Skip to main content
Log in

Jujuboside A Attenuates Polycystic Ovary Syndrome Based on Estrogen Metabolism Through Activating AhR-mediated CYP1A2 Expression

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. This study aimed to investigate the therapeutic effects and mechanism of Jujuboside A on PCOS using a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Estrogen and androgen homeostasis was evaluated in serum from both clinical samples and PCOS mice. The stages of the estrous cycle were determined based on vaginal cytology. The ovarian morphology was observed by stained with hematoxylin and eosin. Moreover, we analyzed protein expression of cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2) and aryl hydrocarbon receptor (AhR) in ovary and KGN cells. Molecular docking, immunofluorescence, and luciferase assay were performed to confirm the activation of AhR by Jujuboside A. Jujuboside A effectively alleviated the disturbance of estrogen homeostasis and restored ovarian function, leading to an improvement in the occurrence and progression of PCOS. Furthermore, the protective effect of JuA against PCOS was dependent on increased CYP1A2 levels regulated by AhR. Our findings suggest that Jujuboside A improves estrogen disorders and may be a potential therapeutic agent for the treatment of PCOS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available on reasonable request from the corresponding authors.

References

  1. Jayasena CN, Franks S. The management of patients with polycystic ovary syndrome. Nat Rev Endocrinol. 2014;10(10):624–36. https://doi.org/10.1038/nrendo.2014.102

    Article  PubMed  Google Scholar 

  2. Azziz R, Carmina E, Chen ZJ, et al. Polycystic ovary syndrome. Nat Rev Dis Prim. 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57

    Article  PubMed  Google Scholar 

  3. Kumariya S, Ubba V, Jha RK, Gayen JR. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective. Autophagy. 2021;17(10):2706–32. https://doi.org/10.1080/15548627.2021.1938914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MohanKumar SMJ, Balasubramanian P, Subramanian M, MohanKumar PS. Chronic estradiol exposure - harmful effects on behavior, cardiovascular and reproductive functions. Reproduction. 2018;156(5):R169–86. https://doi.org/10.1530/REP-18-0116

    Article  CAS  PubMed  Google Scholar 

  5. Med ASR. The clinical relevance of luteal phase deficiency: a committee opinion. Fertil Steril. 2012;98(5):1112–7. https://doi.org/10.1016/j.fertnstert.2012.06.050

    Article  Google Scholar 

  6. De Souza MJ, Miller BE, Loucks AB, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: Blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998;83(12):4220–32. https://doi.org/10.1210/jc.83.12.4220

    Article  PubMed  Google Scholar 

  7. Qi J, Wang Y, Zhu QL, et al. Novel role of CXCL14 in modulating STAR expression in luteinized granulosa cells: implication for progesterone synthesis in PCOS patients. Transl Res. 2021;230:55–67. https://doi.org/10.1016/j.trsl.2020.10.009

    Article  CAS  PubMed  Google Scholar 

  8. Harlow CR, Shaw HJ, Hillier SG, Hodges JK. Factors influencing follicle-stimulating hormone-responsive steroidogenesis in marmoset granulosa cells: effects of androgens and the stage of follicular maturity. Endocrinology. 1988;122(6):2780–7. https://doi.org/10.1210/endo-122-6-2780

    Article  CAS  PubMed  Google Scholar 

  9. Bertoldo MJ, Caldwell ASL, Riepsamen AH, et al. A Hyperandrogenic Environment Causes Intrinsic Defects That Are Detrimental to Follicular Dynamics in a PCOS Mouse Model. Endocrinology. 2019;160(3):699–715. https://doi.org/10.1210/en.2018-00966

    Article  PubMed  Google Scholar 

  10. Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev. 2016;37(5):467–520. https://doi.org/10.1210/er.2015-1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang L, Xiao Y, Tian T, et al. Digenic variants of planar cell polarity genes in human neural tube defect patients (vol 124, pg 94, 2018). Mol Genet Metab. 2021;132(3):211. https://doi.org/10.1016/j.ymgme.2021.01.010

    Article  CAS  PubMed  Google Scholar 

  12. Simpson ER, Clyne C, Rubin G, et al. Aromatase–a brief overview. Annu Rev Physiol. 2002;64:93–127. https://doi.org/10.1146/annurev.physiol.64.081601.142703

    Article  CAS  PubMed  Google Scholar 

  13. Ailawadi RK, Jobanputra S, Kataria M, Gurates B, Bulun SE. Treatment of endometriosis and chronic pelvic pain with letrozole and norethindrone acetate: a pilot study. Fertil Steril. 2004;81(2):290–6. https://doi.org/10.1016/j.fertnstert.2003.09.029

    Article  CAS  PubMed  Google Scholar 

  14. Geffner ME. Aromatase inhibitors to augment height: continued caution and study required. J Clin Res Pediatr Endocrinol. 2009;1(6):256–61. https://doi.org/10.4274/jcrpe.v1i6.256

    Article  PubMed  Google Scholar 

  15. Arlt W. Dehydroepiandrosterone replacement therapy. Semin Reprod Med. 2004;22(4):379–88. https://doi.org/10.1055/s-2004-861554

    Article  CAS  PubMed  Google Scholar 

  16. Lambard S, Galeraud-Denis I, Bouraima H, et al. Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility. Mol Hum Reprod. 2003;9(3):117–24. https://doi.org/10.1093/molehr/gag020

    Article  CAS  PubMed  Google Scholar 

  17. Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005;227(2):115–24. https://doi.org/10.1016/j.canlet.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  18. Okino ST, Pookot D, Basak S, Dahiya R. Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention. Cancer Prev Res (Phila). 2009;2(3):251–6. https://doi.org/10.1158/1940-6207.CAPR-08-0146

    Article  CAS  PubMed  Google Scholar 

  19. Arentz S, Abbott JA, Smith CA, Bensoussan A. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings. Bmc Complem Altern M. 2014;14:511. https://doi.org/10.1186/1472-6882-14-511

    Article  Google Scholar 

  20. Raja-Khan N, Stener-Victorin E, Wu X, Legro RS. The physiological basis of complementary and alternative medicines for polycystic ovary syndrome. Am J Physiol Endocrinol Metab. 2011;301(1):E1–10. https://doi.org/10.1152/ajpendo.00667.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kousta E, White DM, Franks S. Modern use of clomiphene citrate in induction of ovulation. Hum Reprod Updat. 1997;3(4):359–65. https://doi.org/10.1093/humupd/3.4.359

    Article  CAS  Google Scholar 

  22. Mulligan K, Yang Y, Wininger DA, et al. Effects of metformin and rosiglitazone in HIV-infected patients with hyperinsulinemia and elevated waist/hip ratio. AIDS. 2007;21(1):47–57. https://doi.org/10.1097/QAD.0b013e328011220e

    Article  CAS  PubMed  Google Scholar 

  23. Maged AM, Elsawah H, Abdelhafez A, Bakry A, Al MW. The adjuvant effect of metformin and N-acetylcysteine to clomiphene citrate in induction of ovulation in patients with Polycystic Ovary Syndrome. Gynecol Endocrinol. 2015;31(8):635–8. https://doi.org/10.3109/09513590.2015.1037269

    Article  CAS  PubMed  Google Scholar 

  24. Ding J, Xu Y, Ma XP, et al. Estrogenic effect of the extract of Renshen (Radix Ginseng) on reproductive tissues in immature mice. J Tradit Chin Med. 2015;35(4):460–7.

    Article  PubMed  Google Scholar 

  25. Cho J, Park W, Lee S, Ahn W, Lee Y. Ginsenoside-Rb1 from Panax ginseng C.A. Meyer activates estrogen receptor-alpha and -beta, independent of ligand binding. J Clin Endocrinol Metab. 2004;89(7):3510–5. https://doi.org/10.1210/jc.2003-031823

    Article  CAS  PubMed  Google Scholar 

  26. Wu JY, Pan ZF, Wang ZQ, et al. Ginsenoside Rg1 protection against beta-amyloid peptide-induced neuronal apoptosis via estrogen receptor alpha and glucocorticoid receptor-dependent anti-protein nitration pathway. Neuropharmacology. 2012;63(3):349–61. https://doi.org/10.1016/j.neuropharm.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  27. Choi JH, Jang M, Kim EJ, et al. Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities. J Ginseng Res. 2020;44(6):790–8. https://doi.org/10.1016/j.jgr.2019.08.007

    Article  PubMed  Google Scholar 

  28. Yoshikawa M, Murakami T, Ikebata A, et al. Bioactive saponins and glycosides. 10. On the constituents of Zizyphi Spinosi Semen, the seeds of Zizyphus jujuba Mill, var spinosa Hu. 1. Structures and histamine release-inhibitory effects of jujubosides A(1) and C and acetyljujuboside B. Chem Pharm Bull. 1997;45(7):1186–92.

    Article  CAS  Google Scholar 

  29. Li HT, Li JN, Zhang T, Xie XY, Gong JY. Antidepressant effect of Jujuboside A on corticosterone-induced depression in mice. Biochem Bioph Res Co. 2022;620:56–62. https://doi.org/10.1016/j.bbrc.2022.06.076.

    Article  CAS  Google Scholar 

  30. Di Emidio G, Rea F, Placidi M, et al. Regulatory functions of L-Carnitine, acetyl, and propionyl L-Carnitine in a PCOS mouse model: focus on antioxidant/antiglycative molecular pathways in the ovarian microenvironment. Antioxidants (Basel). 2020;9(9). https://doi.org/10.3390/antiox9090867

  31. Zhou X, Zheng Z, Xu C, et al. Disturbance of Mammary UDP-Glucuronosyltransferase Represses Estrogen Metabolism and Exacerbates Experimental Breast Cancer. J Pharm Sci. 2017;106(8):2152–62. https://doi.org/10.1016/j.xphs.2017.04.073

    Article  CAS  PubMed  Google Scholar 

  32. Hao Z, Xu J, Zhao H, et al. The inhibition of tamoxifen on UGT2B gene expression and enzyme activity in rat liver contribute to the estrogen homeostasis dysregulation. BMC Pharmacol Toxicol. 2022;23(1):33. https://doi.org/10.1186/s40360-022-00574-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakurai S, Shimizu T, Ohto U. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription. J Biol Chem. 2017;292(43):17609–16. https://doi.org/10.1074/jbc.M117.812974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodgers RJ, Suturina L, Lizneva D, et al. Is polycystic ovary syndrome a 20th Century phenomenon? Med Hypotheses. 2019;124:31–4. https://doi.org/10.1016/j.mehy.2019.01.019

    Article  PubMed  Google Scholar 

  35. Zeng X, Xie YJ, Liu YT, Long SL, Mo ZC. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta. 2020;502:214–21. https://doi.org/10.1016/j.cca.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  36. Patel S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J Steroid Biochem Mol Biol. 2018;182:27–36. https://doi.org/10.1016/j.jsbmb.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  37. Jazani AM, Azgomi HND, Azgomi AND, Azgomi RND. A comprehensive review of clinical studies with herbal medicine on polycystic ovary syndrome (PCOS). Daru. 2019;27(2):863–77. https://doi.org/10.1007/s40199-019-00312-0

    Article  CAS  Google Scholar 

  38. Krishnan A, Muthusami S. Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol. 2017;232(2):R99–113. https://doi.org/10.1530/Joe-16-0405

    Article  CAS  PubMed  Google Scholar 

  39. Balthazart J, Cornil CA, Charlier TD, Taziaux M, Ball GF. Estradiol, a Key Endocrine Signal in the Sexual Differentiation and Activation of Reproductive Behavior in Quail. J Exp Zool Part A. 2009;311a(5):323–45. https://doi.org/10.1002/jez.464

    Article  CAS  Google Scholar 

  40. Reinen J, Vermeulen NP. Biotransformation of endocrine disrupting compounds by selected phase I and phase II enzymes–formation of estrogenic and chemically reactive metabolites by cytochromes P450 and sulfotransferases. Curr Med Chem. 2015;22(4):500–27. https://doi.org/10.2174/0929867321666140916123022

    Article  CAS  PubMed  Google Scholar 

  41. Kaderbhai MA, Kelly SL, Kaderbhai NN. Towards engineered topogenesis of cytochrome b(5) and P450 for in vivo transformation of xenobiotics. Biochem Soc T. 2006;34:1231–5. https://doi.org/10.1042/Bst0341231

    Article  CAS  Google Scholar 

  42. Cribb AE, Knight MJ, Dryer D, et al. Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidem Biomar. 2006;15(3):551–8. https://doi.org/10.1158/1055-9965.Epi-05-0801

    Article  CAS  Google Scholar 

  43. Daujat M, Clair P, Astier C, et al. Induction, regulation and messenger half-life of cytochromes P450 IA1, IA2 and IIIA6 in primary cultures of rabbit hepatocytes. CYP 1A1, 1A2 and 3A6 chromosome location in the rabbit and evidence that post-transcriptional control of gene IA2 does not involve mRNA stabilization. Eur J Biochem. 1991;200(2):501–10. https://doi.org/10.1111/j.1432-1033.1991.tb16211.x

    Article  CAS  PubMed  Google Scholar 

  44. Tompkins LM, Wallace AD. Mechanisms of cytochrome P450 induction. J Biochem Mol Toxic. 2007;21(4):176–81. https://doi.org/10.1002/jbt.20180

    Article  CAS  Google Scholar 

  45. Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol. 2020;34:101530. https://doi.org/10.1016/j.redox.2020.101530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Couse JF, Yates MM, Deroo BJ, Korach KS. Estrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins. Endocrinology. 2005;146(8):3247–62. https://doi.org/10.1210/en.2005-0213

    Article  CAS  PubMed  Google Scholar 

  47. Horling K, Santos AN, Fischer B. The AhR is constitutively activated and affects granulosa cell features in the human cell line KGN. Mol Hum Reprod. 2011;17(2):104–14. https://doi.org/10.1093/molehr/gaq074

    Article  CAS  PubMed  Google Scholar 

  48. Mottershead DG, Pulkki MM, Muggalla P, et al. Characterization of recombinant human growth differentiation factor-9 signaling in ovarian granulosa cells. Mol Cell Endocrinol. 2008;283(1–2):58–67. https://doi.org/10.1016/j.mce.2007.11.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (No. 82173883, China); the Science and Technology Foundation of Xuzhou (No. KC23255, China); the administration of Traditional Chinese Medicine in Jiangsu Province (No. MS2023175, China); the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KA350002, China); the Provincial Commission of Health and Family Planning in Jiangsu Province (No. H2017079, China) and the Science and Technology Planning Project of Jiangsu Province (No. BE2019636, China).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Xueyan Zhou; Methodology: Nan Zhou, Wenqiang Lv, Qing He, Jiachen Ma; Formal analysis and investigation: Wenqiang Lv, Linnan Chen, Guangyan Xie; Writing—original draft: Nan Zhou, Linnan Chen; Writing—review & editing: Xueyan Zhou, Bei Zhang; Funding Acquisition: Xueyan Zhou, Bei Zhang; Supervision: Yijuan Cao.

Corresponding authors

Correspondence to Bei Zhang or Xueyan Zhou.

Ethics declarations

Ethics Approval

The study was approved by the Ethics Committee of Xuzhou Central Hospital, China. (approval number: XZXY-LK-20210901–024).

Competing Interests

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, N., Lv, W., Chen, L. et al. Jujuboside A Attenuates Polycystic Ovary Syndrome Based on Estrogen Metabolism Through Activating AhR-mediated CYP1A2 Expression. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01511-0

Keywords

Navigation