Skip to main content
Log in

Primary hepatocyte culture from Oreochromis niloticus fish as a tool for environmental toxicology

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Risk assessment studies on aquatic pollution, a threat to water quality and aquatic biota, often rely on animal capture and experimentation. However, ethical concerns surrounding animal use have prompted the development and use of alternative methods. This study investigates the viability of primary hepatocyte cultures from Oreochromis niloticus as an in vitro tool for environmental contaminant screening, focusing on cadmium as a pollutant model. Isolated hepatocytes were cultured on plates using a mixture of supplemented L15/F12 media. Freezing conditions were tested for cell stock preservation. The cultured hepatocytes were exposed to 0.5, 5, and 50 µM of cadmium to assess cell viability, reactive oxygen and nitrogen species, and antioxidant molecules. Results demonstrated a concentration and time-dependent decrease in cell viability upon cadmium exposure. Cadmium exposure also induced an imbalance in the antioxidant defense system, leading to increased reactive oxygen species levels and lipid peroxidation. These findings validate the cadmium toxicity to primary hepatocytes and confirm the applicability of commonly used biomarkers in animal-based ecotoxicology and risk assessment studies. The replication of these biomarkers in primary hepatocyte cultures provides an ethical alternative to reduce animal testing in ecotoxicology. Lastly, the study highlights the potential of primary hepatocyte cultures as an in vitro tool for evaluating the toxicity of environmental contaminants and supports the integration of this tool in future environmental risk assessment studies, promoting sustainable water resource management while reducing reliance on animal experimentation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Alge CS, Hauck SM, Priglinger SG, Kampik A, Ueffing M (2006) Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J Proteome Res 5:862–878

    Article  CAS  Google Scholar 

  • Athmouni K, Belhaj D, El Feki A, Ayadi H (2018) Optimization, antioxidant properties and GC–MS analysis of Periploca angustifolia polysaccharides and chelation therapy on cadmium-induced toxicity in human HepG2 cells line and rat liver. Int J Biol Macromol 108:853–862

    Article  CAS  Google Scholar 

  • Barrick A, Manier N, Lonchambon P, Flahaut E, Jrad N, Mouneyrac C, Châtel A (2019) Investigating a transcriptomic approach on marine mussel hemocytes exposed to carbon nanofibers: an in vitro/in vivo comparison. Aquat Toxicol 207:19–28

    Article  CAS  Google Scholar 

  • Beliaeff B, Burgeot T (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem 21:1316–1322

    Article  CAS  Google Scholar 

  • Bolis CL, Piccolella M, Dalla Valle AZ, Rankin JC (2001) Fish as model in pharmacological and biological research. Pharmacol Res 44:265–280

    Article  CAS  Google Scholar 

  • Bonomo MM, Fernandes JB, Carlos RM, Fernandes MN (2019) Mitochondrial and lysosomal dysfunction induced by the novel metal-insecticide [Mg(hesp)(2)(phen)] in the zebrafish (Danio rerio) hepatocyte cell line (ZF-L). Chem Biol Interact 307:147–153

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bruscalupi G, Massimi M, Devirgiliis LC, Leoni S (2009) Multiple parameters are involved in the effects of cadmium on prenatal hepatocytes. Toxicol in Vitro 23:1311–1318

    Article  CAS  Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Policy 9:685–692

    Article  Google Scholar 

  • Castaño A, Cantarino MJ, Castillo P, Tarazona JV (1996) Correlations between the RTG-2 cytotoxicity test EC50 and in vivo LC50 rainbow trout bioassay. Chemosphere 32:2141–2157

    Article  Google Scholar 

  • Chen X, Wang J, Xie Y, Ma Y, Zhang J, Wei H, Abdou AIE (2022) Physiological response and oxidative stress of grass carp (Ctenopharyngodon idellus) under single and combined toxicity of polystyrene microplastics and cadmium. Ecotoxicol Environ Saf 245:114080

    Article  CAS  Google Scholar 

  • Crouch RK, Gandy SE, Kimsey G, Galbraith RA, Galbraith GM, Buse MG (1981) The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes 30:235–241

    Article  CAS  Google Scholar 

  • Dala-Paula BM, Custódio FB, Knupp EAN, Palmieri HEL, Silva JBB, Glória MBA (2018) Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environ Pollut 242:383–389

    Article  CAS  Google Scholar 

  • Dong Z, Li B, Wu L, Lei Y, Chen J, Mu L, Wu H, Chen M, Wang B, Ye J, Liang F (2021) Identification and characterization of scavenger receptor class B member 2 in Nile tilapia (Oreochromis niloticus). Aquaculture Reports 21:100783

    Article  Google Scholar 

  • Figueiredo N, Matos B, Diniz M, Branco V, Martins M (2021) Marine fish primary hepatocyte isolation and culture: new insights to enzymatic dissociation pancreatin digestion. Int J Environ Res Public Health 18:1380

    Article  CAS  Google Scholar 

  • Filipič M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res/Fundam Mol Mech Mutagen 733:69–77

    Article  Google Scholar 

  • Fotakis G, Cemeli E, Anderson D, Timbrell JA (2005) Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line. Toxicol in Vitro 19:481–489

    Article  CAS  Google Scholar 

  • Gao B, Jeong W-I, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47:729–736

    Article  CAS  Google Scholar 

  • Gillies RJ, Didier N, Denton M (1986) Determination of cell number in monolayer cultures. Anal Biochem 159:109–113

    Article  CAS  Google Scholar 

  • Glinski A, Liebel S, Pelletier È, Voigt CL, Randi MA, Campos SX, Oliveira Ribeiro CA, Filipak Neto F (2016) Toxicological interactions of silver nanoparticles and organochlorine pesticides in mouse peritoneal macrophages. Toxicol Mech Methods 26:251–259

    Article  CAS  Google Scholar 

  • Glock GE, McLean P (1953) Further studies on the properties and assay of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver. Biochem J 55:400–408

    Article  CAS  Google Scholar 

  • Govind P, Sharma M (2014) Heavy metals causing toxicity in animals and fishes. Res J Anim, Vet Fish Sci 2(2):17–23

    Google Scholar 

  • Gröner F, Ziková A, Kloas W (2015) Effects of the pharmaceuticals diclofenac and metoprolol on gene expression levels of enzymes of biotransformation, excretion pathways and estrogenicity in primary hepatocytes of Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol Part c: Toxicol Pharmacol 167:51–57

    Google Scholar 

  • Hewitt NJ, Li AP (2015) Cryopreservation of hepatocytes. In: Vinken M, Rogiers V (eds) Protocols in in vitro hepatocyte research. Springer, New York, pp 13–26

    Chapter  Google Scholar 

  • Hu F, Yin L, Dong F, Zheng M, Zhao Y, Fu S, Zhang W, Chen X (2021) Effects of long-term cadmium exposure on growth, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). Aquat Toxicol 241:106014

    Article  CAS  Google Scholar 

  • Jiao J-G, Liu Y, Zhang H, Li L-Y, Qiao F, Chen L-Q, Zhang M-L, Du Z-Y (2020) Metabolism of linoleic and linolenic acids in hepatocytes of two freshwater fish with different n-3 or n-6 fatty acid requirements. Aquaculture 515:734595

    Article  CAS  Google Scholar 

  • Jung’a JO, Mitema ES, Gutzeit HO (2005) Establishment and comparative analyses of different culture conditions of primary hepatocytes from nile tilapia Oreochromis niloticus as a model to study stress induction in vitro. Bioone 41(1–6):6

    Google Scholar 

  • Kajarabille N, Latunde-Dada GO (2019) Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci 20:4968

    Article  CAS  Google Scholar 

  • Keen JH, Habig WH, Jakoby WB (1976) Mechanism for the several activities of the glutathione S-transferases. J Biol Chem 251:6183–6188

    Article  CAS  Google Scholar 

  • Kim BH, Takemura A (2003) Culture conditions affect induction of vitellogenin synthesis by estradiol-17β in primary cultures of tilapia hepatocytes. Comp Biochem Physiol Part b: Biochem Mol Biol 135:231–239

    Article  CAS  Google Scholar 

  • Knauer K, Lampert C, Gonzalez-Valero J (2007) Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action. Chemosphere 68:1435–1441

    Article  CAS  Google Scholar 

  • Koizumi T, Shirakura H, Kumagai H, Tatsumoto H, Suzuki KT (1996) Mechanism of cadmium-induced cytotoxicity in rat hepatocytes: cadmium-induced active oxygen-related permeability changes of the plasma membrane. Toxicology 114:125–134

    Article  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  Google Scholar 

  • Laville N, Aït-Aïssa S, Gomez E, Casellas C, Porcher JM (2004) Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 196:41–55

    Article  CAS  Google Scholar 

  • Liebel S, Oliveira Ribeiro CA, Silva RC, Ramsdorf WA, Cestari MM, Magalhães VF, Garcia JRE, Esquivel BM, Filipak Neto F (2011) Cellular responses of Prochilodus lineatus hepatocytes after cylindrospermopsin exposure. Toxicol in Vitro 25:1493–1500

    Article  CAS  Google Scholar 

  • Liu C, Yu K, Shi X, Wang J, Lam PKS, Wu RSS, Zhou B (2007) Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Aquat Toxicol 82:135–143

    Article  CAS  Google Scholar 

  • Lyons WB (2014) Water and urbanization. Environ Res Lett 9:111002

    Article  Google Scholar 

  • Mingoia RT, Glover KP, Nabb DL, Yang C-H, Snajdr SI, Han X (2010) Cryopreserved hepatocytes from rainbow trout (Oncorhynchus mykiss): a validation study to support their application in bioaccumulation assessment. Environ Sci Technol 44:3052–3058

    Article  CAS  Google Scholar 

  • Misko TP, Schilling RJ, Salvemini D, Moore WM, Currie MG (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214:11–16

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Naka KS, de dos Santos C, Mendes L, de Queiroz TKL, Costa BNS, de Jesus IM, de Magalhães Câmara V, de Oliveira Lima M (2020) A comparative study of cadmium levels in blood from exposed populations in an industrial area of the Amazon Brazil. Sci Total Environ 698:134309

    Article  CAS  Google Scholar 

  • Okimoto Y, Watanabe A, Niki E, Yamashita T, Noguchi N (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett 474:137–140

    Article  CAS  Google Scholar 

  • Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8:443–450

    Article  CAS  Google Scholar 

  • Prozialeck WC, Grunwald GB, Dey PM, Reuhl KR, Parrish AR (2002) Cadherins and NCAM as potential targets in metal toxicity. Toxicol Appl Pharmacol. https://doi.org/10.1006/taap.2002.9422

    Article  Google Scholar 

  • Reilly TP, Bellevue FH, Woster PM, Svensson CK (1998) Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone. Biochem Pharmacol 55:803–810

    Article  CAS  Google Scholar 

  • Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, Vellingiri B, George A, Valsala Gopalakrishnan A (2021) Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium)—induced hepatotoxicity—a review. Chemosphere 271:129735

    Article  CAS  Google Scholar 

  • Revel M, Roman C, Châtel A (2021) Is cell culture a suitable tool for the evaluation of micro- and nanoplastics ecotoxicity? Ecotoxicology 30:421–430

    Article  CAS  Google Scholar 

  • Sanchez W, Burgeot T, Porcher JM (2013) A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ Sci Pollut Res Int 20:2721–2725

    Article  CAS  Google Scholar 

  • Schreer A, Tinson C, Sherry JP, Schirmer K (2005) Application of Alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. Anal Biochem 344:76–85

    Article  CAS  Google Scholar 

  • Scott J, Minghetti M (2020) Chapter 34—toxicity testing: in vitro models in ecotoxicology. In: Pope CN, Liu J (eds) An introduction to interdisciplinary toxicology. Academic Press, Cambridge, pp 477–486

    Chapter  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  Google Scholar 

  • Sevcikova M, Modra H, Slaninova A, Svobodova Z (2011) Metals as a cause of oxidative stress in fish: a review. Vet Med 56:537–546

    Article  CAS  Google Scholar 

  • Soldatow VY, Lecluyse EL, Griffith LG, Rusyn I (2013) models for liver toxicity testing. Toxicol Res (Camb) 2:23–39

    Article  CAS  Google Scholar 

  • Svendsen C, Spurgeon DJ, Hankard PK, Weeks JM (2004) A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker? Ecotoxicol Environ Saf 57:20–29

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) (2012) Heavy metal toxicity and the environment. Experientia Suppl 101:133–164

    Article  Google Scholar 

  • Thangaraj RS, Ravi C, Kumar R, Dharmaratnam A, Valaparambil Saidmuhammed B, Pradhan PK, Sood N (2018) Derivation of two tilapia (Oreochromis niloticus) cell lines for efficient propagation of Tilapia Lake Virus (TiLV). Aquaculture 492:206–214

    Article  Google Scholar 

  • Uchea C, Owen SF, Chipman JK (2015) Functional xenobiotic metabolism and efflux transporters in trout hepatocyte spheroid cultures. Toxicol Res 4:494–507

    Article  CAS  Google Scholar 

  • Vega-Avila E, Pugsley MK (2011) An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc 54:10–14

    CAS  Google Scholar 

  • Walters SP, Thebo AL, Boehm AB (2011) Impact of urbanization and agriculture on the occurrence of bacterial pathogens and stx genes in coastal waterbodies of central California. Water Res 45:1752–1762

    Article  CAS  Google Scholar 

  • Wang J, Zhu H, Liu X, Liu Z (2014) N-acetylcysteine protects against cadmium-induced oxidative stress in rat hepatocytes. J Vet Sci 15:485–493

    Article  Google Scholar 

  • Wu D, Yotnda P (2011) Production and detection of reactive oxygen species (ROS) in cancers. J vis Exp. https://doi.org/10.3791/3357-v

    Article  Google Scholar 

  • Wu H, Xuan R, Li Y, Zhang X, Wang Q, Wang L (2013) Effects of cadmium exposure on digestive enzymes, antioxidant enzymes, and lipid peroxidation in the freshwater crab Sinopotamon henanense. Environ Sci Pollut Res 20:4085–4092

    Article  CAS  Google Scholar 

  • Yang X, Schnackenberg LK, Shi Q, Salminen WF (2014) Chapter 13—Hepatic toxicity biomarkers. In: Gupta RC (ed) Biomarkers in toxicology. Academic Press, Boston, pp 241–259

    Chapter  Google Scholar 

  • Yang H, Zhu Z, Xie Y, Zheng C, Zhou Z, Zhu T, Zhang Y (2022) Comparison of the combined toxicity of polystyrene microplastics and different concentrations of cadmium in zebrafish. Aquat Toxicol 250:106259

    Article  CAS  Google Scholar 

  • Zhang C, Jin Y, Yu Y, Xiang J, Li F (2021) Cadmium-induced oxidative stress, metabolic dysfunction and metal bioaccumulation in adult palaemonid shrimp Palaemon macrodactylus (Rathbun, 1902). Ecotoxicol Environ Saf 208:111591

    Article  CAS  Google Scholar 

  • Zhou B, Liu C, Wang J, Lam PKS, Wu RSS (2006) Primary cultured cells as sensitive in vitro model for assessment of toxicants-comparison to hepatocytes and gill epithelia. Aquat Toxicol 80:109–118

    Article  CAS  Google Scholar 

  • Zhou H, Xiang N, Xie J, Diao X (2019) Ecotoxicology: the history and present direction☆. In: Fath B (ed) Encyclopedia of ecology, 2nd edn. Elsevier, Oxford, pp 415–423

    Chapter  Google Scholar 

  • Zhu QL, Luo Z, Zhuo MQ, Tan XY, Sun LD, Zheng JL, Chen QL (2014) In vitro exposure to copper influences lipid metabolism in hepatocytes from grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 40:595–605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES, Ph.D. scholarship—grant n° 88882.382558/2019-01), Council for Scientific and Technological Development (CNPq, Ph.D. scholarship and financial support—grant n° 140931/2018-0), Companhia Paranaense de Energia (COPEL) and Agência Nacional de Energia Elétrica (ANNEL, P&D 06491-0265/2012), Universidade Federal do Paraná (UFPR, equipment and financial support), and the Center for Advanced Fluorescence Technologies (CTAF) at UFPR (technical support).

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 88882.382558/2019-01, Jessica Zablocki da Luz, Conselho Nacional de Desenvolvimento Científico e Tecnológico, 140931/2018-0, ALICIANE DE ALMEIDA ROQUE, Agência Nacional de Energia Elétrica, 06491-0265/2012, Ciro Alberto de Oliveira Ribeiro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zablocki da Luz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The procedures were approved and certified by the Animal Use Ethics Committee of the Biological Sciences Sector of the Federal University of Paraná (CEUA/BIO—UFPR) with certificate number 1286, June 2019.

Additional information

Editorial responsibility: Maryam Shabani.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zablocki da Luz, J., Lima de Souza, T., de Almeida Roque, A. et al. Primary hepatocyte culture from Oreochromis niloticus fish as a tool for environmental toxicology. Int. J. Environ. Sci. Technol. 21, 2517–2532 (2024). https://doi.org/10.1007/s13762-023-05129-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05129-8

Keywords

Navigation