Skip to main content

Advertisement

Log in

Intrinsic and specific groundwater vulnerability determination as a pre-operational baseline assessment of an unconventional hydrocarbon industry

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the middle of the São Francisco Basin, the sub-basins of Indaiá and Borrachudo stand as attractive unconventional gas plays. However, the high complexity of developing unconventional reservoirs raises many issues concerning the environmental sustainability of this enterprise. In this context, a pre-operational assessment of the groundwater vulnerability is crucial to compound a robust environmental baseline for the shale gas industry. The present study assesses the groundwater’s intrinsic and specific vulnerability of the Indaiá and Borrachudo basins as a part of an environmental baseline study for further shale gas exploration. GOD index method (an overlay and index geoprocessing technique) was applied to assess the aquifer’s intrinsic susceptibility regarding the groundwater confinement (G), the overlying strata (O), and the depth of the groundwater table (D). The specific vulnerability assessment considered the intrinsic vulnerability and the land cover/use of the area, concerning the diversity and the toxicity of pollutants inherent to each anthropogenic activity. The results indicate that 52.69%, 25.12%, and 17.57% of the aquifer area have medium, high, and extreme intrinsic vulnerability, respectively. Medium, high, and extreme specific vulnerability occur, respectively, in 14.37%, 0.28%, and 17.10% of the total area. Specific vulnerability assessment suggests an overall vulnerability reduction due to the basin’s low levels of anthropogenic pressures. Three gas wells overlay moderate intrinsic vulnerability, and one well is above the high vulnerability area. Findings from this research are helpful to design strategies and actions aimed to protect groundwater systems and guarantee an unconventional gas development grounded in environmental principles in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The work is based on public data available in the respective references in the text. All shapefiles can be downloaded in the given references, and the methods can be replicable using free softwares.

Code availability

Not applicable.

 References

  • Aller L, Bennet T, Lehr JH, Petty R.J (1987) DRASTIC: a standardised system for evaluating groundwater pollution potential using hydrologic settings. US EPA report

  • ANA (2010) Agência Nacional de Águas. https://www.ana.gov.br/noticias-antigas/brasil-tem-cerca-de-12-das-reservas-mundiais-de-a.2019-03-15.1088913117. Accessed 20 Feb 2020

  • Campos JEG, Dardenne MA (1997) Estratigrafia E Sedimentação Da Bacia Sanfranciscana: Uma Revisão. Rev Bras Geoci 27:269–282. https://doi.org/10.25249/0375-7536.1997269282

    Article  Google Scholar 

  • Christel LG, Novas MA (2019) Incentivos económicos y conflictividad social. trayectorias disímiles del fracking en las provincias de Argentina. Revista De Reflexión y Análisis Político 2:491–525

    Google Scholar 

  • CODEMIG (2011) Sistema de Informações Geográficas de Mapeamentos Geológicos em Folhas na escala de 1:100.000 pelo Projeto Alto Paranaíba. http://www.portalgeologia.com.br/index.php/mapa/. Accessed 1 July 2020

  • CPRM (2019) Projeto Águas do Norte de Minas – PANM: Estudo da Disponibilidade Hídrica Subterrânea do Norte de Minas Gerais. Relatório de Integração. Serviço Geológico do Brasil (CPRM), pp 1–222

  • Dassargues A, Gogu RC (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol. https://doi.org/10.1007/s002540050466

    Article  Google Scholar 

  • Davarpanah AEA, Ahmadi ASP (2019) An experimental study to measure the required fresh water and treated water for drilling an unconventional shale reservoir. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-02185-3

    Article  Google Scholar 

  • Davoodi S, Ramazani ASA, Rukavishnikov A, Minaev K (2020) Insights into application of acorn shell powder in drilling fluid as environmentally friendly additive: filtration and rheology. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02880-0

    Article  Google Scholar 

  • de Camargo TRM, de Merschmann PRC, Arroyo EV, Szklo A (2014) Major challenges for developing unconventional gas in Brazil—will water resources impede the development of the Country’s industry? Resour Policy 41:60–71. https://doi.org/10.1016/j.resourpol.2014.03.001

    Article  Google Scholar 

  • de Oliveira LMC, Stefano PHP, Vedana LA, de Carregosa JC, Santos MMN, Wisniewski AJ, Pereira FMCC (2020) A hydrogeological impact survey on the largest onshore oil field in Brazil: physicochemical and total petroleum hydrocarbon (TPH) analyses in the south of Japaratuba River Basin, Sergipe. Environ Earth Sci. https://doi.org/10.1007/s12665-020-09121-0

    Article  Google Scholar 

  • Delgado F (2018) Projeto Poço Transparente: Testes para reservatórios de baixa permeabilidade - Gerando conhecimento via avaliação ambiental prévia estratégica

  • De-Paula Costa GT, Guerrante IC, Costa-de-Moura J, Amorim FC (2018) Geochemical signature of NORM waste in Brazilian oil and gas industry. J Environ Radioact 189:202–206. https://doi.org/10.1016/j.jenvrad.2018.04.014

    Article  CAS  Google Scholar 

  • Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Earth Sci 39:165–176. https://doi.org/10.1007/s002540050446

    Article  CAS  Google Scholar 

  • Duarte JCdeM (2021) Radiometria de 226Ra E 228Ra na investigação de processos de formação de NORM em exploração de gás não convencional. Centro de Desenvolvimento da Tecnologia Nuclear

  • EMBRAPA (2020). Sistema Brasileiro de Classificação de Solos. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/93143/1/sistema-brasileiro-de-classificacao-dos-solos2006.pdf. Accessed 28 April 2020

  • FGV ENERGIA (2020) Doing business with the brazilian onshore environment. Rio de Janeiro

  • FGV ENERGIA (2021) O desenvolvimento da exploração de recursos não-convencionais no Brasil: Novas óticas de desenvolvimento regional. Rio de Janeiro

  • Esterhuyse S (2017) Developing a groundwater vulnerability map for unconventional oil and gas extraction: a case study from South Africa. Environ Earth Sci 76:1–13. https://doi.org/10.1007/s12665-017-6961-6

    Article  Google Scholar 

  • Esterhuyse S, Redelinghuys N, Kemp M (2016) Unconventional oil and gas extraction in South Africa: water linkages within the population–environment–development nexus and its policy implications. Water Int 41:409–425. https://doi.org/10.1080/02508060.2016.1129725

    Article  Google Scholar 

  • Esterhuyse S, Avenant M, Watson M, Redelinghuys N, Kijko A, Glazewski J, Plit LA, Kemp M, Smit A, Sokolic F, Vos AT, Reynolds D, von Maltitz M, van Tol J, Bragg C, van Soelen B, Ouzman S (2014) Development of an interactive vulnerability map and monitoring framework to assess the potential environmental impact of unconventional oil and gas extraction by means of hydraulic fracturing

  • Ferreira VG, Lima J da SD, Lima GFC, de Duarte JCM (2021) Metodologia aplicada a estudos socioambientais em reservas estratégicas de hidrocarbonetos não convencionais nas regiões dos rios Indaiá e Borrachudo - Bacia do São Francisco. Atena, Ponta Grossa

  • Foster SSD, Hirata R, Gomes D, Elia M, Paris M (2002) Groundwater quality protection: a guide for water utilities, municipal authorities, and environment agencies. The World Bank, Washington

    Book  Google Scholar 

  • Foster S (1987) Fundamental concept in aquifer vulnerability pollution risk and protection strategy. In: Proceedings of the international conference on vulnerability of soil and groundwater to pollution, Nordwijk, The Netherlands, April

  • Fragoso DGC, Uhlein A, Sanglard JCD, Sukcal GL, Guerzoni HTG, Faria PH (2011) Geologia dos grupos Bambuí, Areado e Mata da Corda na folha Presidente Olegário (1:100.000), MG: Registro deposicional do Neoproterozóico ao Neocretáceo da Bacia do São Francisco. Geonomos 19:28–38

    Google Scholar 

  • Ghazavi R, Ebrahimi Z (2015) Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int J Environ Sci Technol 12:2909–2918. https://doi.org/10.1007/s13762-015-0813-2

    Article  CAS  Google Scholar 

  • de Gonçalves CMOC (2019) A REVISÃO DO MARCO REGULATÓRIO PARA O SETOR DE GÁS NATURAL E O BYPASS DA REDE DE DISTRIBUIÇÃO. Fundação Getúlio Vargas

  • IDE-Sisema (2020) Infraestrutura de Dados Espaciais do Sistema Estadual de Meio Ambiente e Recursos Hídricos. http://idesisema.meioambiente.mg.gov.br/. Accessed 1 July 2020

  • Islam MR (2014) Unconventional gas reservoirs: evaluation, appraisal, and development. Elsevier, London

    Google Scholar 

  • Johnson EG, Johnson LA (2012) Hydraulic fracture water usage in Northeast British Columbia: locations, volumes and trends hydraulic fracture water usage in Northeast British Columbia: locations, volumes and trends. Geosci Rep 25:41–63

    Google Scholar 

  • Katarina H, Costa DM, Cintra M, Pereira EG, dos Santos EM (2018) Regulatory framework of upstream and onshore unconventional gas in Brazil. Energy Law Regul Brazil. https://doi.org/10.1007/978-3-319-73456-9

    Article  Google Scholar 

  • Krupnick A, Wang Z, Wang Y (2014) Environmental risks of shale gas development in China. Energy Policy 75:117–125. https://doi.org/10.1016/j.enpol.2014.07.022

    Article  Google Scholar 

  • Lenhard LG, Andersen SM, Coimbra-araújo CH (2018) Energy-environmental implications of shale gas exploration in Paraná Hydrological Basin, Brazil. Renew Sustain Energy Rev 90:56–69. https://doi.org/10.1016/j.rser.2018.03.042

    Article  CAS  Google Scholar 

  • Lima GFC, Ferreira VG, de Duarte JCM, Lima JSD, Fuccio AFA (2021) Geologia e sistemas petrolíferos da Bacia do São Francisco dentro do contexto das reservas não convencionais nas regiões dos rios Indaiá e Borrachudo. Atena, Ponta Grossa

  • Loveless SE, Lewis MA, Bloomfield JP, Davey I, Ward RS, Hart A, Stuart ME (2019) A method for screening groundwater vulnerability from subsurface hydrocarbon extraction practices. J Environ Manag 249:109349. https://doi.org/10.1016/j.jenvman.2019.109349

    Article  CAS  Google Scholar 

  • Lowry D, Fisher RE, France JL, Coleman M, Lanoisellé M, Giulia Z, Nisbet EG, Shaw JT, Allen G, Pitt J, Ward RS (2020) Environmental baseline monitoring for shale gas development in the UK: identification and geochemical characterisation of local source emissions of methane to atmosphere. Sci Total Environ 708:134600. https://doi.org/10.1016/j.scitotenv.2019.134600

    Article  CAS  Google Scholar 

  • Mendoza JA, Barmen G (2006) Assessment of groundwater vulnerability in the Río Artiguas basin, Nicaragua. Environ Geol 50:569–580. https://doi.org/10.1007/s00254-006-0233-1

    Article  CAS  Google Scholar 

  • Meng Q, Ashby S (2014) Distance: a critical aspect for environmental impact assessment of hydraulic fracking. Extr Ind Soc 1:124–126. https://doi.org/10.1016/j.exis.2014.07.004

    Article  Google Scholar 

  • Olojoku IK, Tech M, Modreck G, Adeyinka OS, Adebayo YM (2017) Vulnerability assessment of shallow aquifer hand-dug wells in rural parts of Northcentral Nigeria using AVI and GOD methods. Pac J Sci Technol 18:325–333

    Google Scholar 

  • Prado IG, Pompeu PS (2014) Vertical and seasonal distribution of fish in Três Marias reservoir. Lake Reserv Manag 30:393–404. https://doi.org/10.1080/10402381.2014.955221

    Article  Google Scholar 

  • Reis HLS (2018) Gás natural. In: Pedrosa-Soares AC, Voll E, Cunha EC (eds) Recursos minerais de Minas Gerais. Companhia de Desenvolvimento de Minas Gerais (CODEMGE), Belo Horizonte, pp 1–39

  • Rosales-ramirez TY, Kirste D, Allen DM, Mendoza CA (2021) Mapping the vulnerability of groundwater to wastewater spills for source water protection in a shale gas region. Sustainability 13:1–27. https://doi.org/10.3390/su13073987

    Article  CAS  Google Scholar 

  • SIAGAS (2020) http://siagasweb.cprm.gov.br/layout. Sistema de Informações de Águas Subterrâneas. Accessed 16 April 2020

  • SIAM (2017) Sistema Integrado de Informação Ambiental. http://www.siam.mg.gov.br/siam/login.jsp. Accessed 4 April 2020

  • Simões K, Condé RDCC, Roig HL, Cicerelli RE (2021) Application of the SWAT hydrological model in flow and solid discharge simulation as a management tool of the Indaia River Basin, Alto São Francisco, Minas Gerais. Ambiente e Agua Interdiscip J Appl Sci 16:1. https://doi.org/10.4136/ambi-agua.2694

    Article  Google Scholar 

  • Soeder DJ (2021) Fracking and the environment: a scientific assessment of the environmental risks from hydraulic fracturing and fossil fuels. Springer, South Dakota

    Book  Google Scholar 

  • Soeder DJ, Borglum SJ (2019) The fossil fuel revolution: shale gas and tight oil. Elsevier, New York

    Google Scholar 

  • Torres I, Horn A, Lemos R (2019) Metal dynamics in a tropical watershed: the São Francisco river and its compartments. Geochim Bras 33:221–233. https://doi.org/10.21715/gb2358-2812.2019332221

    Article  Google Scholar 

  • Trindade WM, Horn AH, Aranha PRA, Magalhães AP, Torres IC (2018) Evironmental evaluation of the middle São Francisco River basin between Três Marias and Pirapora, using chemical and geophysical investigation in sediment profiles from selected marginal lagoons. Geochim Bras 32:79–87. https://doi.org/10.21715/GB2358-2812.2018321079

    Article  CAS  Google Scholar 

  • USGS (2020) Earth resources observation and science (EROS) center. USGS EROS Archive—Digital Elevation—Shuttle Radar Topography Mission (SRTM) Non-Void Filled. Disponível em. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-non?qt-science_center_objects=0#qt-science_center_objects. Accessed 10 Feb 2020

  • Van SD, Ewert L, Wassenaar L (1993) Aquifer vulnerability index: a GIS—compatible method for grondwater vulnerabilty mapping. Can Water Resour J. https://doi.org/10.4296/cwrj1801025

    Article  Google Scholar 

  • Vengosh A, Jackson RB, Warner N, Darrah TH, Kondash A (2014) A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ Sci Technol 48:8334–8348. https://doi.org/10.1021/es405118y

    Article  CAS  Google Scholar 

  • Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD (2013) Impact of shale gas development on regional water quality. Science. https://doi.org/10.1126/science.1235009

    Article  Google Scholar 

  • Warner NR, Christie CA, Jackson RB, Vengosh A (2013) Impacts of shale gas wastewater disposal on water quality in Western Pennsylvania. Environ Sci Technol 47:11849–11857. https://doi.org/10.1021/es402165b

    Article  CAS  Google Scholar 

  • Whitton J, Brasier K, Charnley-Parry I, Cotton M (2017) Shale gas governance in the United Kingdom and the United States: opportunities for public participation and the implications for social justice. Energy Res Soc Sci 26:11–22. https://doi.org/10.1016/j.erss.2017.01.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Studies & Projects Sponsorships (FINEP) for the support the P&D GASBRAS project (Process n. 01.14.0215.00)/FUSP (n. 3060); The Nuclear Technology Development Center (CDTN) for their laboratory assistance; National Institute of Science and Technology Acqua—Mineral resources, Water and Biodiversity/Federal University of Minas Gerais (INCTAcqua/UFMG) for their logistical support; Universidad National del Comahue (UNCo), and the researcher, Ana Cecilia Dufilho, for her excellent academic assistance.

Funding

The Studies & Projects Sponsorships (FINEP) (Financiadora de Estudos e Projetos, FINEP) financed the GASBRAS (Process n. 01.14.0215.00)/FUSP (n. 3060), within the scope of which this research was developed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. C. Lima.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

All authors participate effectively in the construction of this paper and consent with this submission.

Consent to publication

All authors participate effectively in the construction of this paper and consent with this submission.

Additional information

Editorial responsibility: Samareh Mirkia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 19209 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, G.F.C., Ferreira, V.G., Lima, J.S.D. et al. Intrinsic and specific groundwater vulnerability determination as a pre-operational baseline assessment of an unconventional hydrocarbon industry. Int. J. Environ. Sci. Technol. 20, 8709–8724 (2023). https://doi.org/10.1007/s13762-022-04551-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04551-8

Keywords

Navigation