Skip to main content
Log in

Quantification of bone regeneration by virtual slices using non-destructive synchrotron X-ray microtomography

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

This study demonstrates a non-destructive histomorphometric analysis technique that uses virtual tissue slices obtained with synchrotron radiation X-ray microtomography (SR-μCT), and compared the results to those obtained using conventional hematoxylin-eosin (H&E) photomicrography of regenerated bone in rat calvarial defects grafted with deproteinized bovine bone substitute (Bio-Oss®). Calvarial defects (diameter, 4 mm) were created in 8 adult male Spraque-Dawley rats and filled with Bio-Oss®. The percentage of newly formed bone (NB%) was evaluated histomorphometrically using SR-μCT images and photomicrographs (H&E) 3 weeks postoperatively. Osteoconductive new bone formation was observed in the calvarial central defect. Histomorphometric analysis revealed no NB% differences between the SR-μCT and photomicrograph (H&E) groups at 3 weeks (p=0.959). The mean new bone area fractions were 17.62% and 17.95% in the analysis using SR-μCT virtual slices and conventional H&E-stained slices, respectively. Therefore, Bio-Oss® bone regeneration can be quantified non-destructively using SR-μCT at an accuracy comparable to that obtained using conventional photomicrography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avwioro OG. Histochemistry and tissue pathology, principles and techniques. Nigeria: Claverianum press; 2010.

    Google Scholar 

  2. Zerbino DD. Biopsy: its history, current and future outlook. Ukrainy: Likars’ka sprava/Ministerstvo okhorony zdorov’ia; 1994. p.1–9.

    Google Scholar 

  3. Dhingra KK, Gupta P, Saroha V, Setia N, Khurana N, Singh T. Morphological findings in bone marrow biopsy and aspirate smears of visceral Kala Azar: a review. Indian J Pathol Microbiol 2010;53:96–100.

    Article  PubMed  Google Scholar 

  4. Park JW, Jang JH, Bae SR, An CH, Suh JY. Bone formation with various bone graft substitutes in critical-sized rat calvarial defect. Clin Oral Implants Res 2009;20:372–378.

    Article  PubMed  Google Scholar 

  5. Park JW, Kim ES, Jang JH, Suh JY, Park KB, Hanawa T. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Clin Oral Implants Res 2010;21:268–276.

    Article  PubMed  Google Scholar 

  6. Park JW, Ko HJ, Jang JH, Kang H, Suh JY. Increased new bone formation with a surface magnesium-incorporated deproteinized porcine bone substitute in rabbit calvarial defects. J Biomed Mater Res A 2012;100:834–840.

    Article  PubMed  Google Scholar 

  7. Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, et al. Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res A 2008;87:203–214.

    Article  PubMed  Google Scholar 

  8. Park JW, Jang IS, Suh JY. Bone response to endosseous titanium implants surface-modified by blasting and chemical treatment: a histomorphometric study in the rabbit femur. J Biomed Mater Res B Appl Biomater 2008;84:400–407.

    Article  PubMed  Google Scholar 

  9. Momose A, Takeda T, Itai Y, Hirano K. Phase-contrast X-ray computed tomography for observing biological soft tissues. Nat Med 1996;2:473–475.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis RA. Medical phase contrast x-ray imaging: current status and future prospects. Phys Med Biol 2004;49:3573–3583.

    Article  CAS  PubMed  Google Scholar 

  11. Aisen AM, Martel W, Braunstein EM, McMillin KI, Phillips WA, Kling TF. MRI and CTevaluation of primary bone and soft-tissue tumors. AJR Am J Roentgenol 1986;146:749–756.

    Article  CAS  PubMed  Google Scholar 

  12. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991;13:111–134.

    Article  CAS  PubMed  Google Scholar 

  13. Rüegsegger P, Koller B, Mü ller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 1996;58: 24–29.

    Article  PubMed  Google Scholar 

  14. Ritman EL. Micro-computed tomography-current status and developments. Annu Rev Biomed Eng 2004;6:185–208.

    Article  CAS  PubMed  Google Scholar 

  15. Rühli FJ, Kuhn G, Evison R, Mü ller R, Schultz M. Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human skull bone pathologies. Am J Phys Anthropol 2007;133: 1099–1111.

    Article  PubMed  Google Scholar 

  16. Huang JY, Jin KS, Lim JH, Kim HY, Jang SD, Choi HJ, et al. High-resolution and high-contrast bio-medical X-ray imaging by using synchrotron radiation in the PLS. J Korean Phys Soc 2010;56:2077–2082.

    Article  CAS  Google Scholar 

  17. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 1993;14:65–88.

    Article  CAS  PubMed  Google Scholar 

  18. He Y, Chen XY, Xiao TQ, Yang JX. Three-dimensional morphology of the Sinocyclocheilus hyalinus (Cypriniformes: Cyprinidae) horn based on synchrotron X-ray microtomography. Dongwuxue Yanjiu 2013;34(E4-5):E128–E134.

    PubMed  Google Scholar 

  19. Renghini C, Komlev V, Fiori F, Verné E, Baino F, Vitale-Brovarone C. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration. Acta Biomater 2009;5:1328–1337.

    Article  CAS  PubMed  Google Scholar 

  20. Bergomi M, Cugnoni J, Wiskott HW, Schneider P, Stampanoni M, Botsis J, et al. Three-dimensional morphometry of strained bovine periodontal ligament using synchrotron radiation-based tomography. J Anat 2010;217: 126–134.

    PubMed Central  PubMed  Google Scholar 

  21. Yeom J, Chang S, Park JK, Je JH, Yang DJ, Choi SK, et al. Synchrotron X-ray bioimaging of bone regeneration by artificial bone substitute of MegaGen Synthetic Bone and hyaluronate hydrogels. Tissue Eng Part C Methods 2010;16:1059–1068.

    Article  CAS  PubMed  Google Scholar 

  22. Stiller M, Rack A, Zabler S, Goebbels J, Dalü gge O, Jonscher S, et al. Quantification of bone tissue regeneration employing beta-tricalcium phosphate by three-dimensional non-invasive synchrotron micro-tomography—a comparative examination with histomorphometry. Bone 2009;44:619–628.

    Article  PubMed  Google Scholar 

  23. Dalstra M, Cattaneo PM, Beckmann F. Synchrotron radiation-based microtomography of alveolar support tissues. Orthod Craniofac Res 2006; 9:199–205.

    Article  CAS  PubMed  Google Scholar 

  24. Geddes CG, Toth CS, Van Tilborg J, Esarey E, Schroeder CB, Bruhwiler D, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 2004;431:538–541.

    Article  CAS  PubMed  Google Scholar 

  25. Lu W, Tzoufras M, Joshi C, Tsung FS, Mori WB, Vieira J, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys Rev STAccel Beams 2007;10:061301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Wung Bark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YG., Bark, C.W. Quantification of bone regeneration by virtual slices using non-destructive synchrotron X-ray microtomography. Tissue Eng Regen Med 12, 379–385 (2015). https://doi.org/10.1007/s13770-015-0003-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0003-9

Keywords

Navigation