Skip to main content
Log in

Surfactants: combating the fate, impact, and aftermath of their release in the environment

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Surfactants are surface-active compounds widely applied in domestic and industrial cleansers, disinfection products, and personal care products. The residual surfactants and their breakdown products are dispersed in the environment predominantly via the disposal of sewage and land application of sewage sludge. In an environmental compartment, the concentration of the surfactants and their breakdown products range from a few micrograms to thousands of milligrams. They exhibit a relatively longer life cycle in the environment due to high surface affinity, and antimicrobial and recalcitrant properties, respectively. The findings reveal that prolonged exposure of surfactants with the innocuous microbiome alters the niche, inherits genetic assembly, and further imbibes antimicrobial resistances through the emergence of antimicrobial resistance genes, altogether impeding the downstream recycling of treated wastewater and sludge. Moreover, these compounds exhibit deleterious effects on the environmental niches such as foaming, scum formation, eutrophication, and physicochemical alterations. The personal care industry is going greener by the day, but the demand for chemical surfactants cannot be seen to breakneck anytime sooner. Therefore, a three-pronged approach is necessary to curtail the environmental influx of these compounds, firstly reducing the use of surfactants, secondly substituting the recalcitrant chemical compounds with greener compounds, and thirdly, completing the decomposition of surfactants in the wastewater treatment plants. This review elucidates the nexus of surfactant composition, biodegradation, and environmental persistence with a comprehension of the following topics, (i). Chemical composition and applications of synthetic and natural surfactants, (ii). The occurrence, toxicity, and fate of surfactants and their biodegradation products in the environment, (iii). The mechanism of biodegradation of surfactants by the aerobic and anaerobic microbes (iv). The proliferation of antibiotic resistance in the context of surfactants is highlighted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acir IH, Guenther K (2018) Endocrine-disrupting metabolites of alkylphenol ethoxylates—a critical review of analytical methods, environmental occurrences, toxicity, and regulation. Sci Total Environ 635:1530–1546

    Article  CAS  Google Scholar 

  • Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298

    Article  CAS  Google Scholar 

  • Akbari S, Abdurahman NH, Yunus RM, Fayaz F, Alara OR (2018) Biosurfactants—a new frontier for social and environmental safety: a mini review. Biotechnol Res Innov 2(1):81–90

    Article  Google Scholar 

  • Alsalahi MA, Latif MT, Ali MM, Magam SM, Abd Wahid NB, Khan MF, Suratman S (2014) Distribution of surfactants along the estuarine area of Selangor River, Malaysia. Mar Pollut Bull 80(1–2):344–350

    Article  CAS  Google Scholar 

  • Alygizakis N, Galani A, Rousis NI, Aalizadeh R, Dimopoulos MA, Thomaidis NS (2021) Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19 pandemic. Sci Total Environ 799:149230

    Article  CAS  Google Scholar 

  • Amézcua-Vega C, Poggi-Varaldo HM, Esparza-García F, Ríos-Leal E, Rodríguez-Vázquez R (2007) Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour Technol 98(1):237–240

    Article  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. https://doi.org/10.1155/2014/825910

    Article  Google Scholar 

  • Asok AK, Jisha MS (2012) Biodegradation of the anionic surfactant linear alkylbenzene sulfonate (LAS) by autochthonous Pseudomonas sp. Water Air Soil Pollut 223(8):5039–5048

    Article  CAS  Google Scholar 

  • Azizullah A, Richter P, Jamil M, Häder DP (2012) Chronic toxicity of a laundry detergent to the freshwater flagellate Euglena gracilis. Ecotoxicology 21(7):1957–1964

    Article  CAS  Google Scholar 

  • Badmus SO, Amusa HK, Oyehan TA, Saleh TA (2021) Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environ Sci Pollut Res 28(44):62085–62104

    Article  CAS  Google Scholar 

  • Bassey DE (2010) An investigation into the microbial degradation of Benzyldimethyl Hexadecylammonion Chloride used in oilfield chemical formulations (Doctoral dissertation, Heriot-Watt University).

  • Bezerra KGO, Rufino RD, Luna JM, Sarubbo LA (2018) Saponins and microbial biosurfactants: potential raw materials for the formulation of cosmetics. Biotechnol Prog 34(6):1482–1493

    Article  CAS  Google Scholar 

  • Boeije GM, Cano ML, Marshall SJ, Belanger SE, Van Compernolle R, Dorn PB, Gümbel H, Toy R, Wind T (2006) Ecotoxicity quantitative structure–activity relationships for alcohol ethoxylate mixtures based on substance-specific toxicity predictions. Ecotoxicol Environ Saf 64(1):75–84

    Article  CAS  Google Scholar 

  • Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int J Antimicrob Agents 39(5):381–389

    Article  CAS  Google Scholar 

  • Bureau of Indian Standards (BIS) Specification for drinking water 1S:10500: (2012) Retrieved on May, 23rd, 2021 from https://www.bis.org/publ/arpdf/ar2013e.htm

  • Camacho-Muñoz D, Martín J, Santos JL, Aparicio I, Alonso E (2014) Occurrence of surfactants in wastewater: hourly and seasonal variations in urban and industrial wastewaters from Seville (Southern Spain). Sci Total Environ 468:977–984

    Article  Google Scholar 

  • Cantarero S, Prieto CA, López I (2012) Occurrence of high-tonnage anionic surfactants in Spanish sewage sludge. J Environ Manag 95:S149–S153

    Article  CAS  Google Scholar 

  • Caracciolo AB, Cardoni M, Pescatore T, Patrolecco L (2017) Characteristics and environmental fate of the anionic surfactant sodium lauryl ether sulphate (SLES) used as the main component in foaming agents for mechanized tunnelling. Environ Pollut 226:94–103

    Article  Google Scholar 

  • Céspedes R, Lacorte S, Ginebreda A, Barceló D (2008) Occurrence and fate of alkylphenols and alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter River (Catalonia, NE Spain). Environ Pollut 153(2):384–392

    Article  Google Scholar 

  • Chanakya HN, Khuntia HK (2014) Treatment of gray water using anaerobic biofilms created on synthetic and natural fibers. Process Saf Environ Prot 92(2):186–192

    Article  CAS  Google Scholar 

  • Chaturvedi V, Kumar A (2010) Isolation of sodium dodecyl sulfate degrading strains from a detergent polluted pond situated in Varanasi city, India. J Cell Mol Biol 8(2):103

    CAS  Google Scholar 

  • Chen J, Liao Z, Lu S, Hu G, Liu Y, Tang C (2017) Study on a stepped eco-filter for treating greywater from single farm household. Appl Water Sci 7(7):3849–3857

    Article  CAS  Google Scholar 

  • Das S, Mukherjee I, Paul BK, Ghosh S (2014) Physicochemical behaviors of cationic gemini surfactant (14-4-14) based microheterogeneous assemblies. Langmuir 30(42):12483–12493

    Article  CAS  Google Scholar 

  • De S, Malik S, Ghosh A, Saha R, Saha B (2015) A review on natural surfactants. RSC Adv 5(81):65757–65767

    Article  CAS  Google Scholar 

  • Delforno TP, Okada DY, Polizel J, Sakamoto IK, Varesche MBA (2012) Microbial characterization and removal of anionic surfactant in an expanded granular sludge bed reactor. Biores Technol 107:103–109

    Article  CAS  Google Scholar 

  • Delforno TP, Belgini DR, Hidalgo KJ, Centurion VB, Lacerda-Júnior GV, Duarte IC, Varesche MBA, Oliveira VM (2020) Anaerobic reactor applied to laundry wastewater treatment: unveiling the microbial community by gene and genome-centric approaches. Int Biodeterior Biodegrad 149:104916

    Article  CAS  Google Scholar 

  • DEPA (2006) Fact Sheet: Nonylphenols and Nonylphenol Ethoxylates.Retrieved on May, 20th, 2021 from https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-nonylphenols-and-nonylphenol-ethoxylates

  • Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85(6):1629–1642

    Article  CAS  Google Scholar 

  • Dong W, Eichhorn P, Radajewski S, Schleheck D, Denger K, Knepper TP, Murrell JC, Cook AM (2004) Parvibaculum lavamentivorans converts linear alkylbenzenesulphonate surfactant to sulphophenylcarboxylates, α,β-unsaturated sulphophenylcarboxylates and sulphophenyldicarboxylates, which are degraded in communities. J Appl Microbiol 96(3):630–640

    Article  CAS  Google Scholar 

  • Edser C (2007) Multifaceted role for surfactants in agrochemicals. Focus Surf 3(2007):1–2

    Google Scholar 

  • Eichhorn P, Knepper TP (2002) α, β-Unsaturated sulfophenylcarboxylates as degradation intermediates of linear alkylbenzenesulfonates: evidence for Ω-oxygenation followed by β-oxidations by liquid chromatography-mass spectrometry. Environ Toxicol Chem Int J 21(1):1–8

    CAS  Google Scholar 

  • Eslami H, Hematabadi PT, Ghelmani SV, Vaziri AS, Derakhshan Z (2015) The performance of advanced sequencing batch reactor in wastewater treatment plant to remove organic materials and linear alkyl benzene sulfonates. Jundishapur J Health Sci. https://doi.org/10.17795/jjhs-29620

    Article  Google Scholar 

  • Falk NA (2019) Surfactants as antimicrobials: a brief overview of microbial interfacial chemistry and surfactant antimicrobial activity. J Surfactants Deterg 22(5):1119–1127

    Article  CAS  Google Scholar 

  • Fontoura ICCD, Saikawa GIA, Silveira VAI, Pan NC, Amador IR, Baldo C, Rocha SPDD, Celligoi MAPC (2020) Antibacterial activity of sophorolipids from Candida bombicola against human pathogens. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2020180568

    Article  Google Scholar 

  • Freeling F, Alygizakis NA, Peter C, Slobodnik J, Oswald P, Aalizadeh R, Cirka L, Thomaidis NS, Scheurer M (2019) Occurrence and potential environmental risk of surfactants and their transformation products discharged by wastewater treatment plants. Sci Total Environ 681:475–487

    Article  CAS  Google Scholar 

  • Garcıa MT, Ribosa I, Guindulain T, Sanchez-Leal J, Vives-Rego J (2001) Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environ Pollut 111(1):169–175

    Article  Google Scholar 

  • Garrido-Perez MC, Perales-VargasMachuca JA, Nebot-Sanz E, Sales-Márquez D (2008) Effect of the test media and toxicity of LAS on the growth of Isochrysis galbana. Ecotoxicology 17(8):738–746

    Article  CAS  Google Scholar 

  • Gerba CP (2015) Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol 81(2):464–469

    Article  Google Scholar 

  • Gheorghe S, Lucaciu I, Paun I, Stoica C, Stanescu E (2013) Ecotoxicological behavior of some cationic and amphoteric surfactants (biodegradation, toxicity and risk assessment). Biodegrad Life Sci 83:114

    Google Scholar 

  • Gomez V, Ferreres L, Pocurull E, Borrull F (2011) Determination of nonionic and anionic surfactants in environmental water matrices. Talanta 84(3):859–866

    Article  CAS  Google Scholar 

  • González MM, Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2012) Degradation and environmental risk of surfactants after the application of compost sludge to the soil. Waste Manag 32(7):1324–1331

    Article  Google Scholar 

  • Hajaya MG, Pavlostathis SG (2013) Modeling the fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater. Biores Technol 130:278–287

    Article  CAS  Google Scholar 

  • Hampel M, Mauffret A, Pazdro K, Blasco J (2012) Anionic surfactant linear alkylbenzene sulfonates (LAS) in sediments from the Gulf of Gdańsk (southern Baltic Sea, Poland) and its environmental implications. Environ Monit Assess 184(10):6013–6023

    Article  CAS  Google Scholar 

  • Han Y, Zhou ZC, Zhu L, Wei YY, Feng WQ, Xu L, Liu Y, Lin ZJ, Shuai XY, Zhang ZJ, Chen H (2019) The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes. Environ Sci Pollut Res 26(27):28352–28360

    Article  CAS  Google Scholar 

  • Han W, Hou M, He F, Zhang W, Shi B (2020) Ecotoxicity and interacting mechanism of anionic surfactant sodium dodecyl sulfate (SDS) and its mixtures with nonionic surfactant fatty alcohol-polyoxyethlene ether (AEO). Aquat Toxicol 222:105467

    Article  CAS  Google Scholar 

  • Hassan KA, Baltzer S, Paulsen I, Brown M (2010) Pumping out biocides–cause for concern. Microbiol Aust 31(4):178–181

    Article  Google Scholar 

  • He X, Wang L, Wu J, Yang J, Ma W, Bai L, Zhao B, Song B (2019) The effects of amide bonds and aromatic rings on the surface properties and antimicrobial activity of cationic surfactants. J Surfactants Deterg 22(2):315–325

    Article  CAS  Google Scholar 

  • Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16(2):91–104

    Article  CAS  Google Scholar 

  • HERA (2012) Retrieved on May, 21st, 2021 from https://eng.gruppohera.it/documents/1514726/4217034/Sustainability_Report_2012.1368195841.pdf/b0693dc9-775a-1c89-345d-6643d510ed45

  • HERA (2013) Retrieved on May, 21st, 2021 from https://www.hera.org.nz/wp-content/uploads/HERA_AnnualReport2013web.pdf

  • Hora PI, Pati SG, McNamara PJ, Arnold WA (2020) Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: consideration of environmental implications. Environ Sci Technol Lett 7(9):622–631

    Article  CAS  Google Scholar 

  • Indian Standard DRINKING WATER — SPECIFICATION (ISDWS 2012). Retrieved on May, 22nd, 2021 from http://cgwb.gov.in/Documents/WQ-standards.pdf

  • Isitua C (2016) Otasowie, John Imhariabe. Science 5(6)

  • Ivankovic T, Hrenovic J, Gudelj I (2009) Toxicity of commercial surfactants to phosphate-accumulating bacterium. Acta Chim Slov 56:1003–1009

    CAS  Google Scholar 

  • Ivanković T, Hrenović J (2010) Surfactants in the environment. Arh Hig Rada Toksikol 61(1):95–109

    Article  Google Scholar 

  • Jadeja NB, Moharir P, Kapley A (2019) Genome sequencing and analysis of strains Bacillus sp. AKBS9 and Acinetobacter sp. AKBS16 for biosurfactant production and bioremediation. Appl Biochem Biotechnol 187(2):518–530

    Article  CAS  Google Scholar 

  • Jain P, Sharma M, Dureja P, Sarma PM, Lal B (2017) Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water. Chemosphere 166:96–108

    Article  CAS  Google Scholar 

  • Jamaly S, Giwa A, Hasan SW (2015) Recent improvements in oily wastewater treatment: progress, challenges, and future opportunities. J Environ Sci 37:15–30

    Article  CAS  Google Scholar 

  • Jardak K, Drogui P, Daghrir R (2016) Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes. Environ Sci Pollut Res 23(4):3195–3216

    Article  CAS  Google Scholar 

  • Jensen J (1999) Fate and effects of linear alkylbenzene sulphonates (LAS) in the terrestrial environment. Sci Total Environ 226(2–3):93–111

    Article  CAS  Google Scholar 

  • Ji G, Zhou Y, Zhou B, Yun Y, Chen Z, Liu H (2019) Combined UMBAF-MBAF process treating detergent wastewater. Water Environ Res 91(8):672–678

    Article  CAS  Google Scholar 

  • Jonkers N, Knepper TP, De Voogt P (2001) Aerobic biodegradation studies of nonylphenol ethoxylates in river water using liquid chromatography−electrospray tandem mass spectrometry. Environ Sci Technol 35(2):335–340

    Article  CAS  Google Scholar 

  • Kanchi S, Niranjan T, Naidu KB, Venkatasubba NN (2012) Monitoring the status of anionic surfactants in various water systems in urban and rural areas of Tirupati, Andhra Pradesh, South India. Int J Res Chem Environ (IJRCE) 2(3):144–156

    CAS  Google Scholar 

  • Kang S, Jeong HY (2015) Sorption of a nonionic surfactant Tween 80 by minerals and soils. J Hazard Mater 284:143–150

    Article  CAS  Google Scholar 

  • Kapley A, Purohit HJ (2009) Diagnosis of treatment efficiency in industrial wastewater treatment plants: a case study at a refinery ETP. Environ Sci Technol 43(10):3789–3795

    Article  CAS  Google Scholar 

  • Katam K, Maetani K, Shimizu T, Nakajima J, Bhattacharyya D (2018) Study of aerobic biodegradation of surfactants and fluorescent whitening agents in detergents of a few selected Asian countries (India, Indonesia, Japan, and Thailand). Journal of Water and Environment Technology 16(1):18–29

    Article  Google Scholar 

  • Kern DI, Schwaickhardt RDO, Mohr G, Lobo EA, Kist LT, Machado ÊL (2013) Toxicity and genotoxicity of hospital laundry wastewaters treated with photocatalytic ozonation. Sci Total Environ 443:566–572

    Article  CAS  Google Scholar 

  • Khuntia HK, Chanakya HN (2020) Accumulation of antibiotic-resistant genes in anaerobic biofilm reactor fed with household chemical products. SN Appl Sci 2(8):1–7

    Article  Google Scholar 

  • Khuntia HK, Chandrashekar S, Chanakya HN (2019) Treatment of household greywater laden with household chemical products in a multi-chambered anaerobic biofilm reactor. Sustain Cities Soc 51:101783

    Article  Google Scholar 

  • Khuntia HK, Janardhana N, Chanakya HN (2021) Household discharge of chemical products and its classification based on anaerobic biodegradability. Environ Monit Assess 193(1):1–15

    Article  Google Scholar 

  • Kregiel D, Berlowska J, Witonska I, Antolak H, Proestos C, Babic M, Babic L, Zhang B (2017) Saponin-based, biological-active surfactants from plants. Appl Charact Surfactants 6(1):184–205

    Google Scholar 

  • Kuyukina MS, Ivshina IB (2019) Production of trehalolipid biosurfactants by Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Cham, pp 271–298

    Chapter  Google Scholar 

  • Lara-Martín PA, Li X, Bopp RF, Brownawell BJ (2010) Occurrence of alkyltrimethylammonium compounds in urban estuarine sediments: behentrimonium as a new emerging contaminant. Environ Sci Technol 44(19):7569–7575

    Article  Google Scholar 

  • Latała A, Nędzi M, Stepnowski P (2009) Toxicity of imidazolium and pyridinium based ionic liquids towards algae Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms). Green Chem 11(4):580–588

    Article  Google Scholar 

  • Latif MT, Wanfi L, Hanif NM, Roslan RN, Ali MM, Mushrifah I (2012) Composition and distribution of surfactants around Lake Chini, Malaysia. Environ Monit Assessm 184(3):1325–1334

    Article  CAS  Google Scholar 

  • Lavorgna M, Russo C, D’Abrosca B, Parrella A, Isidori M (2016) Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems. Environ Pollut 210:34–39

    Article  CAS  Google Scholar 

  • Lechuga M, Fernández-Serrano M, Jurado E, Núñez-Olea J, Ríos F (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Saf 125:1–8

    Article  CAS  Google Scholar 

  • Li X, Luo X, Mai B, Liu J, Chen L, Lin S (2014) Occurrence of quaternary ammonium compounds (QACs) and their application as a tracer for sewage derived pollution in urban estuarine sediments. Environ Pollut 185:127–133

    Article  CAS  Google Scholar 

  • Liu Z, Li Z, Zhong H, Zeng G, Liang Y, Chen M, Wu Z, Zhou Y, Yu M, Shao B (2017) Recent advances in the environmental applications of biosurfactant saponins: a review. J Environ Chem Eng 5(6):6030–6038

    Article  Google Scholar 

  • Liu L, Chen J, Lim PE, Wei D (2018) Dual-species cultivation of microalgae and yeast for enhanced biomass and microbial lipid production. J Appl Phycol 30(6):2997–3007

    Article  CAS  Google Scholar 

  • Loree, J. and Lappin, S.L., 2019. Bacteriostatic antibiotics.

  • Lu J, Jin Q, He Y, Wu J, Zhang W, Zhao J (2008) Anaerobic degradation behavior of nonylphenol polyethoxylates in sludge. Chemosphere 71(2):345–351

    Article  CAS  Google Scholar 

  • Maehara Y, Miyoshi SI (2017) Antibacterial activities of surfactants in the laundry detergents and isolation of the surfactant resistant aquatic bacteria. Biocontrol Sci 22(4):229–232

    Article  CAS  Google Scholar 

  • Magalhães L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29(1):138–142

    Article  Google Scholar 

  • Maktabi S, Zarei M, Rashnavady R (2018) Effect of sequential treatments with sodium dodecyl sulfate and citric acid or hydrogen peroxide on the reduction of some foodborne pathogens on eggshell. Iran J Vet Res 19(2):113

    CAS  Google Scholar 

  • Mann RM, Bidwell JR (2001) The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environ Pollut 114(2):195–205

    Article  CAS  Google Scholar 

  • Mantzavinos D, Burrows DM, Willey R, Biundo GL, Zhang SF, Livingston AG, Metcalfe IS (2001) Chemical treatment of an anionic surfactant wastewater: electrospray-MS studies of intermediates and effect on aerobic biodegradability. Water Res 35(14):3337–3344

    Article  CAS  Google Scholar 

  • Manzano MA, Perales JA, Sales D, Quiroga JM (1999) The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water. Water Res 33(11):2593–2600

    Article  CAS  Google Scholar 

  • Mårtensson AM, Torstensson L (1996) Monitoring sewage sludge using heterotrophic nitrogen fixing microorganisms. Soil Biol Biochem 28(12):1621

    Article  Google Scholar 

  • McDonough K, Casteel K, Itrich N, Menzies J, Belanger S, Wehmeyer K, Federle T (2016) Evaluation of anionic surfactant concentrations in US effluents and probabilistic determination of their combined ecological risk in mixing zones. Sci Total Environ 572:434–441

    Article  CAS  Google Scholar 

  • Mnif I, Ellouz-Chaabouni S, Ghribi D (2018) Glycolipid biosurfactants, main classes, functional properties and related potential applications in environmental biotechnology. J Polym Environ 26(5):2192–2206

    Article  CAS  Google Scholar 

  • Mogensen AS, Ahring BK (2002) Formation of metabolites during biodegradation of linear alkylbenzenesulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions. Biotechnol Bioeng 77(5):483–488

    Article  CAS  Google Scholar 

  • Moldes AB, Rodríguez-López L, Rincón-Fontán M, López-Prieto A, Vecino X, Cruz JM (2021) Synthetic and bio-derived surfactants versus microbial biosurfactants in the cosmetic industry: an overview. Int J Mol Sci 22(5):2371

    Article  CAS  Google Scholar 

  • Moldovan Z, Avram V, Marincas O, Petrov P, Ternes T (2011) The determination of the linear alkylbenzene sulfonate isomers in water samples by gas-chromatography/mass spectrometry. J Chromatogr A 1218(2):343–349

    Article  CAS  Google Scholar 

  • Mörtl M, Takács E, Klátyik S, Székács A (2019) Aquatic toxicity and loss of linear alkylbenzenesulfonates alone and in a neonicotinoid insecticide formulation in surface water. Sci Total Environ 652:780–787

    Article  Google Scholar 

  • Motteran F, Nadai BM, Braga JK, Silva EL, Varesche MBA (2018) Metabolic routes involved in the removal of linear alkylbenzene sulfonate (LAS) employing linear alcohol ethoxylated and ethanol as co-substrates in enlarged scale fluidized bed reactor. Sci Total Environ 640:1411–1423

    Article  Google Scholar 

  • Mungray AK, Kumar P (2008) Occurrence of anionic surfactants in treated sewage: risk assessment to aquatic environment. J Hazard Mater 160(2–3):362–370

    Article  CAS  Google Scholar 

  • Mungray AK, Kumar P (2009a) Mass balance of anionic surfactants through up-flow anaerobic sludge blanket based sewage treatment plants. Process Saf Environ Prot 87(4):254–260

    Article  CAS  Google Scholar 

  • Mungray AK, Kumar P (2009b) Fate of linear alkylbenzene sulfonates in the environment: a review. Int Biodeterior Biodegrad 63(8):981–987

    Article  CAS  Google Scholar 

  • Nałęcz-Jawecki G, Grabińska-Sota E, Narkiewicz P (2003) The toxicity of cationic surfactants in four bioassays. Ecotoxicol Environ Saf 54(1):87–91

    Article  Google Scholar 

  • Naresh CG, Dipankar S, Anjali G (2009) Synthetic detergents (surfactants) and organochlorine pesticide signatures in surface water and groundwater of greater Kolkata, India. J Water Resour Prot 1(4):290–298. https://doi.org/10.4236/jwarp.2009.14036

    Article  CAS  Google Scholar 

  • Nelson DL, Cox MM (2017) Lehninger principles of biochemistry, 7th edn. Macmillan, New York

    Google Scholar 

  • Okada DY, Esteves ADS, Delforno TP, Hirasawa JS, Duarte ICS, Varesche MBA (2013) Influence of co-substrates in the anaerobic degradation of an anionic surfactant. Braz J Chem Eng 30:499–506

    Article  CAS  Google Scholar 

  • Olkowska E, Polkowska Ż, Namieśnik J (2012) Analytical procedures for the determination of surfactants in environmental samples. Talanta 88:1–13

    Article  CAS  Google Scholar 

  • Otzen DE (2017) Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochimica Et Biophysica Acta (BBA)-Biomembranes 1859(4):639–649

    Article  CAS  Google Scholar 

  • Palmer M, Hatley H (2018) The role of surfactants in wastewater treatment: Impact, removal and future techniques: a critical review. Water Res 147:60–72

    Article  CAS  Google Scholar 

  • Pan Y, Shi Y, Wang J, Jin X, Cai Y (2011) Pilot investigation of perfluorinated compounds in river water, sediment, soil and fish in Tianjin, China. Bull Environ Contam Toxicol 87(2):152–157

    Article  CAS  Google Scholar 

  • Pastewski S, Medrzycka K (2003) Monitoring surfactant concentrations in surface waters in Tricity agglomeration. Pol J Environ Stud 12(5):643–646

    CAS  Google Scholar 

  • Patil VV, Gogate PR, Bhat AP, Ghosh PK (2020) Treatment of laundry wastewater containing residual surfactants using combined approaches based on ozone, catalyst and cavitation. Sep Purif Technol 239:116594

    Article  CAS  Google Scholar 

  • Paulo A, Aydin R, Dimitrov MR, Vreeling H, Cavaleiro AJ, García-Encina PA, Stams AJ, Plugge CM (2017) Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria. Appl Microbiol Biotechnol 101(12):5163–5173

    Article  CAS  Google Scholar 

  • Racoviţa S (2017) The 6th international conference ecological & environmental chemistry-2017. Chisinau, Republic of Moldova. https://www.eec-2017.mrda.md

  • Ramachandra TV, Mahapatra DM, Asulabha KS, Varghese S (2017) Foaming or Algal Bloom in Water bodies of India: Remedial Measures - Restrict Phosphate (P) based Detergents, ENVIS Technical Report 108, Environmental Information System, CES, Indian Institute of Science, Bangalore. https://www.researchgate.net/profile/T-VRamachandra/publication/315543620_FOAMING_OR_ALGAL_BLOOM_IN_WATER_BODIES_OF_INDIA_REMEDIAL_MEASURES_-_RESTRICT_PHOSPHATE_P_BASED_DETERGENTS/links/58d3ecaf45851533784fcd96/FOAMING-OR-ALGAL-BLOOM-INWATER-BODIES-OF-INDIA-REMEDIAL-MEASURES-RESTRICT-PHOSPHATE-P-BASED-DETERGENTS.pdf

  • Ran Z, Zhu J, Li K, Zhou L, Xiao P, Wang B (2018) Study on the membrane bioreactor for treating surfactant wastewater. J Water Clim Change 9(2):240–248

    Article  Google Scholar 

  • Rebello S, Asok AK, Mundayoor S, Jisha MS (2013) Surfactants: chemistry, toxicity and remediation. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Pollutant diseases, remediation and recycling. Springer, Cham, pp 277–320

    Chapter  Google Scholar 

  • Rebello S, Asok AK, Mundayoor S, Jisha MS (2014) Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 12(2):275–287

    Article  CAS  Google Scholar 

  • Renaud F, Warnau M, Oberhänsli F, Teyssié JL, Temara A, Rouleau C, Metian M (2014) Bioconcentration of the anionic surfactant linear alkylbenzene sulfonate (LAS) in the marine shrimp Palaemonetes varians: a radiotracer study. Mar Pollut Bull 85(1):244–247

    Article  CAS  Google Scholar 

  • Research and Markets. Surfactants Market by Type (Anionic, Non-Ionic, Cationic, and Amphoteric), Substrate (Synthetic, and Bio-based), Application (Detergents, Personal Care, Textile, Elastomers & Plastics, Crop Protection, Food & Beverage)—Global Forecast to 2022, Markets and Markets

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants: Minireview. Environ Microbiol 3(4):229–236

    Article  CAS  Google Scholar 

  • Roy A (2017) Review on the biosurfactants: properties, types and its applications. J Fundam Renew Energy Appl 8:1–14

    CAS  Google Scholar 

  • Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochimica Et Biophysica Acta (BBA)-Biomembranes 1508(1–2):235–251

    Article  CAS  Google Scholar 

  • Seth R, Singh P, Mohan M, Singh R, Aswal RS (2013) Monitoring of phenolic compounds and surfactants in water of Ganga Canal, Haridwar (India). Appl Water Sci 3(4):717–720

    Article  CAS  Google Scholar 

  • Shaligram S, Kumbhare SV, Dhotre DP, Muddeshwar MG, Kapley A, Joseph N, Purohit HP, Shouche YS, Pawar SP (2016) Genomic and functional features of the biosurfactant producing Bacillus sp. AM13. Funct Integr Genom 16(5):557–566

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. Nanosci Technol 452:337–346. https://doi.org/10.1038/nature06599

    Article  CAS  Google Scholar 

  • Shetye SS, Bandekar M, Nandakumar K, Kurian S, Gauns M, Jawak S, Pratihary A, Elangovan SS, Naik BR, Lakshmi S, Aswathi VK (2021) Sea foam-associated pathogenic bacteria along the west coast of India. Environ Monit Assess 193(1):1–10

    Article  Google Scholar 

  • Shokoohi R, Torkshavand Z, Zolghadnasab H, Alikhani MY, Hemmat MS (2018) Study of the efficiency of moving bed biofilm reactor (MBBR) in LAS Anionic Detergent removal from hospital wastewater: determination of removing model according to response surface methodology (RSM). Water Sci Technol 2017(1):1–7

    Article  Google Scholar 

  • Shukla A, Trivedi SP (2018) Anionic surfactant, linear alkyl benzene sulphonate induced oxidative stress and hepatic impairments in fish Channa punctatus. In: Proceedings of the zoological society, vol 71(4). Springer, India, pp 382–389

    Google Scholar 

  • Singh RP, Gupta N, Singh S, Singh A, Suman R, Annie K (2002) Toxicity of ionic and nonionic surfactants to six macrobes found in Agra, India. Bull Environ Contam Toxicol 69(2):265–270

    Article  CAS  Google Scholar 

  • Siyal AA, Shamsuddin MR, Low A, Rabat NE (2020) A review on recent developments in the adsorption of surfactants from wastewater. J Environ Manag 254:109797

    Article  CAS  Google Scholar 

  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34(7):1033–1049

    Article  CAS  Google Scholar 

  • Sørensen TS, Holmstrup M (2005) A comparative analysis of the toxicity of eight common soil contaminants and their effects on drought tolerance in the collembolan Folsomia candida. Ecotoxicol Environ Saf 60(2):132–139

    Article  Google Scholar 

  • Stasinakis AS (2012) Review on the fate of emerging contaminants during sludge anaerobic digestion. Biores Technol 121:432–440

    Article  CAS  Google Scholar 

  • Tandukar M, Oh S, Tezel U, Konstantinidis KT, Pavlostathis SG (2013) Long-term exposure to benzalkonium chloride disinfectants results in change of microbial community structure and increased antimicrobial resistance. Environ Sci Technol 47(17):9730–9738

    Article  CAS  Google Scholar 

  • Tavano L, Infante MR, Riya MA, Pinazo A, Vinardell MP, Mitjans M, Manresa MA, Pérez L (2013) Role of aggregate size in the hemolytic and antimicrobial activity of colloidal solutions based on single and gemini surfactants from arginine. Soft Matter 9(1):306–319

    Article  CAS  Google Scholar 

  • TenEyck MC, Markee TP (2007) Toxicity of nonylphenol, nonylphenol monoethoxylate, and nonylphenol diethoxylate and mixtures of these compounds to Pimephales promelas (fathead minnow) and Ceriodaphnia dubia. Arch Environ Contam Toxicol 53(4):599–606

    Article  CAS  Google Scholar 

  • Topping BW, Waters J (1982) Monitoring of cationic surfactants in sewage treatment plants. Tenside Surfactants, Deterg 19(3):164–169

    Article  CAS  Google Scholar 

  • Tsujimura K, Murase H, Bannai H, Nemoto M, Yamanaka T, Kondo T (2015) Efficacy of five commercial disinfectants and one anionic surfactant against equine herpesvirus type 1. J Vet Med Sci 77(11):1545–1548

    Article  CAS  Google Scholar 

  • United States Centers for Disease Control. CDC (2019) Cleaning Retrieved from May, 20th, 2021 from https://www.cdc.gov/infectioncontrol/guidelines/disinfection/cleaning.html

  • United States Department of Agriculture (USEPA). (2018b, October 9). NationalOrganic Standards Board, Handling Subcommittee, petitioned material proposal, Sodium dodecylbenzene sulfonate (SDBS) 9 Oct 2018b. Retrieved from https://www.ams.usda.gov/sites/default/files

  • United States Environmental Protection Agency (USEPA) (2006) Registration Eligibility Decision for Iodine and Iodophor Complexes. US Environmental Protection Agency, July 2006. Retrieved from May, 20th, 2021 from http://www.epa.gov/oppsrrd1/reregistration/REDs/iodine-red.pdf

  • United States Environmental Protection Agency(USEPA). (2018a). Summaryof federal insecticide, fungicide, and rodenticide act, 29 May 2018a. Retrieved from https://www.epa.gov/laws-regulations/summary-federal-insecticide-fungicide-and-rodenticide-act

  • Vedagiri UK, Anderson RH, Loso HM, Schwach CM (2018) Ambient levels of PFOS and PFOA in multiple environmental media. Remediat J 28(2):9–51

    Article  Google Scholar 

  • Wassenaar T, Ussery D, Nielsen L, Ingmer H (2015) Review and phylogenetic analysis of QAC genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol 5(1):44–61

    Article  CAS  Google Scholar 

  • Weiss M, Denger K, Huhn T, Schleheck D (2012) Two enzymes of a complete degradation pathway for linear alkylbenzenesulfonate (LAS) surfactants: 4-sulfoacetophenone Baeyer-Villiger monooxygenase and 4-sulfophenylacetate esterase in Comamonas testosteroni KF-1. Appl Environ Microbiol 78(23):8254–8263

    Article  CAS  Google Scholar 

  • Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH (2017) Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front Pharmacol 8:761

    Article  Google Scholar 

  • Yadav TC, Pal RR, Shastri S, Jadeja NB, Kapley A (2015) Comparative metagenomics demonstrating different degradative capacity of activated biomass treating hydrocarbon contaminated wastewater. Biores Technol 188:24–32

    Article  CAS  Google Scholar 

  • Yin C, Li Y, Zhang T, Liu J, Yuan Y, Huang M (2020) Effects of exposure to anionic surfactants (SDBS and SDS) on nitrogen removal of aerobic denitrifier. Water Environ Res 92(12):2129–2139

    Article  CAS  Google Scholar 

  • Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32(3):417–431

    Article  CAS  Google Scholar 

  • Zhang C, Tezel U, Li K, Liu D, Ren R, Du J, Pavlostathis SG (2011) Evaluation and modeling of benzalkonium chloride inhibition and biodegradation in activated sludge. Water Res 45(3):1238–1246

    Article  CAS  Google Scholar 

  • Zhang Q, Xia YF, Hong JM (2016) Mechanism and toxicity research of benzalkonium chloride oxidation in aqueous solution by H2O2/Fe2+ process. Environ Sci Pollut Res 23(17):17822–17830

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CSIR-NEERI, Nagpur, and IISC, Bengaluru, for providing the necessary infrastructure. Upasana Arora and Himanshu K. Khuntia would like to thank the Department of Biotechnology (DBT), Government of India, for granting financial support (BT/PR20408/BCE/8/1304/2016). The manuscript was checked for plagiarism using i-Thenticate software at the NEERI Knowledge resource center KRC No. CSIR-NEERI/KRC/2022/SEP/EBGD/3.

Author information

Authors and Affiliations

Authors

Contributions

UA was involved in giving original ideas and was involved in literature survey and writing—original draft. HKK was involved in writing—review and editing and validation. HNC and AK were involved in supervision. AK was involved in conceptualization and review and editing. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to A. Kapley.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Additional information

Editorial responsibility: Jing Chen.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, U., Khuntia, H.K., Chanakya, H.N. et al. Surfactants: combating the fate, impact, and aftermath of their release in the environment. Int. J. Environ. Sci. Technol. 20, 11551–11574 (2023). https://doi.org/10.1007/s13762-022-04549-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04549-2

Keywords

Navigation