Skip to main content

Advertisement

Log in

Neferine increase in vitro anticancer effect of dehydroepiandrosterone on MCF-7 human breast cancer cells

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

This study was conducted to investigate the in vitro anticancer reinforcing effects of neferine (Nef) on dehydroepiandrosterone (DHEA) and the mechanism was also determined during the investigation. By the growth effects of Nef and DHEA on MCF-7 human breast cancer cells, 8 mg/mL Nef was a non-virulent concentration in MCF-7 cells, and this concentration was used for further experiment. In 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay, 30 mg/mL DHEA showed 49.4 % growth inhibitory effect in MCF-7 cells, whereas Nef (8 mg/mL) + DHEA (30 mg/mL) treatment had the higher effect at 67.8 %. The flow cytometry analysis results showed that 15 and 30 mg/mL DHEA-treated MCF-7 cells had 12.2 and 21.6 % apoptotic cells, respectively, Nef + DHEA could raise the apoptotic cells to 36.7 %. Reverse transcription-polymerase chain reaction assay shows remarkable results according to which DHEA could significantly increase caspase-3, caspase-8, caspase-9, Bax, p53, p21, E2F1, Fas, FasL mRNA expressions and decrease Bcl-2, Bcl-xL, HIAP-1, HIAP-2, survivin expressions as compared to the untreated control cancer cells. Moreover, these effects depend on the concentration of DHEA, and Nef which could further strengthen these effects. From these results, low concentration of Nef could not influence the growth of MCF-7 cells, but using its sensitization effect, Nef raised the in vitro effects of DHEA. Nef could be got easily. With these results we can accomplish that Nef + DHEA might be used as the new anticancer materials combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496

    Article  CAS  Google Scholar 

  • Asselin E, Mills GB, Tsang BK (2001) XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res 61:1862–1868

    CAS  Google Scholar 

  • Atari-Hajipirloo S, Nikanfar S, Heydari A, Noori F, Kheradmand F (2016) The effect of celecoxib and its combination with imatinib on human HT-29 colorectal cancer cells: Involvement of COX-2, Caspase-3, VEGF and NF-κB genes expression. Cell Mol Biol (Noisy-le-grand) 62: 68–74

  • Bajwa N, Liao CZ, Nikolovska-Coleska Z (2012) Inhibitors of the anti-apoptotic Bcl-2 proteins: a patent review. Expert Opin Ther Pat 22:37–55

    Article  CAS  Google Scholar 

  • Bao J, Zhou JN, Tang XQ, Cao JG (2003) Enhancement of cytotoxicity of Adramycin by neferine in Saos-2 cells and its mechanism. Chin Pharm Bull 19:80–82

    CAS  Google Scholar 

  • Cheung CH, Huang CC, Tsai FY, Lee JY, Cheng SM, Chang YC, Huang YC, Chen SH, Chang JY (2013) Survivin—biology and potential as a therapeutic target in oncology. Onco Targets Ther 6:1453–1462

    Article  CAS  Google Scholar 

  • Dang DK, Shin EJ, Nam YS, Ryoo SW, Jeong JH, Jang CG, Nabeshima T, Hong JS, Kim HC (2016) J Neuroinflammation 13:12

    Article  Google Scholar 

  • Fan ZH (2010) The comparison between normal cells and cancer cells in the body. Front Sci Technol 2010:132

    Google Scholar 

  • Furukawa Y, Nishimura N, Furukawa Y, Satoh M, Endo H, Iwase S, Yamada H, Matsuda M, Kano Y, Nakamura M (2002) Apaf-1 is a mediator of E2F-1-induced apoptosis. J Biol Chem 277:39760–39768

    Article  CAS  Google Scholar 

  • Gogada R, Yadav N, Liu J, Tang S, Zhang D, Schneider A, Seshadri A, Sun L, Aldaz CM, Tang DG, Chandra D (2013) Bim, a proapoptotic protein, up-regulated via transcription factor E2F1-dependent mechanism, functions as a prosurvival molecule in cancer. J Biol Chem 288:368–381

    Article  CAS  Google Scholar 

  • Han S, Woo JK, Jung Y, Jeong D, Kang M, Yoo YJ, Lee H, Oh SH, Ryu JH, Kim WY (2016) Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway. Biochem Biophys Res Commun 469:1153–1158

    Article  CAS  Google Scholar 

  • Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845

    Google Scholar 

  • Hu WS, Guo LJ, Feng XL, Jiang MX (1990) Hypotensive effects of neferine. Chin J Pharm Toxicol 4:107–110

    CAS  Google Scholar 

  • Hu Y, Benedict MA, Ding L, Núñez G (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 18:3586–3595

    Article  CAS  Google Scholar 

  • Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, Flores ER, Tsai KY, Jacks T, Vousden KH, Kaelin WG Jr (2000) Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407:645–648

    Article  CAS  Google Scholar 

  • Jeong JW, Lee WS, Go SI, Nagappan A, Baek JY, Lee JD, Lee SJ, Park C, Kim GY, Kim HJ, Kim GS, Kwon TK, Ryu CH, Shin SC, Choi YH (2015) Pachymic acid induces apoptosis of EJ bladder cancer cells by DR5 up-regulation, ROS generation, modulation of Bcl-2 and IAP family members. Phytother Res 29:1516–1524

    Article  CAS  Google Scholar 

  • Jia JF, Ao MZ, Hu BR, Li YJ, Guo MD, Mo CG (1994) The effects of neferine on lipid peroxides and active oxygen free radical. Acta Univ Med Tangji 23:62–66

    Google Scholar 

  • Lawen A (2003) Apoptosis-an introduction. BioEssays 25:888–896

    Article  CAS  Google Scholar 

  • Liu XX, Arnold JT, Blackman MR (2010) Dehydroepiandrosterone administration or Gαq overexpression induces β-catenin/T-cell factor signaling and growth via increasing association of estrogen receptor-β/dishevelled2 in androgen-independent prostate cancer cells. Endocrinology 151:1428–1440

    Article  CAS  Google Scholar 

  • Lo Russo G, Proto C, Garassino MC (2016) Afatinib in the treatment of squamous non-small cell lung cancer: a new frontier or an old mistake? Transl Lung Cancer Res 5:110–114

    Article  Google Scholar 

  • Mannic T, Viguie J, Rossier MF (2015) In vivo and in vitro evidences of dehydroepiandrosterone protective role on the cardiovascular system. Int J Endocrinol Metab 13:e24660

    Article  Google Scholar 

  • Matsumura I, Tanaka H, Kanakura Y (2003) E2F1 and c-Myc in cell growth and death. Cell Cycle 2:333–338

    Article  CAS  Google Scholar 

  • McStay GP, Green DR (2014) Preparation of cytosolic extracts and activation of caspases by cytochrome c. Cold Spring Harb Protoc 2014:778–782

    Google Scholar 

  • Nakajima-Shimada J, Zou C, Takagi M, Umeda M, Nara T, Aoki T (2000) Inhibition of Fas-mediated apoptosis by Trypanosoma cruzi infection. Biochim Biophys Acta 1475:175–183

    Article  CAS  Google Scholar 

  • Nam C, Doi K, Nakayama H (2010) Etoposide induces G2/M arrest and apoptosis in neural progenitor cells via DNA damage and an ATM/p53-related pathway. Histol Histopathol 25:485–493

    CAS  Google Scholar 

  • Rogoff HA, Pickering MT, Debatis ME, Jones S, Kowalik TF (2002) E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis. Mol Cell Biol 22:5308–5318

    Article  CAS  Google Scholar 

  • Samaras N, Samaras N, Frangos E, Forster A, Philippe J (2013) A review of age-related dehydroepiandrosterone decline and its association with well-known geriatric syndromes: is treatment beneficial? Rejuvenation Res 16:285–294

    Article  CAS  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  CAS  Google Scholar 

  • Su ZY, Yang ZZ, Xu YQ, Chen YB, Yu Q (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14:48

    Article  Google Scholar 

  • Sun Z, Wan ZY, Guo YS, Wang HQ, Luo ZJ (2013) FasL on human nucleus pulposus cells prevents angiogenesis in the disc by inducing Fas-mediated apoptosis of vascular endothelial cells. Int J Clin Exp Pathol 6:2376–2385

    Google Scholar 

  • Tang XQ, Cao JG (2001) Enhancement of cytotoxicity of anticancer drugs in vitro by neferine in MCF- 7 cells. Chin J Mod App Pharm 18:345–347

    Google Scholar 

  • Teng Y, Litchfield LM, Ivanova MM, Prough RA, Clark BJ, Klinge CM (2014) Dehydroepiandrosterone-induces miR-21 transcription in HepG2 cells through estrogen receptor β and androgen receptor. Mol Cell Endocrinol 392:23–36

    Article  CAS  Google Scholar 

  • Um HD (2015) Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: a review focusing on mitochondrial respiration and reactive oxygen species. Oncotarget 7:5193–5203

    Google Scholar 

  • Wang Y, Tjandra N (2013) Structural insights of tBid, the caspase-8-activated Bid, and its BH3 domain. J Biol Chem 288:35840–35851

    Article  CAS  Google Scholar 

  • Wang C, Chen YF, Quan XQ, Wang H, Zhang R, Xiao JH, Wang JL, Zhang CT, Xiang JZ, Tang Q (2015a) Effects of neferine on Kv4.3 channels expressed in HEK293 cells and ex vivo electrophysiology of rabbit hearts. Acta Pharmacol Sin 36:1451–1461

    Article  CAS  Google Scholar 

  • Wang ES, Reyes NA, Melton C, Huskey NE, Momcilovic O, Goga A, Blelloch R, Oakes SA (2015b) Fas-activated mitochondrial apoptosis culls stalled embryonic stem cells to promote differentiation. Curr Biol 25:3110–3118

    Article  CAS  Google Scholar 

  • Webb SJ, Geoghegan TE, Prough RA (2006) The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev 38:89–116

    Article  CAS  Google Scholar 

  • Xia GJ, Liu YF, Lu FH (1986) Effects of methyl-liensinine on experimental arrhythmias. J Tongji Med Univ 1986:200–203

    Google Scholar 

  • Yang S, Fu ZD, Han Y (2001) Studies on the anti-tumorpromotion activities of dehydroepiandrosterone and its mechanism of action. Acta Pharm Sin 36:576–580

    CAS  Google Scholar 

  • Yu Y, Sun S, Wang S, Zhang Q, Li M, Lan F, Li S, Liu C (2016) Liensinine- and neferine-induced cardiotoxicity in primary neonatal rat cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes. Int J Mol Sci 17:E186

    Article  Google Scholar 

  • Zhao X, Kim SY, Park KY (2013) Bamboo salt has in vitro anticancer activity in HCT-116 cells and exerts anti-metastatic effects in vivo. J Med Food 16:9–19

    Article  Google Scholar 

  • Zheng LL, Cao YW, Liu S, Peng ZY, Zhang SD (2014) Neferine inhibits angiotensin II-induced rat aortic smooth muscle cell proliferation predominantly by downregulating fractalkine gene expression. Exp Ther Med 8:1545–1550

    CAS  Google Scholar 

  • Zhou XL, Wang M (2015) Expression levels of survivin, Bcl-2, and KAI1 proteins in cervical cancer and their correlation with metastasis. Genet Mol Res 14:17059–17067

    Article  CAS  Google Scholar 

  • Zhu JJ, Shan JJ, Sun LB, Qiu WS (2015) Study of the radiotherapy sensitization effects and mechanism of capecitabine (Xeloda) against non-small-cell lung cancer cell line A549. Genet Mol Res 14(4):16386–16391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deguang Peng or Xin Zhao.

Additional information

Dingyi Yang and Xiaochuan Zou have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zou, X., Yi, R. et al. Neferine increase in vitro anticancer effect of dehydroepiandrosterone on MCF-7 human breast cancer cells. Appl Biol Chem 59, 585–596 (2016). https://doi.org/10.1007/s13765-016-0199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-016-0199-y

Keywords

Navigation