Skip to main content
Log in

Dental pulp stem cells derived conditioned medium promotes angiogenesis in hindlimb ischemia

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Paracrine effects of mesenchymal stem cells (MSCs) have been suggested play an important role in the treatment of ischemic diseases. Dental pulp Stem cells (DPSCs) share many properties with MSCs. However, the beneficial effects of DPSCs on ischemic diseases remain to be elucidated. The present study, we found that DPSCs secreted higher levels angiogenic factors of VEGF, SDF-1, MCP-1 and PDGF-BB compared with AD-MSCs. We then investigated whether DP-CM can induce the migration of vascular smooth muscle cells (VSMCs) and human umbilical venous endothelial cells (HUVECs) in vitro. Under hypoxia, the apoptosis of HUVECs was inhibited while survival was improved by treatment of DP-CM. In a H2O2-induced cell death assay, DP-CM also significantly reduced HUVECs oxidative stress compare to control group. The tube formation assay demonstrated that the DP-CM group had a greater angiogenic potential than control medium. Results in the mouse model showed both the laser Doppler perfusion index and the relative number of CD31 positive microvessels to be significantly higher in the DP-CM group than in the control group [(77%±11%) vs. (45%±6%), and (6.2±1.1)/HPF vs. (2.3±0.3)/HPF]. In this way, the use of DP-CM may be a suitable means of treating ischemic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E Selvin, TP Erlinger, Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000, Circulation, 110, 738 (2004).

    Article  PubMed  Google Scholar 

  2. Y Kang, C Park, D Kim, et al., Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model, Microvasc Res, 80, 310 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. NF Huang, H Niiyama, A De, et al., Embryonic stem cell-derived endothelial cells for treatment of hindlimb ischemia, J Vis Exp, (2009).

    Google Scholar 

  4. H Jiang, L Qu, Y Li, et al., Bone marrow mesenchymal stem cells reduce intestinal ischemia/reperfusion injuries in rats, J Surg Res, 168, 127 (2011).

    Article  PubMed  Google Scholar 

  5. CK Sun, CL Chang, YC Lin, et al., Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats, Crit Care Med, 40, 1279 (2012).

    Article  PubMed  Google Scholar 

  6. IM Barbash, P Chouraqui, J Baron, et al., Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution, Circulation, 108, 863 (2003).

    Article  PubMed  Google Scholar 

  7. NF Huang, A Lam, Q Fang, et al., Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium, Regen Med, 4, 527 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. M Gnecchi, Z Zhang, A Ni, et al., Paracrine mechanisms in adult stem cell signaling and therapy, Circ Res, 103, 1204 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. G Paul, I Ozen, NS Christophersen, et al., The adult human brain harbors multipotent perivascular mesenchymal stem cells, PLoS One, 7, e35577 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. H Kim, S-M Choi, H-S Kim, Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders, Tissue Engineering and Regenerative Medicine, 10, 93 (2013).

    Article  CAS  Google Scholar 

  11. SY Kim, JH Lee, HJ Kim, et al., Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage, Am J Physiol Lung Cell Mol Physiol, 302, L891 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. T Kinnaird, E Stabile, MS Burnett, et al., Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms, Circ Res, 94, 678 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. ST Hsiao, Z Lokmic, H Peshavariya, et al., Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells, Stem Cells Dev, 22, 1614 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. SI Lee, KS Min, WJ Bae, et al., Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells, J Endod, 37, 1525 (2011).

    Article  PubMed  Google Scholar 

  15. P Hilkens, P Gervois, Y Fanton, et al., Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells, Cell Tissue Res, 353, 65 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. CZ Fang, YJ Yang, QH Wang, et al., Intraventricular injection of human dental pulp stem cells improves hypoxic-ischemic brain damage in neonatal rats, Plos One, 8, e66748 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. L Pierdomenico, L Bonsi, M Calvitti, et al., Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp, Transplantation, 80, 836 (2005).

    Article  PubMed  Google Scholar 

  18. C Marchionni, L Bonsi, F Alviano, et al., Angiogenic potential of human dental pulp stromal (stem) cells, Int J Immunopathol Pharmacol, 22, 699 (2009).

    CAS  PubMed  Google Scholar 

  19. K Janebodin, Y Zeng, W Buranaphatthana, et al., VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells, J Dent Res, 92, 524 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. E Karaoz, BN Dogan, A Aksoy, et al., Isolation and in vitro characterisation of dental pulp stem cells from natal teeth, Histochem Cell Biol, 133, 95 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. MY Chen, PC Lie, ZL Li, et al., Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells, Exp Hematol, 37, 629 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. T Terry, Z Chen, RA Dixon, et al., CD34(+)/M-cadherin(+) bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE(-)/(-) mice, PLoS One, 6, e20673 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. S Gronthos, M Mankani, J Brahim, et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc Natl Acad Sci U S A, 97, 13625 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. M Dominici, K Le Blanc, I Mueller, et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 8, 315 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. S Guiducci, M Manetti, E Romano, et al., Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro, Ann Rheum Dis, 70, 2011 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. C Huang, H Gu, Q Yu, et al., Sca-1+ cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion, PLoS One, 6, e29246 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. M Osugi, W Katagiri, R Yoshimi, et al., Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects, Tissue Eng Part A, 18, 1479 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. L Timmers, SK Lim, F Arslan, et al., Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium, Stem Cell Res, 1, 129 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. T Kinnaird, E Stabile, MS Burnett, et al., Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms, Circulation Research, 94, 678 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. M Simons, Angiogenesis — Where do we stand now?, Circulation, 111, 1556 (2005).

    Article  PubMed  Google Scholar 

  31. DW Losordo, S Dimmeler, Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines, Circulation, 109, 2487 (2004).

    Article  PubMed  Google Scholar 

  32. P Lindahl, BR Johansson, P Leveen, et al., Pericyte loss and microaneurysm formation in PDGF-B-deficient mice, Science, 277, 242 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. A Linke, P Muller, D Nurzynska, et al., Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function, Proceedings of the National Academy of Sciences of the United States of America, 102, 8966 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. L Lamalice, F Le Boeuf, J Huot, Endothelial cell migration during angiogenesis, Circulation Research, 100, 782 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. V Sordi, ML Malosio, F Marchesi, et al., Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets, Blood, 106, 419 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. S Bhakta, P Hong, O Koc, The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation, Cardiovasc Revasc Med, 7, 19 (2006).

    Article  PubMed  Google Scholar 

  37. J Ma, Q Wang, T Fei, et al., MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration, Blood, 109, 987 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. X Liu, B Duan, Z Cheng, et al., SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion, Protein Cell, 2, 845 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Q Zhong, Y Zhou, W Ye, et al., Hypoxia-inducible factor 1-alpha-AA-modified bone marrow stem cells protect PC12 cells from hypoxia-induced apoptosis, partially through VEGF/PI3K/Akt/FoxO1 pathway, Stem Cells Dev, 21, 2703 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Y Li, H Shelat, YJ Geng, IGF-1 prevents oxidative stress induced-apoptosis in induced pluripotent stem cells which is mediated by microRNA-1, Biochem Biophys Res Commun, 426, 615 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Li, L., Feng, T. et al. Dental pulp stem cells derived conditioned medium promotes angiogenesis in hindlimb ischemia. Tissue Eng Regen Med 12, 59–68 (2015). https://doi.org/10.1007/s13770-014-9053-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-9053-7

Key words

Navigation