google Scholar 

  12. Theunissen TW, Friedli M, He Y, Planet E, O’Neil RC, Markoulaki S, et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell. 2016;19:502–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell. 2014;15:524–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT. Jpx RNA activates Xist by evicting CTCF. Cell. 2013;153:1537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Donohoe ME, Silva SS, Pinter SF, Xu N, Lee JT. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature. 2009;460:128–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Masui O, Bonnet I, Le Baccon P, Brito I, Pollex T, Murphy N, et al. Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell. 2011;145:447–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Furlan G, Rougeulle C. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals. Wiley Interdiscip Rev RNA. 2016;7:702–22.

    Article  CAS  PubMed  Google Scholar 

  18. Keniry A, Gearing LJ, Jansz N, Liu J, Holik AZ, Hickey PF, et al. Setdb1-mediated H3K9 methylation is enriched on the inactive X and plays a role in its epigenetic silencing. Epigenet Chromatin. 2016;9:16.

    Article  Google Scholar 

  19. Minkovsky A, Patel S, Plath K. Concise review: pluripotency and the transcriptional inactivation of the female mammalian X chromosome. Stem Cells. 2012;30:48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen CK, Blanco M, Jackson C, Aznauryan E, Ollikainen N, Surka C, et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science. 2016;354:468–72.

    Article  CAS  PubMed  Google Scholar 

  21. Vallot C, Ouimette JF, Rougeulle C. Establishment of X chromosome inactivation and epigenomic features of the inactive X depend on cellular contexts. Bioessays. 2016;38:869–80.

    Article  CAS  PubMed  Google Scholar 

  22. Ogawa Y, Lee JT. Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol Cell. 2003;11:731–43.

    Article  CAS  PubMed  Google Scholar 

  23. Makhlouf M, Ouimette JF, Oldfield A, Navarro P, Neuillet D, Rougeulle C. A prominent and conserved role for YY1 in Xist transcriptional activation. Nat Commun. 2014;5:4878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A. 2010;107:9222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ware CB. Naive embryonic stem cells: the future of stem cell research? Regen Med. 2014;9:401–3.

    Article  CAS  PubMed  Google Scholar 

  26. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504:282–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chan YS, Göke J, Ng JH, Lu X, Gonzales KA, Tan CP, et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell. 2013;13:663–75.

    Article  CAS  PubMed  Google Scholar 

  28. Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, et al. Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111:4484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports. 2016;6:437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. Don’t edit the human germ line. Nature. 2015;519:410–1.

    Article  CAS  PubMed  Google Scholar 

  31. Savulescu J, Pugh J, Douglas T, Gyngell C. The moral imperative to continue gene editing research on human embryos. Protein Cell. 2015;6:476–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Elstner A, Damaschun A, Kurtz A, Stacey G, Arán B, Veiga A, et al. The changing landscape of European and international regulation on embryonic stem cell research. Stem Cell Res. 2009;2:101–7.

    Article  CAS  PubMed  Google Scholar 

  33. Nielen MG, de Vries SA, Geijsen N. European stem cell research in legal shackles. EMBO J. 2013;32:3107–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salter B, Salter C. Bioethical ambition, political opportunity and the European governance of patenting: the case of human embryonic stem cell science. Soc Sci Med. 2013;98:286–92.

    Article  PubMed  Google Scholar 

  35. Zarzeczny A, Caulfield T. Emerging ethical, legal and social issues associated with stem cell research and the current role of the moral status of the embryo. Stem Cell Rev. 2009;5:96–101.

    Article  PubMed  Google Scholar 

  36. Pera MF. Human embryo research and the 14-day rule. Development. 2017;144:1923–5.

    Article  CAS  PubMed  Google Scholar 

  37. Zhai X, Ng V, Lie R. No ethical divide between China and the West in human embryo research. Dev World Bioeth. 2016;16:116–20.

    Article  PubMed  Google Scholar 

  38. Pennings G, Segers S, Debrock S, Heindryckx B, Kontozova-Deutsch V, Punjabi U, et al. Human embryo research in Belgium: an overview. Fertil Steril. 2017;108:96–107.

    Article  PubMed  Google Scholar 

  39. Vallot C, Huret C, Lesecque Y, Resch A, Oudrhiri N, Bennaceur-Griscelli A, et al. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat Genet. 2013;45:239–41.

    Article  CAS  PubMed  Google Scholar 

  40. Vallot C, Ouimette JF, Makhlouf M, Féraud O, Pontis J, Côme J, et al. Erosion of X chromosome inactivation in human pluripotent cells initiates with XACT coating and depends on a specific heterochromatin landscape. Cell Stem Cell. 2015;16:533–46.

    Article  CAS  PubMed  Google Scholar 

  41. Patel S, Bonora G, Sahakyan A, Kim R, Chronis C, Langerman J, et al. Human embryonic stem cells do not change their X inactivation status during differentiation. Cell Rep. 2017;18:54–67.

    Article  CAS  PubMed  Google Scholar 

  42. McDonald G, Cabal N, Vannier A, Umiker B, Yin RH, Orjalo AV Jr, et al. Female bias in systemic lupus erythematosus is associated with the differential expression of X-linked toll-like receptor 8. Front Immunol. 2015;6:457.

    PubMed  PubMed Central  Google Scholar 

  43. Sahakyan A, Kim R, Chronis C, Sabri S, Bonora G, Theunissen TW, et al. Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell. 2017;20:87–101.

    Article  CAS  PubMed  Google Scholar 

  44. Gerdes P, Richardson SR, Mager DL, Faulkner GJ. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol. 2016;17:100.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gifford WD, Pfaff SL, Macfarlan TS. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 2013;23:218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia-Perez JL, Widmann TJ, Adams IR. The impact of transposable elements on mammalian development. Development. 2016;143:4101–14.

    Article  CAS  PubMed  Google Scholar 

  47. Thompson PJ, Macfarlan TS, Lorincz MC. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol Cell. 2016;62:766–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chadwick BP. DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts. Genome Res. 2008;18:1259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giacalone J, Friedes J, Francke U. A novel GC-rich human macrosatellite VNTR in Xq24 is differentially methylated on active and inactive X chromosomes. Nat Genet. 1992;1:137–43.

    Article  CAS  PubMed  Google Scholar 

  50. Horakova AH, Calabrese JM, McLaughlin CR, Tremblay DC, Magnuson T, Chadwick BP. The mouse DXZ4 homolog retains Ctcf binding and proximity to Pls3 despite substantial organizational differences compared to the primate macrosatellite. Genome Biol. 2012;13:R70.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Deng X, Ma W, Ramani V, Hill A, Yang F, Ay F, et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 2015;16:152.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Darrow EM, Huntley MH, Dudchenko O, Stamenova EK, Durand NC, Sun Z, et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc Natl Acad Sci U S A. 2016;113:E4504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giorgetti L, Lajoie BR, Carter AC, Attia M, Zhan Y, Xu J, et al. Structural organization of the inactive X chromosome in the mouse. Nature. 2016;535:575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang F, Deng X, Ma W, Berletch JB, Rabaia N, Wei G, et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 2015;16:52.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Disteche CM. Escapees on the X chromosome. Proc Natl Acad Sci U S A. 1999;96:14180–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Slavney A, Arbiza L, Clark AG, Keinan A. Strong constraint on human genes escaping X-inactivation is modulated by their expression level and breadth in both sexes. Mol Biol Evol. 2016;33:384–93.

    Article  CAS  PubMed  Google Scholar 

  57. Chaligné R, Heard E. X-chromosome inactivation in development and cancer. FEBS Lett. 2014;588:2514–22.

    Article  PubMed  Google Scholar 

  58. Chaligné R, Popova T, Mendoza-Parra MA, Saleem MA, Gentien D, Ban K, et al. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res. 2015;25:488–503.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays. 2014;36:746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, et al. Molecular maps of the reorganization of genome–nuclear lamina interactions during differentiation. Mol Cell. 2010;38:603–13.

    Article  CAS  PubMed  Google Scholar 

  61. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature. 2012;485:381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Collier AJ, Panula SP, Schell JP, Chovanec P, Plaza Reyes A, Petropoulos S, et al. Comprehensive cell surface protein profiling identifies specific markers of human naive and primed pluripotent states. Cell Stem Cell. 2017;20:874–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Hyun Park.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

No procedures are described that need ethical approval in this manuscript.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s13770-017-0111-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patterson, B., Tanaka, Y. & Park, IH. New Advances in Human X Chromosome Status from a Developmental and Stem Cell Biology. Tissue Eng Regen Med 14, 643–652 (2017). https://doi.org/10.1007/s13770-017-0096-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0096-4

Keywords

Navigation